

 导航

 	
 索引

 	
 下一页 |

 	The Linux Kernel v4.20.0 文档 »

The Linux Kernel documentation

This is the top level of the kernel’s documentation tree. Kernel
documentation, like the kernel itself, is very much a work in progress;
that is especially true as we work to integrate our many scattered
documents into a coherent whole. Please note that improvements to the
documentation are welcome; join the linux-doc list at vger.kernel.org if
you want to help out.

Licensing documentation

The following describes the license of the Linux kernel source code
(GPLv2), how to properly mark the license of individual files in the source
tree, as well as links to the full license text.

	kernel_licensing

User-oriented documentation

The following manuals are written for users of the kernel — those who are
trying to get it to work optimally on a given system.

	The Linux kernel user’s and administrator’s guide
	Linux kernel release 4.x <http://kernel.org/>

	The kernel’s command-line parameters

	Linux allocated devices (4.x+ version)

	L1TF - L1 Terminal Fault

	Reporting bugs

	Security bugs

	Bug hunting

	Bisecting a bug

	Tainted kernels

	Ramoops oops/panic logger

	Dynamic debug

	Explaining the dreaded “No init found.” boot hang message

	Rules on how to access information in sysfs

	Using the initial RAM disk (initrd)

	Control Group v2

	Linux Serial Console

	Linux Braille Console

	Parport

	RAID arrays

	Kernel module signing facility

	Linux Magic System Request Key Hacks

	Unicode support

	Software cursor for VGA

	Kernel Support for miscellaneous (your favourite) Binary Formats v1.1

	Mono(tm) Binary Kernel Support for Linux

	Java(tm) Binary Kernel Support for Linux v1.03

	Reliability, Availability and Serviceability

	A block layer cache (bcache)

	ext4 General Information

	Power Management

	Thunderbolt

	Linux Security Module Usage

	Memory Management

Application-developer documentation

The user-space API manual gathers together documents describing aspects of
the kernel interface as seen by application developers.

Introduction to kernel development

These manuals contain overall information about how to develop the kernel.
The kernel community is quite large, with thousands of developers
contributing over the course of a year. As with any large community,
knowing how things are done will make the process of getting your changes
merged much easier.

	如何撰写内核文档
	介绍

	Sphinx Install

	Sphinx Build

	Writing Documentation

	Figures & Images

	Writing kernel-doc comments

	Including kernel-doc comments

	Including uAPI header files

	Kernel Hacking Guides
	Unreliable Guide To Hacking The Linux Kernel

	Unreliable Guide To Locking

	Linux Tracing Technologies
	Function Tracer Design

	Notes on Analysing Behaviour Using Events and Tracepoints

	ftrace - Function Tracer

	Using ftrace to hook to functions

	Kprobe-based Event Tracing

	Uprobe-tracer: Uprobe-based Event Tracing

	Using the Linux Kernel Tracepoints

	Event Tracing

	Subsystem Trace Points: kmem

	Subsystem Trace Points: power

	NMI Trace Events

	MSR Trace Events

	In-kernel memory-mapped I/O tracing

	Event Histograms

	Hardware Latency Detector

	Intel(R) Trace Hub (TH)

	System Trace Module

Kernel API documentation

These books get into the details of how specific kernel subsystems work
from the point of view of a kernel developer. Much of the information here
is taken directly from the kernel source, with supplemental material added
as needed (or at least as we managed to add it — probably not all that is
needed).

	Linux Memory Management Documentation
	User guides for MM features

	Kernel developers MM documentation

Architecture-specific documentation

These books provide programming details about architecture-specific
implementation.

Filesystem Documentation

The documentation in this section are provided by specific filesystem
subprojects.

Translations

Indices and tables

	索引

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

The Linux kernel user’s and administrator’s guide

The following is a collection of user-oriented documents that have been
added to the kernel over time. There is, as yet, little overall order or
organization here — this material was not written to be a single, coherent
document! With luck things will improve quickly over time.

This initial section contains overall information, including the README
file describing the kernel as a whole, documentation on kernel parameters,
etc.

	Linux kernel release 4.x <http://kernel.org/>

	The kernel’s command-line parameters

	Linux allocated devices (4.x+ version)

This section describes CPU vulnerabilities and provides an overview of the
possible mitigations along with guidance for selecting mitigations if they
are configurable at compile, boot or run time.

	L1TF - L1 Terminal Fault

Here is a set of documents aimed at users who are trying to track down
problems and bugs in particular.

	Reporting bugs

	Security bugs

	Bug hunting

	Bisecting a bug

	Tainted kernels

	Ramoops oops/panic logger

	Dynamic debug

	Explaining the dreaded “No init found.” boot hang message

This is the beginning of a section with information of interest to
application developers. Documents covering various aspects of the kernel
ABI will be found here.

	Rules on how to access information in sysfs

The rest of this manual consists of various unordered guides on how to
configure specific aspects of kernel behavior to your liking.

	Using the initial RAM disk (initrd)

	Control Group v2

	Linux Serial Console

	Linux Braille Console

	Parport

	RAID arrays

	Kernel module signing facility

	Linux Magic System Request Key Hacks

	Unicode support

	Software cursor for VGA

	Kernel Support for miscellaneous (your favourite) Binary Formats v1.1

	Mono(tm) Binary Kernel Support for Linux

	Java(tm) Binary Kernel Support for Linux v1.03

	Reliability, Availability and Serviceability

	A block layer cache (bcache)

	ext4 General Information

	Power Management

	Thunderbolt

	Linux Security Module Usage

	Memory Management

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Linux kernel release 4.x <http://kernel.org/>

These are the release notes for Linux version 4. Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong.

What is Linux?

Linux is a clone of the operating system Unix, written from scratch by
Linus Torvalds with assistance from a loosely-knit team of hackers across
the Net. It aims towards POSIX and Single UNIX Specification compliance.

It has all the features you would expect in a modern fully-fledged Unix,
including true multitasking, virtual memory, shared libraries, demand
loading, shared copy-on-write executables, proper memory management,
and multistack networking including IPv4 and IPv6.

It is distributed under the GNU General Public License v2 - see the
accompanying COPYING file for more details.

On what hardware does it run?

Although originally developed first for 32-bit x86-based PCs (386 or higher),
today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and
ARC architectures.

Linux is easily portable to most general-purpose 32- or 64-bit architectures
as long as they have a paged memory management unit (PMMU) and a port of the
GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
also been ported to a number of architectures without a PMMU, although
functionality is then obviously somewhat limited.
Linux has also been ported to itself. You can now run the kernel as a
userspace application - this is called UserMode Linux (UML).

Documentation

	There is a lot of documentation available both in electronic form on
the Internet and in books, both Linux-specific and pertaining to
general UNIX questions. I’d recommend looking into the documentation
subdirectories on any Linux FTP site for the LDP (Linux Documentation
Project) books. This README is not meant to be documentation on the
system: there are much better sources available.

	There are various README files in the Documentation/ subdirectory:
these typically contain kernel-specific installation notes for some
drivers for example. Please read the
Documentation/process/changes.rst file, as it
contains information about the problems, which may result by upgrading
your kernel.

Installing the kernel source

	If you install the full sources, put the kernel tarball in a
directory where you have permissions (e.g. your home directory) and
unpack it:

xz -cd linux-4.X.tar.xz | tar xvf -

Replace “X” with the version number of the latest kernel.

Do NOT use the /usr/src/linux area! This area has a (usually
incomplete) set of kernel headers that are used by the library header
files. They should match the library, and not get messed up by
whatever the kernel-du-jour happens to be.

	You can also upgrade between 4.x releases by patching. Patches are
distributed in the xz format. To install by patching, get all the
newer patch files, enter the top level directory of the kernel source
(linux-4.X) and execute:

xz -cd ../patch-4.x.xz | patch -p1

Replace “x” for all versions bigger than the version “X” of your current
source tree, in_order, and you should be ok. You may want to remove
the backup files (some-file-name~ or some-file-name.orig), and make sure
that there are no failed patches (some-file-name# or some-file-name.rej).
If there are, either you or I have made a mistake.

Unlike patches for the 4.x kernels, patches for the 4.x.y kernels
(also known as the -stable kernels) are not incremental but instead apply
directly to the base 4.x kernel. For example, if your base kernel is 4.0
and you want to apply the 4.0.3 patch, you must not first apply the 4.0.1
and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and
want to jump to 4.0.3, you must first reverse the 4.0.2 patch (that is,
patch -R) before applying the 4.0.3 patch. You can read more on this in
Documentation/process/applying-patches.rst.

Alternatively, the script patch-kernel can be used to automate this
process. It determines the current kernel version and applies any
patches found:

linux/scripts/patch-kernel linux

The first argument in the command above is the location of the
kernel source. Patches are applied from the current directory, but
an alternative directory can be specified as the second argument.

	Make sure you have no stale .o files and dependencies lying around:

cd linux
make mrproper

You should now have the sources correctly installed.

Software requirements

Compiling and running the 4.x kernels requires up-to-date
versions of various software packages. Consult
Documentation/process/changes.rst for the minimum version numbers
required and how to get updates for these packages. Beware that using
excessively old versions of these packages can cause indirect
errors that are very difficult to track down, so don’t assume that
you can just update packages when obvious problems arise during
build or operation.

Build directory for the kernel

When compiling the kernel, all output files will per default be
stored together with the kernel source code.
Using the option make O=output/dir allows you to specify an alternate
place for the output files (including .config).
Example:

kernel source code: /usr/src/linux-4.X
build directory: /home/name/build/kernel

To configure and build the kernel, use:

cd /usr/src/linux-4.X
make O=/home/name/build/kernel menuconfig
make O=/home/name/build/kernel
sudo make O=/home/name/build/kernel modules_install install

Please note: If the O=output/dir option is used, then it must be
used for all invocations of make.

Configuring the kernel

Do not skip this step even if you are only upgrading one minor
version. New configuration options are added in each release, and
odd problems will turn up if the configuration files are not set up
as expected. If you want to carry your existing configuration to a
new version with minimal work, use make oldconfig, which will
only ask you for the answers to new questions.

	Alternative configuration commands are:

"make config" Plain text interface.

"make menuconfig" Text based color menus, radiolists & dialogs.

"make nconfig" Enhanced text based color menus.

"make xconfig" Qt based configuration tool.

"make gconfig" GTK+ based configuration tool.

"make oldconfig" Default all questions based on the contents of
 your existing ./.config file and asking about
 new config symbols.

"make olddefconfig"
 Like above, but sets new symbols to their default
 values without prompting.

"make defconfig" Create a ./.config file by using the default
 symbol values from either arch/$ARCH/defconfig
 or arch/$ARCH/configs/${PLATFORM}_defconfig,
 depending on the architecture.

"make ${PLATFORM}_defconfig"
 Create a ./.config file by using the default
 symbol values from
 arch/$ARCH/configs/${PLATFORM}_defconfig.
 Use "make help" to get a list of all available
 platforms of your architecture.

"make allyesconfig"
 Create a ./.config file by setting symbol
 values to 'y' as much as possible.

"make allmodconfig"
 Create a ./.config file by setting symbol
 values to 'm' as much as possible.

"make allnoconfig" Create a ./.config file by setting symbol
 values to 'n' as much as possible.

"make randconfig" Create a ./.config file by setting symbol
 values to random values.

"make localmodconfig" Create a config based on current config and
 loaded modules (lsmod). Disables any module
 option that is not needed for the loaded modules.

 To create a localmodconfig for another machine,
 store the lsmod of that machine into a file
 and pass it in as a LSMOD parameter.

 target$ lsmod > /tmp/mylsmod
 target$ scp /tmp/mylsmod host:/tmp

 host$ make LSMOD=/tmp/mylsmod localmodconfig

 The above also works when cross compiling.

"make localyesconfig" Similar to localmodconfig, except it will convert
 all module options to built in (=y) options.

"make kvmconfig" Enable additional options for kvm guest kernel support.

"make xenconfig" Enable additional options for xen dom0 guest kernel
 support.

"make tinyconfig" Configure the tiniest possible kernel.

You can find more information on using the Linux kernel config tools
in Documentation/kbuild/kconfig.txt.

	NOTES on make config:

	Having unnecessary drivers will make the kernel bigger, and can
under some circumstances lead to problems: probing for a
nonexistent controller card may confuse your other controllers.

	A kernel with math-emulation compiled in will still use the
coprocessor if one is present: the math emulation will just
never get used in that case. The kernel will be slightly larger,
but will work on different machines regardless of whether they
have a math coprocessor or not.

	The “kernel hacking” configuration details usually result in a
bigger or slower kernel (or both), and can even make the kernel
less stable by configuring some routines to actively try to
break bad code to find kernel problems (kmalloc()). Thus you
should probably answer ‘n’ to the questions for “development”,
“experimental”, or “debugging” features.

Compiling the kernel

	Make sure you have at least gcc 3.2 available.
For more information, refer to Documentation/process/changes.rst.

Please note that you can still run a.out user programs with this kernel.

	Do a make to create a compressed kernel image. It is also
possible to do make install if you have lilo installed to suit the
kernel makefiles, but you may want to check your particular lilo setup first.

To do the actual install, you have to be root, but none of the normal
build should require that. Don’t take the name of root in vain.

	If you configured any of the parts of the kernel as modules, you
will also have to do make modules_install.

	Verbose kernel compile/build output:

Normally, the kernel build system runs in a fairly quiet mode (but not
totally silent). However, sometimes you or other kernel developers need
to see compile, link, or other commands exactly as they are executed.
For this, use “verbose” build mode. This is done by passing
V=1 to the make command, e.g.:

make V=1 all

To have the build system also tell the reason for the rebuild of each
target, use V=2. The default is V=0.

	Keep a backup kernel handy in case something goes wrong. This is
especially true for the development releases, since each new release
contains new code which has not been debugged. Make sure you keep a
backup of the modules corresponding to that kernel, as well. If you
are installing a new kernel with the same version number as your
working kernel, make a backup of your modules directory before you
do a make modules_install.

Alternatively, before compiling, use the kernel config option
“LOCALVERSION” to append a unique suffix to the regular kernel version.
LOCALVERSION can be set in the “General Setup” menu.

	In order to boot your new kernel, you’ll need to copy the kernel
image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
to the place where your regular bootable kernel is found.

	Booting a kernel directly from a floppy without the assistance of a
bootloader such as LILO, is no longer supported.

If you boot Linux from the hard drive, chances are you use LILO, which
uses the kernel image as specified in the file /etc/lilo.conf. The
kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
/boot/bzImage. To use the new kernel, save a copy of the old image
and copy the new image over the old one. Then, you MUST RERUN LILO
to update the loading map! If you don’t, you won’t be able to boot
the new kernel image.

Reinstalling LILO is usually a matter of running /sbin/lilo.
You may wish to edit /etc/lilo.conf to specify an entry for your
old kernel image (say, /vmlinux.old) in case the new one does not
work. See the LILO docs for more information.

After reinstalling LILO, you should be all set. Shutdown the system,
reboot, and enjoy!

If you ever need to change the default root device, video mode,
ramdisk size, etc. in the kernel image, use the rdev program (or
alternatively the LILO boot options when appropriate). No need to
recompile the kernel to change these parameters.

	Reboot with the new kernel and enjoy.

If something goes wrong

	If you have problems that seem to be due to kernel bugs, please check
the file MAINTAINERS to see if there is a particular person associated
with the part of the kernel that you are having trouble with. If there
isn’t anyone listed there, then the second best thing is to mail
them to me (torvalds@linux-foundation.org), and possibly to any other
relevant mailing-list or to the newsgroup.

	In all bug-reports, please tell what kernel you are talking about,
how to duplicate the problem, and what your setup is (use your common
sense). If the problem is new, tell me so, and if the problem is
old, please try to tell me when you first noticed it.

	If the bug results in a message like:

unable to handle kernel paging request at address C0000010
Oops: 0002
EIP: 0010:XXXXXXXX
eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx
esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
ds: xxxx es: xxxx fs: xxxx gs: xxxx
Pid: xx, process nr: xx
xx xx xx xx xx xx xx xx xx xx

or similar kernel debugging information on your screen or in your
system log, please duplicate it exactly. The dump may look
incomprehensible to you, but it does contain information that may
help debugging the problem. The text above the dump is also
important: it tells something about why the kernel dumped code (in
the above example, it’s due to a bad kernel pointer). More information
on making sense of the dump is in Documentation/admin-guide/bug-hunting.rst

	If you compiled the kernel with CONFIG_KALLSYMS you can send the dump
as is, otherwise you will have to use the ksymoops program to make
sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred).
This utility can be downloaded from
https://www.kernel.org/pub/linux/utils/kernel/ksymoops/ .
Alternatively, you can do the dump lookup by hand:

	In debugging dumps like the above, it helps enormously if you can
look up what the EIP value means. The hex value as such doesn’t help
me or anybody else very much: it will depend on your particular
kernel setup. What you should do is take the hex value from the EIP
line (ignore the 0010:), and look it up in the kernel namelist to
see which kernel function contains the offending address.

To find out the kernel function name, you’ll need to find the system
binary associated with the kernel that exhibited the symptom. This is
the file ‘linux/vmlinux’. To extract the namelist and match it against
the EIP from the kernel crash, do:

nm vmlinux | sort | less

This will give you a list of kernel addresses sorted in ascending
order, from which it is simple to find the function that contains the
offending address. Note that the address given by the kernel
debugging messages will not necessarily match exactly with the
function addresses (in fact, that is very unlikely), so you can’t
just ‘grep’ the list: the list will, however, give you the starting
point of each kernel function, so by looking for the function that
has a starting address lower than the one you are searching for but
is followed by a function with a higher address you will find the one
you want. In fact, it may be a good idea to include a bit of
“context” in your problem report, giving a few lines around the
interesting one.

If you for some reason cannot do the above (you have a pre-compiled
kernel image or similar), telling me as much about your setup as
possible will help. Please read the admin-guide/reporting-bugs.rst
document for details.

	Alternatively, you can use gdb on a running kernel. (read-only; i.e. you
cannot change values or set break points.) To do this, first compile the
kernel with -g; edit arch/x86/Makefile appropriately, then do a make
clean. You’ll also need to enable CONFIG_PROC_FS (via make config).

After you’ve rebooted with the new kernel, do gdb vmlinux /proc/kcore.
You can now use all the usual gdb commands. The command to look up the
point where your system crashed is l *0xXXXXXXXX. (Replace the XXXes
with the EIP value.)

gdb’ing a non-running kernel currently fails because gdb (wrongly)
disregards the starting offset for which the kernel is compiled.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

The kernel’s command-line parameters

The following is a consolidated list of the kernel parameters as
implemented by the __setup(), core_param() and module_param() macros
and sorted into English Dictionary order (defined as ignoring all
punctuation and sorting digits before letters in a case insensitive
manner), and with descriptions where known.

The kernel parses parameters from the kernel command line up to “–”;
if it doesn’t recognize a parameter and it doesn’t contain a ‘.’, the
parameter gets passed to init: parameters with ‘=’ go into init’s
environment, others are passed as command line arguments to init.
Everything after “–” is passed as an argument to init.

Module parameters can be specified in two ways: via the kernel command
line with a module name prefix, or via modprobe, e.g.:

(kernel command line) usbcore.blinkenlights=1
(modprobe command line) modprobe usbcore blinkenlights=1

Parameters for modules which are built into the kernel need to be
specified on the kernel command line. modprobe looks through the
kernel command line (/proc/cmdline) and collects module parameters
when it loads a module, so the kernel command line can be used for
loadable modules too.

Hyphens (dashes) and underscores are equivalent in parameter names, so:

log_buf_len=1M print-fatal-signals=1

can also be entered as:

log-buf-len=1M print_fatal_signals=1

Double-quotes can be used to protect spaces in values, e.g.:

param="spaces in here"

cpu lists:

Some kernel parameters take a list of CPUs as a value, e.g. isolcpus,
nohz_full, irqaffinity, rcu_nocbs. The format of this list is:

<cpu number>,...,<cpu number>

or

<cpu number>-<cpu number>
(must be a positive range in ascending order)

or a mixture

<cpu number>,...,<cpu number>-<cpu number>

Note that for the special case of a range one can split the range into equal
sized groups and for each group use some amount from the beginning of that
group:

<cpu number>-cpu number>:<used size>/<group size>

For example one can add to the command line following parameter:

isolcpus=1,2,10-20,100-2000:2/25

where the final item represents CPUs 100,101,125,126,150,151,...

This document may not be entirely up to date and comprehensive. The command
“modinfo -p ${modulename}” shows a current list of all parameters of a loadable
module. Loadable modules, after being loaded into the running kernel, also
reveal their parameters in /sys/module/${modulename}/parameters/. Some of these
parameters may be changed at runtime by the command
echo -n ${value} > /sys/module/${modulename}/parameters/${parm}.

The parameters listed below are only valid if certain kernel build options were
enabled and if respective hardware is present. The text in square brackets at
the beginning of each description states the restrictions within which a
parameter is applicable:

ACPI ACPI support is enabled.
AGP AGP (Accelerated Graphics Port) is enabled.
ALSA ALSA sound support is enabled.
APIC APIC support is enabled.
APM Advanced Power Management support is enabled.
ARM ARM architecture is enabled.
AX25 Appropriate AX.25 support is enabled.
CLK Common clock infrastructure is enabled.
CMA Contiguous Memory Area support is enabled.
DRM Direct Rendering Management support is enabled.
DYNAMIC_DEBUG Build in debug messages and enable them at runtime
EDD BIOS Enhanced Disk Drive Services (EDD) is enabled
EFI EFI Partitioning (GPT) is enabled
EIDE EIDE/ATAPI support is enabled.
EVM Extended Verification Module
FB The frame buffer device is enabled.
FTRACE Function tracing enabled.
GCOV GCOV profiling is enabled.
HW Appropriate hardware is enabled.
IA-64 IA-64 architecture is enabled.
IMA Integrity measurement architecture is enabled.
IOSCHED More than one I/O scheduler is enabled.
IP_PNP IP DHCP, BOOTP, or RARP is enabled.
IPV6 IPv6 support is enabled.
ISAPNP ISA PnP code is enabled.
ISDN Appropriate ISDN support is enabled.
ISOL CPU Isolation is enabled.
JOY Appropriate joystick support is enabled.
KGDB Kernel debugger support is enabled.
KVM Kernel Virtual Machine support is enabled.
LIBATA Libata driver is enabled
LP Printer support is enabled.
LOOP Loopback device support is enabled.
M68k M68k architecture is enabled.
 These options have more detailed description inside of
 Documentation/m68k/kernel-options.txt.
MDA MDA console support is enabled.
MIPS MIPS architecture is enabled.
MOUSE Appropriate mouse support is enabled.
MSI Message Signaled Interrupts (PCI).
MTD MTD (Memory Technology Device) support is enabled.
NET Appropriate network support is enabled.
NUMA NUMA support is enabled.
NFS Appropriate NFS support is enabled.
OSS OSS sound support is enabled.
PV_OPS A paravirtualized kernel is enabled.
PARIDE The ParIDE (parallel port IDE) subsystem is enabled.
PARISC The PA-RISC architecture is enabled.
PCI PCI bus support is enabled.
PCIE PCI Express support is enabled.
PCMCIA The PCMCIA subsystem is enabled.
PNP Plug & Play support is enabled.
PPC PowerPC architecture is enabled.
PPT Parallel port support is enabled.
PS2 Appropriate PS/2 support is enabled.
RAM RAM disk support is enabled.
RDT Intel Resource Director Technology.
S390 S390 architecture is enabled.
SCSI Appropriate SCSI support is enabled.
 A lot of drivers have their options described inside
 the Documentation/scsi/ sub-directory.
SECURITY Different security models are enabled.
SELINUX SELinux support is enabled.
APPARMOR AppArmor support is enabled.
SERIAL Serial support is enabled.
SH SuperH architecture is enabled.
SMP The kernel is an SMP kernel.
SPARC Sparc architecture is enabled.
SWSUSP Software suspend (hibernation) is enabled.
SUSPEND System suspend states are enabled.
TPM TPM drivers are enabled.
TS Appropriate touchscreen support is enabled.
UMS USB Mass Storage support is enabled.
USB USB support is enabled.
USBHID USB Human Interface Device support is enabled.
V4L Video For Linux support is enabled.
VMMIO Driver for memory mapped virtio devices is enabled.
VGA The VGA console has been enabled.
VT Virtual terminal support is enabled.
WDT Watchdog support is enabled.
XT IBM PC/XT MFM hard disk support is enabled.
X86-32 X86-32, aka i386 architecture is enabled.
X86-64 X86-64 architecture is enabled.
 More X86-64 boot options can be found in
 Documentation/x86/x86_64/boot-options.txt .
X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
X86_UV SGI UV support is enabled.
XEN Xen support is enabled

In addition, the following text indicates that the option:

BUGS= Relates to possible processor bugs on the said processor.
KNL Is a kernel start-up parameter.
BOOT Is a boot loader parameter.

Parameters denoted with BOOT are actually interpreted by the boot
loader, and have no meaning to the kernel directly.
Do not modify the syntax of boot loader parameters without extreme
need or coordination with <Documentation/x86/boot.txt>.

There are also arch-specific kernel-parameters not documented here.
See for example <Documentation/x86/x86_64/boot-options.txt>.

Note that ALL kernel parameters listed below are CASE SENSITIVE, and that
a trailing = on the name of any parameter states that that parameter will
be entered as an environment variable, whereas its absence indicates that
it will appear as a kernel argument readable via /proc/cmdline by programs
running once the system is up.

The number of kernel parameters is not limited, but the length of the
complete command line (parameters including spaces etc.) is limited to
a fixed number of characters. This limit depends on the architecture
and is between 256 and 4096 characters. It is defined in the file
./include/asm/setup.h as COMMAND_LINE_SIZE.

Finally, the [KMG] suffix is commonly described after a number of kernel
parameter values. These ‘K’, ‘M’, and ‘G’ letters represent the _binary_
multipliers ‘Kilo’, ‘Mega’, and ‘Giga’, equaling 2^10, 2^20, and 2^30
bytes respectively. Such letter suffixes can also be entirely omitted:

 acpi= [HW,ACPI,X86,ARM64]
 Advanced Configuration and Power Interface
 Format: { force | on | off | strict | noirq | rsdt |
 copy_dsdt }
 force -- enable ACPI if default was off
 on -- enable ACPI but allow fallback to DT [arm64]
 off -- disable ACPI if default was on
 noirq -- do not use ACPI for IRQ routing
 strict -- Be less tolerant of platforms that are not
 strictly ACPI specification compliant.
 rsdt -- prefer RSDT over (default) XSDT
 copy_dsdt -- copy DSDT to memory
 For ARM64, ONLY "acpi=off", "acpi=on" or "acpi=force"
 are available

 See also Documentation/power/runtime_pm.txt, pci=noacpi

 acpi_apic_instance= [ACPI, IOAPIC]
 Format: <int>
 2: use 2nd APIC table, if available
 1,0: use 1st APIC table
 default: 0

 acpi_backlight= [HW,ACPI]
 acpi_backlight=vendor
 acpi_backlight=video
 If set to vendor, prefer vendor specific driver
 (e.g. thinkpad_acpi, sony_acpi, etc.) instead
 of the ACPI video.ko driver.

 acpi_force_32bit_fadt_addr
 force FADT to use 32 bit addresses rather than the
 64 bit X_* addresses. Some firmware have broken 64
 bit addresses for force ACPI ignore these and use
 the older legacy 32 bit addresses.

 acpica_no_return_repair [HW, ACPI]
 Disable AML predefined validation mechanism
 This mechanism can repair the evaluation result to make
 the return objects more ACPI specification compliant.
 This option is useful for developers to identify the
 root cause of an AML interpreter issue when the issue
 has something to do with the repair mechanism.

 acpi.debug_layer= [HW,ACPI,ACPI_DEBUG]
 acpi.debug_level= [HW,ACPI,ACPI_DEBUG]
 Format: <int>
 CONFIG_ACPI_DEBUG must be enabled to produce any ACPI
 debug output. Bits in debug_layer correspond to a
 _COMPONENT in an ACPI source file, e.g.,
 #define _COMPONENT ACPI_PCI_COMPONENT
 Bits in debug_level correspond to a level in
 ACPI_DEBUG_PRINT statements, e.g.,
 ACPI_DEBUG_PRINT((ACPI_DB_INFO, ...
 The debug_level mask defaults to "info". See
 Documentation/acpi/debug.txt for more information about
 debug layers and levels.

 Enable processor driver info messages:
 acpi.debug_layer=0x20000000
 Enable PCI/PCI interrupt routing info messages:
 acpi.debug_layer=0x400000
 Enable AML "Debug" output, i.e., stores to the Debug
 object while interpreting AML:
 acpi.debug_layer=0xffffffff acpi.debug_level=0x2
 Enable all messages related to ACPI hardware:
 acpi.debug_layer=0x2 acpi.debug_level=0xffffffff

 Some values produce so much output that the system is
 unusable. The "log_buf_len" parameter may be useful
 if you need to capture more output.

 acpi_enforce_resources= [ACPI]
 { strict | lax | no }
 Check for resource conflicts between native drivers
 and ACPI OperationRegions (SystemIO and SystemMemory
 only). IO ports and memory declared in ACPI might be
 used by the ACPI subsystem in arbitrary AML code and
 can interfere with legacy drivers.
 strict (default): access to resources claimed by ACPI
 is denied; legacy drivers trying to access reserved
 resources will fail to bind to device using them.
 lax: access to resources claimed by ACPI is allowed;
 legacy drivers trying to access reserved resources
 will bind successfully but a warning message is logged.
 no: ACPI OperationRegions are not marked as reserved,
 no further checks are performed.

 acpi_force_table_verification [HW,ACPI]
 Enable table checksum verification during early stage.
 By default, this is disabled due to x86 early mapping
 size limitation.

 acpi_irq_balance [HW,ACPI]
 ACPI will balance active IRQs
 default in APIC mode

 acpi_irq_nobalance [HW,ACPI]
 ACPI will not move active IRQs (default)
 default in PIC mode

 acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA
 Format: <irq>,<irq>...

 acpi_irq_pci= [HW,ACPI] If irq_balance, clear listed IRQs for
 use by PCI
 Format: <irq>,<irq>...

 acpi_mask_gpe= [HW,ACPI]
 Due to the existence of _Lxx/_Exx, some GPEs triggered
 by unsupported hardware/firmware features can result in
 GPE floodings that cannot be automatically disabled by
 the GPE dispatcher.
 This facility can be used to prevent such uncontrolled
 GPE floodings.
 Format: <int>

 acpi_no_auto_serialize [HW,ACPI]
 Disable auto-serialization of AML methods
 AML control methods that contain the opcodes to create
 named objects will be marked as "Serialized" by the
 auto-serialization feature.
 This feature is enabled by default.
 This option allows to turn off the feature.

 acpi_no_memhotplug [ACPI] Disable memory hotplug. Useful for kdump
 kernels.

 acpi_no_static_ssdt [HW,ACPI]
 Disable installation of static SSDTs at early boot time
 By default, SSDTs contained in the RSDT/XSDT will be
 installed automatically and they will appear under
 /sys/firmware/acpi/tables.
 This option turns off this feature.
 Note that specifying this option does not affect
 dynamic table installation which will install SSDT
 tables to /sys/firmware/acpi/tables/dynamic.

 acpi_rsdp= [ACPI,EFI,KEXEC]
 Pass the RSDP address to the kernel, mostly used
 on machines running EFI runtime service to boot the
 second kernel for kdump.

 acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS
 Format: To spoof as Windows 98: ="Microsoft Windows"

 acpi_rev_override [ACPI] Override the _REV object to return 5 (instead
 of 2 which is mandated by ACPI 6) as the supported ACPI
 specification revision (when using this switch, it may
 be necessary to carry out a cold reboot _twice_ in a
 row to make it take effect on the platform firmware).

 acpi_osi= [HW,ACPI] Modify list of supported OS interface strings
 acpi_osi="string1" # add string1
 acpi_osi="!string2" # remove string2
 acpi_osi=!* # remove all strings
 acpi_osi=! # disable all built-in OS vendor
 strings
 acpi_osi=!! # enable all built-in OS vendor
 strings
 acpi_osi= # disable all strings

 'acpi_osi=!' can be used in combination with single or
 multiple 'acpi_osi="string1"' to support specific OS
 vendor string(s). Note that such command can only
 affect the default state of the OS vendor strings, thus
 it cannot affect the default state of the feature group
 strings and the current state of the OS vendor strings,
 specifying it multiple times through kernel command line
 is meaningless. This command is useful when one do not
 care about the state of the feature group strings which
 should be controlled by the OSPM.
 Examples:
 1. 'acpi_osi=! acpi_osi="Windows 2000"' is equivalent
 to 'acpi_osi="Windows 2000" acpi_osi=!', they all
 can make '_OSI("Windows 2000")' TRUE.

 'acpi_osi=' cannot be used in combination with other
 'acpi_osi=' command lines, the _OSI method will not
 exist in the ACPI namespace. NOTE that such command can
 only affect the _OSI support state, thus specifying it
 multiple times through kernel command line is also
 meaningless.
 Examples:
 1. 'acpi_osi=' can make 'CondRefOf(_OSI, Local1)'
 FALSE.

 'acpi_osi=!*' can be used in combination with single or
 multiple 'acpi_osi="string1"' to support specific
 string(s). Note that such command can affect the
 current state of both the OS vendor strings and the
 feature group strings, thus specifying it multiple times
 through kernel command line is meaningful. But it may
 still not able to affect the final state of a string if
 there are quirks related to this string. This command
 is useful when one want to control the state of the
 feature group strings to debug BIOS issues related to
 the OSPM features.
 Examples:
 1. 'acpi_osi="Module Device" acpi_osi=!*' can make
 '_OSI("Module Device")' FALSE.
 2. 'acpi_osi=!* acpi_osi="Module Device"' can make
 '_OSI("Module Device")' TRUE.
 3. 'acpi_osi=! acpi_osi=!* acpi_osi="Windows 2000"' is
 equivalent to
 'acpi_osi=!* acpi_osi=! acpi_osi="Windows 2000"'
 and
 'acpi_osi=!* acpi_osi="Windows 2000" acpi_osi=!',
 they all will make '_OSI("Windows 2000")' TRUE.

 acpi_pm_good [X86]
 Override the pmtimer bug detection: force the kernel
 to assume that this machine's pmtimer latches its value
 and always returns good values.

 acpi_sci= [HW,ACPI] ACPI System Control Interrupt trigger mode
 Format: { level | edge | high | low }

 acpi_skip_timer_override [HW,ACPI]
 Recognize and ignore IRQ0/pin2 Interrupt Override.
 For broken nForce2 BIOS resulting in XT-PIC timer.

 acpi_sleep= [HW,ACPI] Sleep options
 Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig,
 old_ordering, nonvs, sci_force_enable, nobl }
 See Documentation/power/video.txt for information on
 s3_bios and s3_mode.
 s3_beep is for debugging; it makes the PC's speaker beep
 as soon as the kernel's real-mode entry point is called.
 s4_nohwsig prevents ACPI hardware signature from being
 used during resume from hibernation.
 old_ordering causes the ACPI 1.0 ordering of the _PTS
 control method, with respect to putting devices into
 low power states, to be enforced (the ACPI 2.0 ordering
 of _PTS is used by default).
 nonvs prevents the kernel from saving/restoring the
 ACPI NVS memory during suspend/hibernation and resume.
 sci_force_enable causes the kernel to set SCI_EN directly
 on resume from S1/S3 (which is against the ACPI spec,
 but some broken systems don't work without it).
 nobl causes the internal blacklist of systems known to
 behave incorrectly in some ways with respect to system
 suspend and resume to be ignored (use wisely).

 acpi_use_timer_override [HW,ACPI]
 Use timer override. For some broken Nvidia NF5 boards
 that require a timer override, but don't have HPET

 add_efi_memmap [EFI; X86] Include EFI memory map in
 kernel's map of available physical RAM.

 agp= [AGP]
 { off | try_unsupported }
 off: disable AGP support
 try_unsupported: try to drive unsupported chipsets
 (may crash computer or cause data corruption)

 ALSA [HW,ALSA]
 See Documentation/sound/alsa-configuration.rst

 alignment= [KNL,ARM]
 Allow the default userspace alignment fault handler
 behaviour to be specified. Bit 0 enables warnings,
 bit 1 enables fixups, and bit 2 sends a segfault.

 align_va_addr= [X86-64]
 Align virtual addresses by clearing slice [14:12] when
 allocating a VMA at process creation time. This option
 gives you up to 3% performance improvement on AMD F15h
 machines (where it is enabled by default) for a
 CPU-intensive style benchmark, and it can vary highly in
 a microbenchmark depending on workload and compiler.

 32: only for 32-bit processes
 64: only for 64-bit processes
 on: enable for both 32- and 64-bit processes
 off: disable for both 32- and 64-bit processes

 alloc_snapshot [FTRACE]
 Allocate the ftrace snapshot buffer on boot up when the
 main buffer is allocated. This is handy if debugging
 and you need to use tracing_snapshot() on boot up, and
 do not want to use tracing_snapshot_alloc() as it needs
 to be done where GFP_KERNEL allocations are allowed.

 amd_iommu= [HW,X86-64]
 Pass parameters to the AMD IOMMU driver in the system.
 Possible values are:
 fullflush - enable flushing of IO/TLB entries when
 they are unmapped. Otherwise they are
 flushed before they will be reused, which
 is a lot of faster
 off - do not initialize any AMD IOMMU found in
 the system
 force_isolation - Force device isolation for all
 devices. The IOMMU driver is not
 allowed anymore to lift isolation
 requirements as needed. This option
 does not override iommu=pt

 amd_iommu_dump= [HW,X86-64]
 Enable AMD IOMMU driver option to dump the ACPI table
 for AMD IOMMU. With this option enabled, AMD IOMMU
 driver will print ACPI tables for AMD IOMMU during
 IOMMU initialization.

 amd_iommu_intr= [HW,X86-64]
 Specifies one of the following AMD IOMMU interrupt
 remapping modes:
 legacy - Use legacy interrupt remapping mode.
 vapic - Use virtual APIC mode, which allows IOMMU
 to inject interrupts directly into guest.
 This mode requires kvm-amd.avic=1.
 (Default when IOMMU HW support is present.)

 amijoy.map= [HW,JOY] Amiga joystick support
 Map of devices attached to JOY0DAT and JOY1DAT
 Format: <a>,
 See also Documentation/input/joydev/joystick.rst

 analog.map= [HW,JOY] Analog joystick and gamepad support
 Specifies type or capabilities of an analog joystick
 connected to one of 16 gameports
 Format: <type1>,<type2>,..<type16>

 apc= [HW,SPARC]
 Power management functions (SPARCstation-4/5 + deriv.)
 Format: noidle
 Disable APC CPU standby support. SPARCstation-Fox does
 not play well with APC CPU idle - disable it if you have
 APC and your system crashes randomly.

 apic= [APIC,X86] Advanced Programmable Interrupt Controller
 Change the output verbosity whilst booting
 Format: { quiet (default) | verbose | debug }
 Change the amount of debugging information output
 when initialising the APIC and IO-APIC components.
 For X86-32, this can also be used to specify an APIC
 driver name.
 Format: apic=driver_name
 Examples: apic=bigsmp

 apic_extnmi= [APIC,X86] External NMI delivery setting
 Format: { bsp (default) | all | none }
 bsp: External NMI is delivered only to CPU 0
 all: External NMIs are broadcast to all CPUs as a
 backup of CPU 0
 none: External NMI is masked for all CPUs. This is
 useful so that a dump capture kernel won't be
 shot down by NMI

 autoconf= [IPV6]
 See Documentation/networking/ipv6.txt.

 show_lapic= [APIC,X86] Advanced Programmable Interrupt Controller
 Limit apic dumping. The parameter defines the maximal
 number of local apics being dumped. Also it is possible
 to set it to "all" by meaning -- no limit here.
 Format: { 1 (default) | 2 | ... | all }.
 The parameter valid if only apic=debug or
 apic=verbose is specified.
 Example: apic=debug show_lapic=all

 apm= [APM] Advanced Power Management
 See header of arch/x86/kernel/apm_32.c.

 arcrimi= [HW,NET] ARCnet - "RIM I" (entirely mem-mapped) cards
 Format: <io>,<irq>,<nodeID>

 ataflop= [HW,M68k]

 atarimouse= [HW,MOUSE] Atari Mouse

 atkbd.extra= [HW] Enable extra LEDs and keys on IBM RapidAccess,
 EzKey and similar keyboards

 atkbd.reset= [HW] Reset keyboard during initialization

 atkbd.set= [HW] Select keyboard code set
 Format: <int> (2 = AT (default), 3 = PS/2)

 atkbd.scroll= [HW] Enable scroll wheel on MS Office and similar
 keyboards

 atkbd.softraw= [HW] Choose between synthetic and real raw mode
 Format: <bool> (0 = real, 1 = synthetic (default))

 atkbd.softrepeat= [HW]
 Use software keyboard repeat

 audit= [KNL] Enable the audit sub-system
 Format: { "0" | "1" | "off" | "on" }
 0 | off - kernel audit is disabled and can not be
 enabled until the next reboot
 unset - kernel audit is initialized but disabled and
 will be fully enabled by the userspace auditd.
 1 | on - kernel audit is initialized and partially
 enabled, storing at most audit_backlog_limit
 messages in RAM until it is fully enabled by the
 userspace auditd.
 Default: unset

 audit_backlog_limit= [KNL] Set the audit queue size limit.
 Format: <int> (must be >=0)
 Default: 64

 bau= [X86_UV] Enable the BAU on SGI UV. The default
 behavior is to disable the BAU (i.e. bau=0).
 Format: { "0" | "1" }
 0 - Disable the BAU.
 1 - Enable the BAU.
 unset - Disable the BAU.

 baycom_epp= [HW,AX25]
 Format: <io>,<mode>

 baycom_par= [HW,AX25] BayCom Parallel Port AX.25 Modem
 Format: <io>,<mode>
 See header of drivers/net/hamradio/baycom_par.c.

 baycom_ser_fdx= [HW,AX25]
 BayCom Serial Port AX.25 Modem (Full Duplex Mode)
 Format: <io>,<irq>,<mode>[,<baud>]
 See header of drivers/net/hamradio/baycom_ser_fdx.c.

 baycom_ser_hdx= [HW,AX25]
 BayCom Serial Port AX.25 Modem (Half Duplex Mode)
 Format: <io>,<irq>,<mode>
 See header of drivers/net/hamradio/baycom_ser_hdx.c.

 blkdevparts= Manual partition parsing of block device(s) for
 embedded devices based on command line input.
 See Documentation/block/cmdline-partition.txt

 boot_delay= Milliseconds to delay each printk during boot.
 Values larger than 10 seconds (10000) are changed to
 no delay (0).
 Format: integer

 bootmem_debug [KNL] Enable bootmem allocator debug messages.

 bert_disable [ACPI]
 Disable BERT OS support on buggy BIOSes.

 bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards)
 bttv.radio= Most important insmod options are available as
 kernel args too.
 bttv.pll= See Documentation/media/v4l-drivers/bttv.rst
 bttv.tuner=

 bulk_remove=off [PPC] This parameter disables the use of the pSeries
 firmware feature for flushing multiple hpte entries
 at a time.

 c101= [NET] Moxa C101 synchronous serial card

 cachesize= [BUGS=X86-32] Override level 2 CPU cache size detection.
 Sometimes CPU hardware bugs make them report the cache
 size incorrectly. The kernel will attempt work arounds
 to fix known problems, but for some CPUs it is not
 possible to determine what the correct size should be.
 This option provides an override for these situations.

 ca_keys= [KEYS] This parameter identifies a specific key(s) on
 the system trusted keyring to be used for certificate
 trust validation.
 format: { id:<keyid> | builtin }

 cca= [MIPS] Override the kernel pages' cache coherency
 algorithm. Accepted values range from 0 to 7
 inclusive. See arch/mips/include/asm/pgtable-bits.h
 for platform specific values (SB1, Loongson3 and
 others).

 ccw_timeout_log [S390]
 See Documentation/s390/CommonIO for details.

 cgroup_disable= [KNL] Disable a particular controller
 Format: {name of the controller(s) to disable}
 The effects of cgroup_disable=foo are:
 - foo isn't auto-mounted if you mount all cgroups in
 a single hierarchy
 - foo isn't visible as an individually mountable
 subsystem
 {Currently only "memory" controller deal with this and
 cut the overhead, others just disable the usage. So
 only cgroup_disable=memory is actually worthy}

 cgroup_no_v1= [KNL] Disable one, multiple, all cgroup controllers in v1
 Format: { controller[,controller...] | "all" }
 Like cgroup_disable, but only applies to cgroup v1;
 the blacklisted controllers remain available in cgroup2.

 cgroup.memory= [KNL] Pass options to the cgroup memory controller.
 Format: <string>
 nosocket -- Disable socket memory accounting.
 nokmem -- Disable kernel memory accounting.

 checkreqprot [SELINUX] Set initial checkreqprot flag value.
 Format: { "0" | "1" }
 See security/selinux/Kconfig help text.
 0 -- check protection applied by kernel (includes
 any implied execute protection).
 1 -- check protection requested by application.
 Default value is set via a kernel config option.
 Value can be changed at runtime via
 /selinux/checkreqprot.

 cio_ignore= [S390]
 See Documentation/s390/CommonIO for details.
 clk_ignore_unused
 [CLK]
 Prevents the clock framework from automatically gating
 clocks that have not been explicitly enabled by a Linux
 device driver but are enabled in hardware at reset or
 by the bootloader/firmware. Note that this does not
 force such clocks to be always-on nor does it reserve
 those clocks in any way. This parameter is useful for
 debug and development, but should not be needed on a
 platform with proper driver support. For more
 information, see Documentation/driver-api/clk.rst.

 clock= [BUGS=X86-32, HW] gettimeofday clocksource override.
 [Deprecated]
 Forces specified clocksource (if available) to be used
 when calculating gettimeofday(). If specified
 clocksource is not available, it defaults to PIT.
 Format: { pit | tsc | cyclone | pmtmr }

 clocksource= Override the default clocksource
 Format: <string>
 Override the default clocksource and use the clocksource
 with the name specified.
 Some clocksource names to choose from, depending on
 the platform:
 [all] jiffies (this is the base, fallback clocksource)
 [ACPI] acpi_pm
 [ARM] imx_timer1,OSTS,netx_timer,mpu_timer2,
 pxa_timer,timer3,32k_counter,timer0_1
 [X86-32] pit,hpet,tsc;
 scx200_hrt on Geode; cyclone on IBM x440
 [MIPS] MIPS
 [PARISC] cr16
 [S390] tod
 [SH] SuperH
 [SPARC64] tick
 [X86-64] hpet,tsc

 clocksource.arm_arch_timer.evtstrm=
 [ARM,ARM64]
 Format: <bool>
 Enable/disable the eventstream feature of the ARM
 architected timer so that code using WFE-based polling
 loops can be debugged more effectively on production
 systems.

 clearcpuid=BITNUM [X86]
 Disable CPUID feature X for the kernel. See
 arch/x86/include/asm/cpufeatures.h for the valid bit
 numbers. Note the Linux specific bits are not necessarily
 stable over kernel options, but the vendor specific
 ones should be.
 Also note that user programs calling CPUID directly
 or using the feature without checking anything
 will still see it. This just prevents it from
 being used by the kernel or shown in /proc/cpuinfo.
 Also note the kernel might malfunction if you disable
 some critical bits.

 cma=nn[MG]@[start[MG][-end[MG]]]
 [ARM,X86,KNL]
 Sets the size of kernel global memory area for
 contiguous memory allocations and optionally the
 placement constraint by the physical address range of
 memory allocations. A value of 0 disables CMA
 altogether. For more information, see
 include/linux/dma-contiguous.h

 cmo_free_hint= [PPC] Format: { yes | no }
 Specify whether pages are marked as being inactive
 when they are freed. This is used in CMO environments
 to determine OS memory pressure for page stealing by
 a hypervisor.
 Default: yes

 coherent_pool=nn[KMG] [ARM,KNL]
 Sets the size of memory pool for coherent, atomic dma
 allocations, by default set to 256K.

 com20020= [HW,NET] ARCnet - COM20020 chipset
 Format:
 <io>[,<irq>[,<nodeID>[,<backplane>[,<ckp>[,<timeout>]]]]]

 com90io= [HW,NET] ARCnet - COM90xx chipset (IO-mapped buffers)
 Format: <io>[,<irq>]

 com90xx= [HW,NET]
 ARCnet - COM90xx chipset (memory-mapped buffers)
 Format: <io>[,<irq>[,<memstart>]]

 condev= [HW,S390] console device
 conmode=

 console= [KNL] Output console device and options.

 tty<n> Use the virtual console device <n>.

 ttyS<n>[,options]
 ttyUSB0[,options]
 Use the specified serial port. The options are of
 the form "bbbbpnf", where "bbbb" is the baud rate,
 "p" is parity ("n", "o", or "e"), "n" is number of
 bits, and "f" is flow control ("r" for RTS or
 omit it). Default is "9600n8".

 See Documentation/admin-guide/serial-console.rst for more
 information. See
 Documentation/networking/netconsole.txt for an
 alternative.

 uart[8250],io,<addr>[,options]
 uart[8250],mmio,<addr>[,options]
 uart[8250],mmio16,<addr>[,options]
 uart[8250],mmio32,<addr>[,options]
 uart[8250],0x<addr>[,options]
 Start an early, polled-mode console on the 8250/16550
 UART at the specified I/O port or MMIO address,
 switching to the matching ttyS device later.
 MMIO inter-register address stride is either 8-bit
 (mmio), 16-bit (mmio16), or 32-bit (mmio32).
 If none of [io|mmio|mmio16|mmio32], <addr> is assumed
 to be equivalent to 'mmio'. 'options' are specified in
 the same format described for ttyS above; if unspecified,
 the h/w is not re-initialized.

 hvc<n> Use the hypervisor console device <n>. This is for
 both Xen and PowerPC hypervisors.

 If the device connected to the port is not a TTY but a braille
 device, prepend "brl," before the device type, for instance
 console=brl,ttyS0
 For now, only VisioBraille is supported.

 console_msg_format=
 [KNL] Change console messages format
 default
 By default we print messages on consoles in
 "[time stamp] text\n" format (time stamp may not be
 printed, depending on CONFIG_PRINTK_TIME or
 `printk_time' param).
 syslog
 Switch to syslog format: "<%u>[time stamp] text\n"
 IOW, each message will have a facility and loglevel
 prefix. The format is similar to one used by syslog()
 syscall, or to executing "dmesg -S --raw" or to reading
 from /proc/kmsg.

 consoleblank= [KNL] The console blank (screen saver) timeout in
 seconds. A value of 0 disables the blank timer.
 Defaults to 0.

 coredump_filter=
 [KNL] Change the default value for
 /proc/<pid>/coredump_filter.
 See also Documentation/filesystems/proc.txt.

 coresight_cpu_debug.enable
 [ARM,ARM64]
 Format: <bool>
 Enable/disable the CPU sampling based debugging.
 0: default value, disable debugging
 1: enable debugging at boot time

 cpuidle.off=1 [CPU_IDLE]
 disable the cpuidle sub-system

 cpufreq.off=1 [CPU_FREQ]
 disable the cpufreq sub-system

 cpu_init_udelay=N
 [X86] Delay for N microsec between assert and de-assert
 of APIC INIT to start processors. This delay occurs
 on every CPU online, such as boot, and resume from suspend.
 Default: 10000

 cpcihp_generic= [HW,PCI] Generic port I/O CompactPCI driver
 Format:
 <first_slot>,<last_slot>,<port>,<enum_bit>[,<debug>]

 crashkernel=size[KMG][@offset[KMG]]
 [KNL] Using kexec, Linux can switch to a 'crash kernel'
 upon panic. This parameter reserves the physical
 memory region [offset, offset + size] for that kernel
 image. If '@offset' is omitted, then a suitable offset
 is selected automatically. Check
 Documentation/kdump/kdump.txt for further details.

 crashkernel=range1:size1[,range2:size2,...][@offset]
 [KNL] Same as above, but depends on the memory
 in the running system. The syntax of range is
 start-[end] where start and end are both
 a memory unit (amount[KMG]). See also
 Documentation/kdump/kdump.txt for an example.

 crashkernel=size[KMG],high
 [KNL, x86_64] range could be above 4G. Allow kernel
 to allocate physical memory region from top, so could
 be above 4G if system have more than 4G ram installed.
 Otherwise memory region will be allocated below 4G, if
 available.
 It will be ignored if crashkernel=X is specified.
 crashkernel=size[KMG],low
 [KNL, x86_64] range under 4G. When crashkernel=X,high
 is passed, kernel could allocate physical memory region
 above 4G, that cause second kernel crash on system
 that require some amount of low memory, e.g. swiotlb
 requires at least 64M+32K low memory, also enough extra
 low memory is needed to make sure DMA buffers for 32-bit
 devices won't run out. Kernel would try to allocate at
 at least 256M below 4G automatically.
 This one let user to specify own low range under 4G
 for second kernel instead.
 0: to disable low allocation.
 It will be ignored when crashkernel=X,high is not used
 or memory reserved is below 4G.

 cryptomgr.notests
 [KNL] Disable crypto self-tests

 cs89x0_dma= [HW,NET]
 Format: <dma>

 cs89x0_media= [HW,NET]
 Format: { rj45 | aui | bnc }

 dasd= [HW,NET]
 See header of drivers/s390/block/dasd_devmap.c.

 db9.dev[2|3]= [HW,JOY] Multisystem joystick support via parallel port
 (one device per port)
 Format: <port#>,<type>
 See also Documentation/input/devices/joystick-parport.rst

 ddebug_query= [KNL,DYNAMIC_DEBUG] Enable debug messages at early boot
 time. See
 Documentation/admin-guide/dynamic-debug-howto.rst for
 details. Deprecated, see dyndbg.

 debug [KNL] Enable kernel debugging (events log level).

 debug_boot_weak_hash
 [KNL] Enable printing [hashed] pointers early in the
 boot sequence. If enabled, we use a weak hash instead
 of siphash to hash pointers. Use this option if you are
 seeing instances of '(___ptrval___)') and need to see a
 value (hashed pointer) instead. Cryptographically
 insecure, please do not use on production kernels.

 debug_locks_verbose=
 [KNL] verbose self-tests
 Format=<0|1>
 Print debugging info while doing the locking API
 self-tests.
 We default to 0 (no extra messages), setting it to
 1 will print _a lot_ more information - normally
 only useful to kernel developers.

 debug_objects [KNL] Enable object debugging

 no_debug_objects
 [KNL] Disable object debugging

 debug_guardpage_minorder=
 [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this
 parameter allows control of the order of pages that will
 be intentionally kept free (and hence protected) by the
 buddy allocator. Bigger value increase the probability
 of catching random memory corruption, but reduce the
 amount of memory for normal system use. The maximum
 possible value is MAX_ORDER/2. Setting this parameter
 to 1 or 2 should be enough to identify most random
 memory corruption problems caused by bugs in kernel or
 driver code when a CPU writes to (or reads from) a
 random memory location. Note that there exists a class
 of memory corruptions problems caused by buggy H/W or
 F/W or by drivers badly programing DMA (basically when
 memory is written at bus level and the CPU MMU is
 bypassed) which are not detectable by
 CONFIG_DEBUG_PAGEALLOC, hence this option will not help
 tracking down these problems.

 debug_pagealloc=
 [KNL] When CONFIG_DEBUG_PAGEALLOC is set, this
 parameter enables the feature at boot time. In
 default, it is disabled. We can avoid allocating huge
 chunk of memory for debug pagealloc if we don't enable
 it at boot time and the system will work mostly same
 with the kernel built without CONFIG_DEBUG_PAGEALLOC.
 on: enable the feature

 debugpat [X86] Enable PAT debugging

 decnet.addr= [HW,NET]
 Format: <area>[,<node>]
 See also Documentation/networking/decnet.txt.

 default_hugepagesz=
 [same as hugepagesz=] The size of the default
 HugeTLB page size. This is the size represented by
 the legacy /proc/ hugepages APIs, used for SHM, and
 default size when mounting hugetlbfs filesystems.
 Defaults to the default architecture's huge page size
 if not specified.

 deferred_probe_timeout=
 [KNL] Debugging option to set a timeout in seconds for
 deferred probe to give up waiting on dependencies to
 probe. Only specific dependencies (subsystems or
 drivers) that have opted in will be ignored. A timeout of 0
 will timeout at the end of initcalls. This option will also
 dump out devices still on the deferred probe list after
 retrying.

 dhash_entries= [KNL]
 Set number of hash buckets for dentry cache.

 disable_1tb_segments [PPC]
 Disables the use of 1TB hash page table segments. This
 causes the kernel to fall back to 256MB segments which
 can be useful when debugging issues that require an SLB
 miss to occur.

 disable= [IPV6]
 See Documentation/networking/ipv6.txt.

 hardened_usercopy=
 [KNL] Under CONFIG_HARDENED_USERCOPY, whether
 hardening is enabled for this boot. Hardened
 usercopy checking is used to protect the kernel
 from reading or writing beyond known memory
 allocation boundaries as a proactive defense
 against bounds-checking flaws in the kernel's
 copy_to_user()/copy_from_user() interface.
 on Perform hardened usercopy checks (default).
 off Disable hardened usercopy checks.

 disable_radix [PPC]
 Disable RADIX MMU mode on POWER9

 disable_cpu_apicid= [X86,APIC,SMP]
 Format: <int>
 The number of initial APIC ID for the
 corresponding CPU to be disabled at boot,
 mostly used for the kdump 2nd kernel to
 disable BSP to wake up multiple CPUs without
 causing system reset or hang due to sending
 INIT from AP to BSP.

 perf_v4_pmi= [X86,INTEL]
 Format: <bool>
 Disable Intel PMU counter freezing feature.
 The feature only exists starting from
 Arch Perfmon v4 (Skylake and newer).

 disable_ddw [PPC/PSERIES]
 Disable Dynamic DMA Window support. Use this if
 to workaround buggy firmware.

 disable_ipv6= [IPV6]
 See Documentation/networking/ipv6.txt.

 disable_mtrr_cleanup [X86]
 The kernel tries to adjust MTRR layout from continuous
 to discrete, to make X server driver able to add WB
 entry later. This parameter disables that.

 disable_mtrr_trim [X86, Intel and AMD only]
 By default the kernel will trim any uncacheable
 memory out of your available memory pool based on
 MTRR settings. This parameter disables that behavior,
 possibly causing your machine to run very slowly.

 disable_timer_pin_1 [X86]
 Disable PIN 1 of APIC timer
 Can be useful to work around chipset bugs.

 dis_ucode_ldr [X86] Disable the microcode loader.

 dma_debug=off If the kernel is compiled with DMA_API_DEBUG support,
 this option disables the debugging code at boot.

 dma_debug_entries=<number>
 This option allows to tune the number of preallocated
 entries for DMA-API debugging code. One entry is
 required per DMA-API allocation. Use this if the
 DMA-API debugging code disables itself because the
 architectural default is too low.

 dma_debug_driver=<driver_name>
 With this option the DMA-API debugging driver
 filter feature can be enabled at boot time. Just
 pass the driver to filter for as the parameter.
 The filter can be disabled or changed to another
 driver later using sysfs.

 drm.edid_firmware=[<connector>:]<file>[,[<connector>:]<file>]
 Broken monitors, graphic adapters, KVMs and EDIDless
 panels may send no or incorrect EDID data sets.
 This parameter allows to specify an EDID data sets
 in the /lib/firmware directory that are used instead.
 Generic built-in EDID data sets are used, if one of
 edid/1024x768.bin, edid/1280x1024.bin,
 edid/1680x1050.bin, or edid/1920x1080.bin is given
 and no file with the same name exists. Details and
 instructions how to build your own EDID data are
 available in Documentation/EDID/HOWTO.txt. An EDID
 data set will only be used for a particular connector,
 if its name and a colon are prepended to the EDID
 name. Each connector may use a unique EDID data
 set by separating the files with a comma. An EDID
 data set with no connector name will be used for
 any connectors not explicitly specified.

 dscc4.setup= [NET]

 dt_cpu_ftrs= [PPC]
 Format: {"off" | "known"}
 Control how the dt_cpu_ftrs device-tree binding is
 used for CPU feature discovery and setup (if it
 exists).
 off: Do not use it, fall back to legacy cpu table.
 known: Do not pass through unknown features to guests
 or userspace, only those that the kernel is aware of.

 dump_apple_properties [X86]
 Dump name and content of EFI device properties on
 x86 Macs. Useful for driver authors to determine
 what data is available or for reverse-engineering.

 dyndbg[="val"] [KNL,DYNAMIC_DEBUG]
 module.dyndbg[="val"]
 Enable debug messages at boot time. See
 Documentation/admin-guide/dynamic-debug-howto.rst
 for details.

 nompx [X86] Disables Intel Memory Protection Extensions.
 See Documentation/x86/intel_mpx.txt for more
 information about the feature.

 nopku [X86] Disable Memory Protection Keys CPU feature found
 in some Intel CPUs.

 module.async_probe [KNL]
 Enable asynchronous probe on this module.

 early_ioremap_debug [KNL]
 Enable debug messages in early_ioremap support. This
 is useful for tracking down temporary early mappings
 which are not unmapped.

 earlycon= [KNL] Output early console device and options.

 [ARM64] The early console is determined by the
 stdout-path property in device tree's chosen node,
 or determined by the ACPI SPCR table.

 [X86] When used with no options the early console is
 determined by the ACPI SPCR table.

 cdns,<addr>[,options]
 Start an early, polled-mode console on a Cadence
 (xuartps) serial port at the specified address. Only
 supported option is baud rate. If baud rate is not
 specified, the serial port must already be setup and
 configured.

 uart[8250],io,<addr>[,options]
 uart[8250],mmio,<addr>[,options]
 uart[8250],mmio32,<addr>[,options]
 uart[8250],mmio32be,<addr>[,options]
 uart[8250],0x<addr>[,options]
 Start an early, polled-mode console on the 8250/16550
 UART at the specified I/O port or MMIO address.
 MMIO inter-register address stride is either 8-bit
 (mmio) or 32-bit (mmio32 or mmio32be).
 If none of [io|mmio|mmio32|mmio32be], <addr> is assumed
 to be equivalent to 'mmio'. 'options' are specified
 in the same format described for "console=ttyS<n>"; if
 unspecified, the h/w is not initialized.

 pl011,<addr>
 pl011,mmio32,<addr>
 Start an early, polled-mode console on a pl011 serial
 port at the specified address. The pl011 serial port
 must already be setup and configured. Options are not
 yet supported. If 'mmio32' is specified, then only
 the driver will use only 32-bit accessors to read/write
 the device registers.

 meson,<addr>
 Start an early, polled-mode console on a meson serial
 port at the specified address. The serial port must
 already be setup and configured. Options are not yet
 supported.

 msm_serial,<addr>
 Start an early, polled-mode console on an msm serial
 port at the specified address. The serial port
 must already be setup and configured. Options are not
 yet supported.

 msm_serial_dm,<addr>
 Start an early, polled-mode console on an msm serial
 dm port at the specified address. The serial port
 must already be setup and configured. Options are not
 yet supported.

 owl,<addr>
 Start an early, polled-mode console on a serial port
 of an Actions Semi SoC, such as S500 or S900, at the
 specified address. The serial port must already be
 setup and configured. Options are not yet supported.

 smh Use ARM semihosting calls for early console.

 s3c2410,<addr>
 s3c2412,<addr>
 s3c2440,<addr>
 s3c6400,<addr>
 s5pv210,<addr>
 exynos4210,<addr>
 Use early console provided by serial driver available
 on Samsung SoCs, requires selecting proper type and
 a correct base address of the selected UART port. The
 serial port must already be setup and configured.
 Options are not yet supported.

 lantiq,<addr>
 Start an early, polled-mode console on a lantiq serial
 (lqasc) port at the specified address. The serial port
 must already be setup and configured. Options are not
 yet supported.

 lpuart,<addr>
 lpuart32,<addr>
 Use early console provided by Freescale LP UART driver
 found on Freescale Vybrid and QorIQ LS1021A processors.
 A valid base address must be provided, and the serial
 port must already be setup and configured.

 ar3700_uart,<addr>
 Start an early, polled-mode console on the
 Armada 3700 serial port at the specified
 address. The serial port must already be setup
 and configured. Options are not yet supported.

 qcom_geni,<addr>
 Start an early, polled-mode console on a Qualcomm
 Generic Interface (GENI) based serial port at the
 specified address. The serial port must already be
 setup and configured. Options are not yet supported.

 earlyprintk= [X86,SH,ARM,M68k,S390]
 earlyprintk=vga
 earlyprintk=efi
 earlyprintk=sclp
 earlyprintk=xen
 earlyprintk=serial[,ttySn[,baudrate]]
 earlyprintk=serial[,0x...[,baudrate]]
 earlyprintk=ttySn[,baudrate]
 earlyprintk=dbgp[debugController#]
 earlyprintk=pciserial[,force],bus:device.function[,baudrate]
 earlyprintk=xdbc[xhciController#]

 earlyprintk is useful when the kernel crashes before
 the normal console is initialized. It is not enabled by
 default because it has some cosmetic problems.

 Append ",keep" to not disable it when the real console
 takes over.

 Only one of vga, efi, serial, or usb debug port can
 be used at a time.

 Currently only ttyS0 and ttyS1 may be specified by
 name. Other I/O ports may be explicitly specified
 on some architectures (x86 and arm at least) by
 replacing ttySn with an I/O port address, like this:
 earlyprintk=serial,0x1008,115200
 You can find the port for a given device in
 /proc/tty/driver/serial:
 2: uart:ST16650V2 port:00001008 irq:18 ...

 Interaction with the standard serial driver is not
 very good.

 The VGA and EFI output is eventually overwritten by
 the real console.

 The xen output can only be used by Xen PV guests.

 The sclp output can only be used on s390.

 The optional "force" to "pciserial" enables use of a
 PCI device even when its classcode is not of the
 UART class.

 edac_report= [HW,EDAC] Control how to report EDAC event
 Format: {"on" | "off" | "force"}
 on: enable EDAC to report H/W event. May be overridden
 by other higher priority error reporting module.
 off: disable H/W event reporting through EDAC.
 force: enforce the use of EDAC to report H/W event.
 default: on.

 ekgdboc= [X86,KGDB] Allow early kernel console debugging
 ekgdboc=kbd

 This is designed to be used in conjunction with
 the boot argument: earlyprintk=vga

 edd= [EDD]
 Format: {"off" | "on" | "skip[mbr]"}

 efi= [EFI]
 Format: { "old_map", "nochunk", "noruntime", "debug" }
 old_map [X86-64]: switch to the old ioremap-based EFI
 runtime services mapping. 32-bit still uses this one by
 default.
 nochunk: disable reading files in "chunks" in the EFI
 boot stub, as chunking can cause problems with some
 firmware implementations.
 noruntime : disable EFI runtime services support
 debug: enable misc debug output

 efi_no_storage_paranoia [EFI; X86]
 Using this parameter you can use more than 50% of
 your efi variable storage. Use this parameter only if
 you are really sure that your UEFI does sane gc and
 fulfills the spec otherwise your board may brick.

 efi_fake_mem= nn[KMG]@ss[KMG]:aa[,nn[KMG]@ss[KMG]:aa,..] [EFI; X86]
 Add arbitrary attribute to specific memory range by
 updating original EFI memory map.
 Region of memory which aa attribute is added to is
 from ss to ss+nn.
 If efi_fake_mem=2G@4G:0x10000,2G@0x10a0000000:0x10000
 is specified, EFI_MEMORY_MORE_RELIABLE(0x10000)
 attribute is added to range 0x100000000-0x180000000 and
 0x10a0000000-0x1120000000.

 Using this parameter you can do debugging of EFI memmap
 related feature. For example, you can do debugging of
 Address Range Mirroring feature even if your box
 doesn't support it.

 efivar_ssdt= [EFI; X86] Name of an EFI variable that contains an SSDT
 that is to be dynamically loaded by Linux. If there are
 multiple variables with the same name but with different
 vendor GUIDs, all of them will be loaded. See
 Documentation/acpi/ssdt-overlays.txt for details.

 eisa_irq_edge= [PARISC,HW]
 See header of drivers/parisc/eisa.c.

 elanfreq= [X86-32]
 See comment before function elanfreq_setup() in
 arch/x86/kernel/cpu/cpufreq/elanfreq.c.

 elevator= [IOSCHED]
 Format: {"cfq" | "deadline" | "noop"}
 See Documentation/block/cfq-iosched.txt and
 Documentation/block/deadline-iosched.txt for details.

 elfcorehdr=[size[KMG]@]offset[KMG] [IA64,PPC,SH,X86,S390]
 Specifies physical address of start of kernel core
 image elf header and optionally the size. Generally
 kexec loader will pass this option to capture kernel.
 See Documentation/kdump/kdump.txt for details.

 enable_mtrr_cleanup [X86]
 The kernel tries to adjust MTRR layout from continuous
 to discrete, to make X server driver able to add WB
 entry later. This parameter enables that.

 enable_timer_pin_1 [X86]
 Enable PIN 1 of APIC timer
 Can be useful to work around chipset bugs
 (in particular on some ATI chipsets).
 The kernel tries to set a reasonable default.

 enforcing [SELINUX] Set initial enforcing status.
 Format: {"0" | "1"}
 See security/selinux/Kconfig help text.
 0 -- permissive (log only, no denials).
 1 -- enforcing (deny and log).
 Default value is 0.
 Value can be changed at runtime via /selinux/enforce.

 erst_disable [ACPI]
 Disable Error Record Serialization Table (ERST)
 support.

 ether= [HW,NET] Ethernet cards parameters
 This option is obsoleted by the "netdev=" option, which
 has equivalent usage. See its documentation for details.

 evm= [EVM]
 Format: { "fix" }
 Permit 'security.evm' to be updated regardless of
 current integrity status.

 failslab=
 fail_page_alloc=
 fail_make_request=[KNL]
 General fault injection mechanism.
 Format: <interval>,<probability>,<space>,<times>
 See also Documentation/fault-injection/.

 floppy= [HW]
 See Documentation/blockdev/floppy.txt.

 force_pal_cache_flush
 [IA-64] Avoid check_sal_cache_flush which may hang on
 buggy SAL_CACHE_FLUSH implementations. Using this
 parameter will force ia64_sal_cache_flush to call
 ia64_pal_cache_flush instead of SAL_CACHE_FLUSH.

 forcepae [X86-32]
 Forcefully enable Physical Address Extension (PAE).
 Many Pentium M systems disable PAE but may have a
 functionally usable PAE implementation.
 Warning: use of this parameter will taint the kernel
 and may cause unknown problems.

 ftrace=[tracer]
 [FTRACE] will set and start the specified tracer
 as early as possible in order to facilitate early
 boot debugging.

 ftrace_dump_on_oops[=orig_cpu]
 [FTRACE] will dump the trace buffers on oops.
 If no parameter is passed, ftrace will dump
 buffers of all CPUs, but if you pass orig_cpu, it will
 dump only the buffer of the CPU that triggered the
 oops.

 ftrace_filter=[function-list]
 [FTRACE] Limit the functions traced by the function
 tracer at boot up. function-list is a comma separated
 list of functions. This list can be changed at run
 time by the set_ftrace_filter file in the debugfs
 tracing directory.

 ftrace_notrace=[function-list]
 [FTRACE] Do not trace the functions specified in
 function-list. This list can be changed at run time
 by the set_ftrace_notrace file in the debugfs
 tracing directory.

 ftrace_graph_filter=[function-list]
 [FTRACE] Limit the top level callers functions traced
 by the function graph tracer at boot up.
 function-list is a comma separated list of functions
 that can be changed at run time by the
 set_graph_function file in the debugfs tracing directory.

 ftrace_graph_notrace=[function-list]
 [FTRACE] Do not trace from the functions specified in
 function-list. This list is a comma separated list of
 functions that can be changed at run time by the
 set_graph_notrace file in the debugfs tracing directory.

 ftrace_graph_max_depth=<uint>
 [FTRACE] Used with the function graph tracer. This is
 the max depth it will trace into a function. This value
 can be changed at run time by the max_graph_depth file
 in the tracefs tracing directory. default: 0 (no limit)

 gamecon.map[2|3]=
 [HW,JOY] Multisystem joystick and NES/SNES/PSX pad
 support via parallel port (up to 5 devices per port)
 Format: <port#>,<pad1>,<pad2>,<pad3>,<pad4>,<pad5>
 See also Documentation/input/devices/joystick-parport.rst

 gamma= [HW,DRM]

 gart_fix_e820= [X86_64] disable the fix e820 for K8 GART
 Format: off | on
 default: on

 gcov_persist= [GCOV] When non-zero (default), profiling data for
 kernel modules is saved and remains accessible via
 debugfs, even when the module is unloaded/reloaded.
 When zero, profiling data is discarded and associated
 debugfs files are removed at module unload time.

 goldfish [X86] Enable the goldfish android emulator platform.
 Don't use this when you are not running on the
 android emulator

 gpt [EFI] Forces disk with valid GPT signature but
 invalid Protective MBR to be treated as GPT. If the
 primary GPT is corrupted, it enables the backup/alternate
 GPT to be used instead.

 grcan.enable0= [HW] Configuration of physical interface 0. Determines
 the "Enable 0" bit of the configuration register.
 Format: 0 | 1
 Default: 0
 grcan.enable1= [HW] Configuration of physical interface 1. Determines
 the "Enable 0" bit of the configuration register.
 Format: 0 | 1
 Default: 0
 grcan.select= [HW] Select which physical interface to use.
 Format: 0 | 1
 Default: 0
 grcan.txsize= [HW] Sets the size of the tx buffer.
 Format: <unsigned int> such that (txsize & ~0x1fffc0) == 0.
 Default: 1024
 grcan.rxsize= [HW] Sets the size of the rx buffer.
 Format: <unsigned int> such that (rxsize & ~0x1fffc0) == 0.
 Default: 1024

 gpio-mockup.gpio_mockup_ranges
 [HW] Sets the ranges of gpiochip of for this device.
 Format: <start1>,<end1>,<start2>,<end2>...

 hardlockup_all_cpu_backtrace=
 [KNL] Should the hard-lockup detector generate
 backtraces on all cpus.
 Format: <integer>

 hashdist= [KNL,NUMA] Large hashes allocated during boot
 are distributed across NUMA nodes. Defaults on
 for 64-bit NUMA, off otherwise.
 Format: 0 | 1 (for off | on)

 hcl= [IA-64] SGI's Hardware Graph compatibility layer

 hd= [EIDE] (E)IDE hard drive subsystem geometry
 Format: <cyl>,<head>,<sect>

 hest_disable [ACPI]
 Disable Hardware Error Source Table (HEST) support;
 corresponding firmware-first mode error processing
 logic will be disabled.

 highmem=nn[KMG] [KNL,BOOT] forces the highmem zone to have an exact
 size of <nn>. This works even on boxes that have no
 highmem otherwise. This also works to reduce highmem
 size on bigger boxes.

 highres= [KNL] Enable/disable high resolution timer mode.
 Valid parameters: "on", "off"
 Default: "on"

 hisax= [HW,ISDN]
 See Documentation/isdn/README.HiSax.

 hlt [BUGS=ARM,SH]

 hpet= [X86-32,HPET] option to control HPET usage
 Format: { enable (default) | disable | force |
 verbose }
 disable: disable HPET and use PIT instead
 force: allow force enabled of undocumented chips (ICH4,
 VIA, nVidia)
 verbose: show contents of HPET registers during setup

 hpet_mmap= [X86, HPET_MMAP] Allow userspace to mmap HPET
 registers. Default set by CONFIG_HPET_MMAP_DEFAULT.

 hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
 hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.
 On x86-64 and powerpc, this option can be specified
 multiple times interleaved with hugepages= to reserve
 huge pages of different sizes. Valid pages sizes on
 x86-64 are 2M (when the CPU supports "pse") and 1G
 (when the CPU supports the "pdpe1gb" cpuinfo flag).

 hung_task_panic=
 [KNL] Should the hung task detector generate panics.
 Format: <integer>

 A nonzero value instructs the kernel to panic when a
 hung task is detected. The default value is controlled
 by the CONFIG_BOOTPARAM_HUNG_TASK_PANIC build-time
 option. The value selected by this boot parameter can
 be changed later by the kernel.hung_task_panic sysctl.

 hvc_iucv= [S390] Number of z/VM IUCV hypervisor console (HVC)
 terminal devices. Valid values: 0..8
 hvc_iucv_allow= [S390] Comma-separated list of z/VM user IDs.
 If specified, z/VM IUCV HVC accepts connections
 from listed z/VM user IDs only.

 hv_nopvspin [X86,HYPER_V] Disables the paravirt spinlock optimizations
 which allow the hypervisor to 'idle' the
 guest on lock contention.

 keep_bootcon [KNL]
 Do not unregister boot console at start. This is only
 useful for debugging when something happens in the window
 between unregistering the boot console and initializing
 the real console.

 i2c_bus= [HW] Override the default board specific I2C bus speed
 or register an additional I2C bus that is not
 registered from board initialization code.
 Format:
 <bus_id>,<clkrate>

 i8042.debug [HW] Toggle i8042 debug mode
 i8042.unmask_kbd_data
 [HW] Enable printing of interrupt data from the KBD port
 (disabled by default, and as a pre-condition
 requires that i8042.debug=1 be enabled)
 i8042.direct [HW] Put keyboard port into non-translated mode
 i8042.dumbkbd [HW] Pretend that controller can only read data from
 keyboard and cannot control its state
 (Don't attempt to blink the leds)
 i8042.noaux [HW] Don't check for auxiliary (== mouse) port
 i8042.nokbd [HW] Don't check/create keyboard port
 i8042.noloop [HW] Disable the AUX Loopback command while probing
 for the AUX port
 i8042.nomux [HW] Don't check presence of an active multiplexing
 controller
 i8042.nopnp [HW] Don't use ACPIPnP / PnPBIOS to discover KBD/AUX
 controllers
 i8042.notimeout [HW] Ignore timeout condition signalled by controller
 i8042.reset [HW] Reset the controller during init, cleanup and
 suspend-to-ram transitions, only during s2r
 transitions, or never reset
 Format: { 1 | Y | y | 0 | N | n }
 1, Y, y: always reset controller
 0, N, n: don't ever reset controller
 Default: only on s2r transitions on x86; most other
 architectures force reset to be always executed
 i8042.unlock [HW] Unlock (ignore) the keylock
 i8042.kbdreset [HW] Reset device connected to KBD port

 i810= [HW,DRM]

 i8k.ignore_dmi [HW] Continue probing hardware even if DMI data
 indicates that the driver is running on unsupported
 hardware.
 i8k.force [HW] Activate i8k driver even if SMM BIOS signature
 does not match list of supported models.
 i8k.power_status
 [HW] Report power status in /proc/i8k
 (disabled by default)
 i8k.restricted [HW] Allow controlling fans only if SYS_ADMIN
 capability is set.

 i915.invert_brightness=
 [DRM] Invert the sense of the variable that is used to
 set the brightness of the panel backlight. Normally a
 brightness value of 0 indicates backlight switched off,
 and the maximum of the brightness value sets the backlight
 to maximum brightness. If this parameter is set to 0
 (default) and the machine requires it, or this parameter
 is set to 1, a brightness value of 0 sets the backlight
 to maximum brightness, and the maximum of the brightness
 value switches the backlight off.
 -1 -- never invert brightness
 0 -- machine default
 1 -- force brightness inversion

 icn= [HW,ISDN]
 Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]]

 ide-core.nodma= [HW] (E)IDE subsystem
 Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
 .vlb_clock .pci_clock .noflush .nohpa .noprobe .nowerr
 .cdrom .chs .ignore_cable are additional options
 See Documentation/ide/ide.txt.

 ide-generic.probe-mask= [HW] (E)IDE subsystem
 Format: <int>
 Probe mask for legacy ISA IDE ports. Depending on
 platform up to 6 ports are supported, enabled by
 setting corresponding bits in the mask to 1. The
 default value is 0x0, which has a special meaning.
 On systems that have PCI, it triggers scanning the
 PCI bus for the first and the second port, which
 are then probed. On systems without PCI the value
 of 0x0 enables probing the two first ports as if it
 was 0x3.

 ide-pci-generic.all-generic-ide [HW] (E)IDE subsystem
 Claim all unknown PCI IDE storage controllers.

 idle= [X86]
 Format: idle=poll, idle=halt, idle=nomwait
 Poll forces a polling idle loop that can slightly
 improve the performance of waking up a idle CPU, but
 will use a lot of power and make the system run hot.
 Not recommended.
 idle=halt: Halt is forced to be used for CPU idle.
 In such case C2/C3 won't be used again.
 idle=nomwait: Disable mwait for CPU C-states

 ieee754= [MIPS] Select IEEE Std 754 conformance mode
 Format: { strict | legacy | 2008 | relaxed }
 Default: strict

 Choose which programs will be accepted for execution
 based on the IEEE 754 NaN encoding(s) supported by
 the FPU and the NaN encoding requested with the value
 of an ELF file header flag individually set by each
 binary. Hardware implementations are permitted to
 support either or both of the legacy and the 2008 NaN
 encoding mode.

 Available settings are as follows:
 strict accept binaries that request a NaN encoding
 supported by the FPU
 legacy only accept legacy-NaN binaries, if supported
 by the FPU
 2008 only accept 2008-NaN binaries, if supported
 by the FPU
 relaxed accept any binaries regardless of whether
 supported by the FPU

 The FPU emulator is always able to support both NaN
 encodings, so if no FPU hardware is present or it has
 been disabled with 'nofpu', then the settings of
 'legacy' and '2008' strap the emulator accordingly,
 'relaxed' straps the emulator for both legacy-NaN and
 2008-NaN, whereas 'strict' enables legacy-NaN only on
 legacy processors and both NaN encodings on MIPS32 or
 MIPS64 CPUs.

 The setting for ABS.fmt/NEG.fmt instruction execution
 mode generally follows that for the NaN encoding,
 except where unsupported by hardware.

 ignore_loglevel [KNL]
 Ignore loglevel setting - this will print /all/
 kernel messages to the console. Useful for debugging.
 We also add it as printk module parameter, so users
 could change it dynamically, usually by
 /sys/module/printk/parameters/ignore_loglevel.

 ignore_rlimit_data
 Ignore RLIMIT_DATA setting for data mappings,
 print warning at first misuse. Can be changed via
 /sys/module/kernel/parameters/ignore_rlimit_data.

 ihash_entries= [KNL]
 Set number of hash buckets for inode cache.

 ima_appraise= [IMA] appraise integrity measurements
 Format: { "off" | "enforce" | "fix" | "log" }
 default: "enforce"

 ima_appraise_tcb [IMA]
 The builtin appraise policy appraises all files
 owned by uid=0.

 ima_canonical_fmt [IMA]
 Use the canonical format for the binary runtime
 measurements, instead of host native format.

 ima_hash= [IMA]
 Format: { md5 | sha1 | rmd160 | sha256 | sha384
 | sha512 | ... }
 default: "sha1"

 The list of supported hash algorithms is defined
 in crypto/hash_info.h.

 ima_policy= [IMA]
 The builtin policies to load during IMA setup.
 Format: "tcb | appraise_tcb | secure_boot |
 fail_securely"

 The "tcb" policy measures all programs exec'd, files
 mmap'd for exec, and all files opened with the read
 mode bit set by either the effective uid (euid=0) or
 uid=0.

 The "appraise_tcb" policy appraises the integrity of
 all files owned by root. (This is the equivalent
 of ima_appraise_tcb.)

 The "secure_boot" policy appraises the integrity
 of files (eg. kexec kernel image, kernel modules,
 firmware, policy, etc) based on file signatures.

 The "fail_securely" policy forces file signature
 verification failure also on privileged mounted
 filesystems with the SB_I_UNVERIFIABLE_SIGNATURE
 flag.

 ima_tcb [IMA] Deprecated. Use ima_policy= instead.
 Load a policy which meets the needs of the Trusted
 Computing Base. This means IMA will measure all
 programs exec'd, files mmap'd for exec, and all files
 opened for read by uid=0.

 ima_template= [IMA]
 Select one of defined IMA measurements template formats.
 Formats: { "ima" | "ima-ng" | "ima-sig" }
 Default: "ima-ng"

 ima_template_fmt=
 [IMA] Define a custom template format.
 Format: { "field1|...|fieldN" }

 ima.ahash_minsize= [IMA] Minimum file size for asynchronous hash usage
 Format: <min_file_size>
 Set the minimal file size for using asynchronous hash.
 If left unspecified, ahash usage is disabled.

 ahash performance varies for different data sizes on
 different crypto accelerators. This option can be used
 to achieve the best performance for a particular HW.

 ima.ahash_bufsize= [IMA] Asynchronous hash buffer size
 Format: <bufsize>
 Set hashing buffer size. Default: 4k.

 ahash performance varies for different chunk sizes on
 different crypto accelerators. This option can be used
 to achieve best performance for particular HW.

 init= [KNL]
 Format: <full_path>
 Run specified binary instead of /sbin/init as init
 process.

 initcall_debug [KNL] Trace initcalls as they are executed. Useful
 for working out where the kernel is dying during
 startup.

 initcall_blacklist= [KNL] Do not execute a comma-separated list of
 initcall functions. Useful for debugging built-in
 modules and initcalls.

 initrd= [BOOT] Specify the location of the initial ramdisk

 init_pkru= [x86] Specify the default memory protection keys rights
 register contents for all processes. 0x55555554 by
 default (disallow access to all but pkey 0). Can
 override in debugfs after boot.

 inport.irq= [HW] Inport (ATI XL and Microsoft) busmouse driver
 Format: <irq>

 int_pln_enable [x86] Enable power limit notification interrupt

 integrity_audit=[IMA]
 Format: { "0" | "1" }
 0 -- basic integrity auditing messages. (Default)
 1 -- additional integrity auditing messages.

 intel_iommu= [DMAR] Intel IOMMU driver (DMAR) option
 on
 Enable intel iommu driver.
 off
 Disable intel iommu driver.
 igfx_off [Default Off]
 By default, gfx is mapped as normal device. If a gfx
 device has a dedicated DMAR unit, the DMAR unit is
 bypassed by not enabling DMAR with this option. In
 this case, gfx device will use physical address for
 DMA.
 forcedac [x86_64]
 With this option iommu will not optimize to look
 for io virtual address below 32-bit forcing dual
 address cycle on pci bus for cards supporting greater
 than 32-bit addressing. The default is to look
 for translation below 32-bit and if not available
 then look in the higher range.
 strict [Default Off]
 With this option on every unmap_single operation will
 result in a hardware IOTLB flush operation as opposed
 to batching them for performance.
 sp_off [Default Off]
 By default, super page will be supported if Intel IOMMU
 has the capability. With this option, super page will
 not be supported.
 ecs_off [Default Off]
 By default, extended context tables will be supported if
 the hardware advertises that it has support both for the
 extended tables themselves, and also PASID support. With
 this option set, extended tables will not be used even
 on hardware which claims to support them.
 tboot_noforce [Default Off]
 Do not force the Intel IOMMU enabled under tboot.
 By default, tboot will force Intel IOMMU on, which
 could harm performance of some high-throughput
 devices like 40GBit network cards, even if identity
 mapping is enabled.
 Note that using this option lowers the security
 provided by tboot because it makes the system
 vulnerable to DMA attacks.

 intel_idle.max_cstate= [KNL,HW,ACPI,X86]
 0 disables intel_idle and fall back on acpi_idle.
 1 to 9 specify maximum depth of C-state.

 intel_pstate= [X86]
 disable
 Do not enable intel_pstate as the default
 scaling driver for the supported processors
 passive
 Use intel_pstate as a scaling driver, but configure it
 to work with generic cpufreq governors (instead of
 enabling its internal governor). This mode cannot be
 used along with the hardware-managed P-states (HWP)
 feature.
 force
 Enable intel_pstate on systems that prohibit it by default
 in favor of acpi-cpufreq. Forcing the intel_pstate driver
 instead of acpi-cpufreq may disable platform features, such
 as thermal controls and power capping, that rely on ACPI
 P-States information being indicated to OSPM and therefore
 should be used with caution. This option does not work with
 processors that aren't supported by the intel_pstate driver
 or on platforms that use pcc-cpufreq instead of acpi-cpufreq.
 no_hwp
 Do not enable hardware P state control (HWP)
 if available.
 hwp_only
 Only load intel_pstate on systems which support
 hardware P state control (HWP) if available.
 support_acpi_ppc
 Enforce ACPI _PPC performance limits. If the Fixed ACPI
 Description Table, specifies preferred power management
 profile as "Enterprise Server" or "Performance Server",
 then this feature is turned on by default.
 per_cpu_perf_limits
 Allow per-logical-CPU P-State performance control limits using
 cpufreq sysfs interface

 intremap= [X86-64, Intel-IOMMU]
 on enable Interrupt Remapping (default)
 off disable Interrupt Remapping
 nosid disable Source ID checking
 no_x2apic_optout
 BIOS x2APIC opt-out request will be ignored
 nopost disable Interrupt Posting

 iomem= Disable strict checking of access to MMIO memory
 strict regions from userspace.
 relaxed

 iommu= [x86]
 off
 force
 noforce
 biomerge
 panic
 nopanic
 merge
 nomerge
 soft
 pt [x86]
 nopt [x86]
 nobypass [PPC/POWERNV]
 Disable IOMMU bypass, using IOMMU for PCI devices.

 iommu.strict= [ARM64] Configure TLB invalidation behaviour
 Format: { "0" | "1" }
 0 - Lazy mode.
 Request that DMA unmap operations use deferred
 invalidation of hardware TLBs, for increased
 throughput at the cost of reduced device isolation.
 Will fall back to strict mode if not supported by
 the relevant IOMMU driver.
 1 - Strict mode (default).
 DMA unmap operations invalidate IOMMU hardware TLBs
 synchronously.

 iommu.passthrough=
 [ARM64] Configure DMA to bypass the IOMMU by default.
 Format: { "0" | "1" }
 0 - Use IOMMU translation for DMA.
 1 - Bypass the IOMMU for DMA.
 unset - Use value of CONFIG_IOMMU_DEFAULT_PASSTHROUGH.

 io7= [HW] IO7 for Marvel based alpha systems
 See comment before marvel_specify_io7 in
 arch/alpha/kernel/core_marvel.c.

 io_delay= [X86] I/O delay method
 0x80
 Standard port 0x80 based delay
 0xed
 Alternate port 0xed based delay (needed on some systems)
 udelay
 Simple two microseconds delay
 none
 No delay

 ip= [IP_PNP]
 See Documentation/filesystems/nfs/nfsroot.txt.

 irqaffinity= [SMP] Set the default irq affinity mask
 The argument is a cpu list, as described above.

 irqchip.gicv2_force_probe=
 [ARM, ARM64]
 Format: <bool>
 Force the kernel to look for the second 4kB page
 of a GICv2 controller even if the memory range
 exposed by the device tree is too small.

 irqchip.gicv3_nolpi=
 [ARM, ARM64]
 Force the kernel to ignore the availability of
 LPIs (and by consequence ITSs). Intended for system
 that use the kernel as a bootloader, and thus want
 to let secondary kernels in charge of setting up
 LPIs.

 irqfixup [HW]
 When an interrupt is not handled search all handlers
 for it. Intended to get systems with badly broken
 firmware running.

 irqpoll [HW]
 When an interrupt is not handled search all handlers
 for it. Also check all handlers each timer
 interrupt. Intended to get systems with badly broken
 firmware running.

 isapnp= [ISAPNP]
 Format: <RDP>,<reset>,<pci_scan>,<verbosity>

 isolcpus= [KNL,SMP,ISOL] Isolate a given set of CPUs from disturbance.
 [Deprecated - use cpusets instead]
 Format: [flag-list,]<cpu-list>

 Specify one or more CPUs to isolate from disturbances
 specified in the flag list (default: domain):

 nohz
 Disable the tick when a single task runs.

 A residual 1Hz tick is offloaded to workqueues, which you
 need to affine to housekeeping through the global
 workqueue's affinity configured via the
 /sys/devices/virtual/workqueue/cpumask sysfs file, or
 by using the 'domain' flag described below.

 NOTE: by default the global workqueue runs on all CPUs,
 so to protect individual CPUs the 'cpumask' file has to
 be configured manually after bootup.

 domain
 Isolate from the general SMP balancing and scheduling
 algorithms. Note that performing domain isolation this way
 is irreversible: it's not possible to bring back a CPU to
 the domains once isolated through isolcpus. It's strongly
 advised to use cpusets instead to disable scheduler load
 balancing through the "cpuset.sched_load_balance" file.
 It offers a much more flexible interface where CPUs can
 move in and out of an isolated set anytime.

 You can move a process onto or off an "isolated" CPU via
 the CPU affinity syscalls or cpuset.
 <cpu number> begins at 0 and the maximum value is
 "number of CPUs in system - 1".

 The format of <cpu-list> is described above.

 iucv= [HW,NET]

 ivrs_ioapic [HW,X86_64]
 Provide an override to the IOAPIC-ID<->DEVICE-ID
 mapping provided in the IVRS ACPI table. For
 example, to map IOAPIC-ID decimal 10 to
 PCI device 00:14.0 write the parameter as:
 ivrs_ioapic[10]=00:14.0

 ivrs_hpet [HW,X86_64]
 Provide an override to the HPET-ID<->DEVICE-ID
 mapping provided in the IVRS ACPI table. For
 example, to map HPET-ID decimal 0 to
 PCI device 00:14.0 write the parameter as:
 ivrs_hpet[0]=00:14.0

 ivrs_acpihid [HW,X86_64]
 Provide an override to the ACPI-HID:UID<->DEVICE-ID
 mapping provided in the IVRS ACPI table. For
 example, to map UART-HID:UID AMD0020:0 to
 PCI device 00:14.5 write the parameter as:
 ivrs_acpihid[00:14.5]=AMD0020:0

 js= [HW,JOY] Analog joystick
 See Documentation/input/joydev/joystick.rst.

 nokaslr [KNL]
 When CONFIG_RANDOMIZE_BASE is set, this disables
 kernel and module base offset ASLR (Address Space
 Layout Randomization).

 kasan_multi_shot
 [KNL] Enforce KASAN (Kernel Address Sanitizer) to print
 report on every invalid memory access. Without this
 parameter KASAN will print report only for the first
 invalid access.

 keepinitrd [HW,ARM]

 kernelcore= [KNL,X86,IA-64,PPC]
 Format: nn[KMGTPE] | nn% | "mirror"
 This parameter specifies the amount of memory usable by
 the kernel for non-movable allocations. The requested
 amount is spread evenly throughout all nodes in the
 system as ZONE_NORMAL. The remaining memory is used for
 movable memory in its own zone, ZONE_MOVABLE. In the
 event, a node is too small to have both ZONE_NORMAL and
 ZONE_MOVABLE, kernelcore memory will take priority and
 other nodes will have a larger ZONE_MOVABLE.

 ZONE_MOVABLE is used for the allocation of pages that
 may be reclaimed or moved by the page migration
 subsystem. Note that allocations like PTEs-from-HighMem
 still use the HighMem zone if it exists, and the Normal
 zone if it does not.

 It is possible to specify the exact amount of memory in
 the form of "nn[KMGTPE]", a percentage of total system
 memory in the form of "nn%", or "mirror". If "mirror"
 option is specified, mirrored (reliable) memory is used
 for non-movable allocations and remaining memory is used
 for Movable pages. "nn[KMGTPE]", "nn%", and "mirror"
 are exclusive, so you cannot specify multiple forms.

 kgdbdbgp= [KGDB,HW] kgdb over EHCI usb debug port.
 Format: <Controller#>[,poll interval]
 The controller # is the number of the ehci usb debug
 port as it is probed via PCI. The poll interval is
 optional and is the number seconds in between
 each poll cycle to the debug port in case you need
 the functionality for interrupting the kernel with
 gdb or control-c on the dbgp connection. When
 not using this parameter you use sysrq-g to break into
 the kernel debugger.

 kgdboc= [KGDB,HW] kgdb over consoles.
 Requires a tty driver that supports console polling,
 or a supported polling keyboard driver (non-usb).
 Serial only format: <serial_device>[,baud]
 keyboard only format: kbd
 keyboard and serial format: kbd,<serial_device>[,baud]
 Optional Kernel mode setting:
 kms, kbd format: kms,kbd
 kms, kbd and serial format: kms,kbd,<ser_dev>[,baud]

 kgdbwait [KGDB] Stop kernel execution and enter the
 kernel debugger at the earliest opportunity.

 kmac= [MIPS] korina ethernet MAC address.
 Configure the RouterBoard 532 series on-chip
 Ethernet adapter MAC address.

 kmemleak= [KNL] Boot-time kmemleak enable/disable
 Valid arguments: on, off
 Default: on
 Built with CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y,
 the default is off.

 kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs.
 Default is 0 (don't ignore, but inject #GP)

 kvm.enable_vmware_backdoor=[KVM] Support VMware backdoor PV interface.
 Default is false (don't support).

 kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit
 KVM MMU at runtime.
 Default is 0 (off)

 kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
 Default is 1 (enabled)

 kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU)
 for all guests.
 Default is 1 (enabled) if in 64-bit or 32-bit PAE mode.

 kvm-arm.vgic_v3_group0_trap=
 [KVM,ARM] Trap guest accesses to GICv3 group-0
 system registers

 kvm-arm.vgic_v3_group1_trap=
 [KVM,ARM] Trap guest accesses to GICv3 group-1
 system registers

 kvm-arm.vgic_v3_common_trap=
 [KVM,ARM] Trap guest accesses to GICv3 common
 system registers

 kvm-arm.vgic_v4_enable=
 [KVM,ARM] Allow use of GICv4 for direct injection of
 LPIs.

 kvm-intel.ept= [KVM,Intel] Disable extended page tables
 (virtualized MMU) support on capable Intel chips.
 Default is 1 (enabled)

 kvm-intel.emulate_invalid_guest_state=
 [KVM,Intel] Enable emulation of invalid guest states
 Default is 0 (disabled)

 kvm-intel.flexpriority=
 [KVM,Intel] Disable FlexPriority feature (TPR shadow).
 Default is 1 (enabled)

 kvm-intel.nested=
 [KVM,Intel] Enable VMX nesting (nVMX).
 Default is 0 (disabled)

 kvm-intel.unrestricted_guest=
 [KVM,Intel] Disable unrestricted guest feature
 (virtualized real and unpaged mode) on capable
 Intel chips. Default is 1 (enabled)

 kvm-intel.vmentry_l1d_flush=[KVM,Intel] Mitigation for L1 Terminal Fault
 CVE-2018-3620.

 Valid arguments: never, cond, always

 always: L1D cache flush on every VMENTER.
 cond: Flush L1D on VMENTER only when the code between
 VMEXIT and VMENTER can leak host memory.
 never: Disables the mitigation

 Default is cond (do L1 cache flush in specific instances)

 kvm-intel.vpid= [KVM,Intel] Disable Virtual Processor Identification
 feature (tagged TLBs) on capable Intel chips.
 Default is 1 (enabled)

 l1tf= [X86] Control mitigation of the L1TF vulnerability on
 affected CPUs

 The kernel PTE inversion protection is unconditionally
 enabled and cannot be disabled.

 full
 Provides all available mitigations for the
 L1TF vulnerability. Disables SMT and
 enables all mitigations in the
 hypervisors, i.e. unconditional L1D flush.

 SMT control and L1D flush control via the
 sysfs interface is still possible after
 boot. Hypervisors will issue a warning
 when the first VM is started in a
 potentially insecure configuration,
 i.e. SMT enabled or L1D flush disabled.

 full,force
 Same as 'full', but disables SMT and L1D
 flush runtime control. Implies the
 'nosmt=force' command line option.
 (i.e. sysfs control of SMT is disabled.)

 flush
 Leaves SMT enabled and enables the default
 hypervisor mitigation, i.e. conditional
 L1D flush.

 SMT control and L1D flush control via the
 sysfs interface is still possible after
 boot. Hypervisors will issue a warning
 when the first VM is started in a
 potentially insecure configuration,
 i.e. SMT enabled or L1D flush disabled.

 flush,nosmt

 Disables SMT and enables the default
 hypervisor mitigation.

 SMT control and L1D flush control via the
 sysfs interface is still possible after
 boot. Hypervisors will issue a warning
 when the first VM is started in a
 potentially insecure configuration,
 i.e. SMT enabled or L1D flush disabled.

 flush,nowarn
 Same as 'flush', but hypervisors will not
 warn when a VM is started in a potentially
 insecure configuration.

 off
 Disables hypervisor mitigations and doesn't
 emit any warnings.

 Default is 'flush'.

 For details see: Documentation/admin-guide/l1tf.rst

 l2cr= [PPC]

 l3cr= [PPC]

 lapic [X86-32,APIC] Enable the local APIC even if BIOS
 disabled it.

 lapic= [x86,APIC] "notscdeadline" Do not use TSC deadline
 value for LAPIC timer one-shot implementation. Default
 back to the programmable timer unit in the LAPIC.

 lapic_timer_c2_ok [X86,APIC] trust the local apic timer
 in C2 power state.

 libata.dma= [LIBATA] DMA control
 libata.dma=0 Disable all PATA and SATA DMA
 libata.dma=1 PATA and SATA Disk DMA only
 libata.dma=2 ATAPI (CDROM) DMA only
 libata.dma=4 Compact Flash DMA only
 Combinations also work, so libata.dma=3 enables DMA
 for disks and CDROMs, but not CFs.

 libata.ignore_hpa= [LIBATA] Ignore HPA limit
 libata.ignore_hpa=0 keep BIOS limits (default)
 libata.ignore_hpa=1 ignore limits, using full disk

 libata.noacpi [LIBATA] Disables use of ACPI in libata suspend/resume
 when set.
 Format: <int>

 libata.force= [LIBATA] Force configurations. The format is comma
 separated list of "[ID:]VAL" where ID is
 PORT[.DEVICE]. PORT and DEVICE are decimal numbers
 matching port, link or device. Basically, it matches
 the ATA ID string printed on console by libata. If
 the whole ID part is omitted, the last PORT and DEVICE
 values are used. If ID hasn't been specified yet, the
 configuration applies to all ports, links and devices.

 If only DEVICE is omitted, the parameter applies to
 the port and all links and devices behind it. DEVICE
 number of 0 either selects the first device or the
 first fan-out link behind PMP device. It does not
 select the host link. DEVICE number of 15 selects the
 host link and device attached to it.

 The VAL specifies the configuration to force. As long
 as there's no ambiguity shortcut notation is allowed.
 For example, both 1.5 and 1.5G would work for 1.5Gbps.
 The following configurations can be forced.

 * Cable type: 40c, 80c, short40c, unk, ign or sata.
 Any ID with matching PORT is used.

 * SATA link speed limit: 1.5Gbps or 3.0Gbps.

 * Transfer mode: pio[0-7], mwdma[0-4] and udma[0-7].
 udma[/][16,25,33,44,66,100,133] notation is also
 allowed.

 * [no]ncq: Turn on or off NCQ.

 * [no]ncqtrim: Turn off queued DSM TRIM.

 * nohrst, nosrst, norst: suppress hard, soft
 and both resets.

 * rstonce: only attempt one reset during
 hot-unplug link recovery

 * dump_id: dump IDENTIFY data.

 * atapi_dmadir: Enable ATAPI DMADIR bridge support

 * disable: Disable this device.

 If there are multiple matching configurations changing
 the same attribute, the last one is used.

 memblock=debug [KNL] Enable memblock debug messages.

 load_ramdisk= [RAM] List of ramdisks to load from floppy
 See Documentation/blockdev/ramdisk.txt.

 lockd.nlm_grace_period=P [NFS] Assign grace period.
 Format: <integer>

 lockd.nlm_tcpport=N [NFS] Assign TCP port.
 Format: <integer>

 lockd.nlm_timeout=T [NFS] Assign timeout value.
 Format: <integer>

 lockd.nlm_udpport=M [NFS] Assign UDP port.
 Format: <integer>

 locktorture.nreaders_stress= [KNL]
 Set the number of locking read-acquisition kthreads.
 Defaults to being automatically set based on the
 number of online CPUs.

 locktorture.nwriters_stress= [KNL]
 Set the number of locking write-acquisition kthreads.

 locktorture.onoff_holdoff= [KNL]
 Set time (s) after boot for CPU-hotplug testing.

 locktorture.onoff_interval= [KNL]
 Set time (s) between CPU-hotplug operations, or
 zero to disable CPU-hotplug testing.

 locktorture.shuffle_interval= [KNL]
 Set task-shuffle interval (jiffies). Shuffling
 tasks allows some CPUs to go into dyntick-idle
 mode during the locktorture test.

 locktorture.shutdown_secs= [KNL]
 Set time (s) after boot system shutdown. This
 is useful for hands-off automated testing.

 locktorture.stat_interval= [KNL]
 Time (s) between statistics printk()s.

 locktorture.stutter= [KNL]
 Time (s) to stutter testing, for example,
 specifying five seconds causes the test to run for
 five seconds, wait for five seconds, and so on.
 This tests the locking primitive's ability to
 transition abruptly to and from idle.

 locktorture.torture_type= [KNL]
 Specify the locking implementation to test.

 locktorture.verbose= [KNL]
 Enable additional printk() statements.

 logibm.irq= [HW,MOUSE] Logitech Bus Mouse Driver
 Format: <irq>

 loglevel= All Kernel Messages with a loglevel smaller than the
 console loglevel will be printed to the console. It can
 also be changed with klogd or other programs. The
 loglevels are defined as follows:

 0 (KERN_EMERG) system is unusable
 1 (KERN_ALERT) action must be taken immediately
 2 (KERN_CRIT) critical conditions
 3 (KERN_ERR) error conditions
 4 (KERN_WARNING) warning conditions
 5 (KERN_NOTICE) normal but significant condition
 6 (KERN_INFO) informational
 7 (KERN_DEBUG) debug-level messages

 log_buf_len=n[KMG] Sets the size of the printk ring buffer,
 in bytes. n must be a power of two and greater
 than the minimal size. The minimal size is defined
 by LOG_BUF_SHIFT kernel config parameter. There is
 also CONFIG_LOG_CPU_MAX_BUF_SHIFT config parameter
 that allows to increase the default size depending on
 the number of CPUs. See init/Kconfig for more details.

 logo.nologo [FB] Disables display of the built-in Linux logo.
 This may be used to provide more screen space for
 kernel log messages and is useful when debugging
 kernel boot problems.

 lp=0 [LP] Specify parallel ports to use, e.g,
 lp=port[,port...] lp=none,parport0 (lp0 not configured, lp1 uses
 lp=reset first parallel port). 'lp=0' disables the
 lp=auto printer driver. 'lp=reset' (which can be
 specified in addition to the ports) causes
 attached printers to be reset. Using
 lp=port1,port2,... specifies the parallel ports
 to associate lp devices with, starting with
 lp0. A port specification may be 'none' to skip
 that lp device, or a parport name such as
 'parport0'. Specifying 'lp=auto' instead of a
 port specification list means that device IDs
 from each port should be examined, to see if
 an IEEE 1284-compliant printer is attached; if
 so, the driver will manage that printer.
 See also header of drivers/char/lp.c.

 lpj=n [KNL]
 Sets loops_per_jiffy to given constant, thus avoiding
 time-consuming boot-time autodetection (up to 250 ms per
 CPU). 0 enables autodetection (default). To determine
 the correct value for your kernel, boot with normal
 autodetection and see what value is printed. Note that
 on SMP systems the preset will be applied to all CPUs,
 which is likely to cause problems if your CPUs need
 significantly divergent settings. An incorrect value
 will cause delays in the kernel to be wrong, leading to
 unpredictable I/O errors and other breakage. Although
 unlikely, in the extreme case this might damage your
 hardware.

 ltpc= [NET]
 Format: <io>,<irq>,<dma>

 lsm.debug [SECURITY] Enable LSM initialization debugging output.

 machvec= [IA-64] Force the use of a particular machine-vector
 (machvec) in a generic kernel.
 Example: machvec=hpzx1_swiotlb

 machtype= [Loongson] Share the same kernel image file between different
 yeeloong laptop.
 Example: machtype=lemote-yeeloong-2f-7inch

 max_addr=nn[KMG] [KNL,BOOT,ia64] All physical memory greater
 than or equal to this physical address is ignored.

 maxcpus= [SMP] Maximum number of processors that an SMP kernel
 will bring up during bootup. maxcpus=n : n >= 0 limits
 the kernel to bring up 'n' processors. Surely after
 bootup you can bring up the other plugged cpu by executing
 "echo 1 > /sys/devices/system/cpu/cpuX/online". So maxcpus
 only takes effect during system bootup.
 While n=0 is a special case, it is equivalent to "nosmp",
 which also disables the IO APIC.

 max_loop= [LOOP] The number of loop block devices that get
 (loop.max_loop) unconditionally pre-created at init time. The default
 number is configured by BLK_DEV_LOOP_MIN_COUNT. Instead
 of statically allocating a predefined number, loop
 devices can be requested on-demand with the
 /dev/loop-control interface.

 mce [X86-32] Machine Check Exception

 mce=option [X86-64] See Documentation/x86/x86_64/boot-options.txt

 md= [HW] RAID subsystems devices and level
 See Documentation/admin-guide/md.rst.

 mdacon= [MDA]
 Format: <first>,<last>
 Specifies range of consoles to be captured by the MDA.

 mem=nn[KMG] [KNL,BOOT] Force usage of a specific amount of memory
 Amount of memory to be used when the kernel is not able
 to see the whole system memory or for test.
 [X86] Work as limiting max address. Use together
 with memmap= to avoid physical address space collisions.
 Without memmap= PCI devices could be placed at addresses
 belonging to unused RAM.

 mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel
 memory.

 memchunk=nn[KMG]
 [KNL,SH] Allow user to override the default size for
 per-device physically contiguous DMA buffers.

 memhp_default_state=online/offline
 [KNL] Set the initial state for the memory hotplug
 onlining policy. If not specified, the default value is
 set according to the
 CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel config
 option.
 See Documentation/memory-hotplug.txt.

 memmap=exactmap [KNL,X86] Enable setting of an exact
 E820 memory map, as specified by the user.
 Such memmap=exactmap lines can be constructed based on
 BIOS output or other requirements. See the memmap=nn@ss
 option description.

 memmap=nn[KMG]@ss[KMG]
 [KNL] Force usage of a specific region of memory.
 Region of memory to be used is from ss to ss+nn.
 If @ss[KMG] is omitted, it is equivalent to mem=nn[KMG],
 which limits max address to nn[KMG].
 Multiple different regions can be specified,
 comma delimited.
 Example:
 memmap=100M@2G,100M#3G,1G!1024G

 memmap=nn[KMG]#ss[KMG]
 [KNL,ACPI] Mark specific memory as ACPI data.
 Region of memory to be marked is from ss to ss+nn.

 memmap=nn[KMG]$ss[KMG]
 [KNL,ACPI] Mark specific memory as reserved.
 Region of memory to be reserved is from ss to ss+nn.
 Example: Exclude memory from 0x18690000-0x1869ffff
 memmap=64K$0x18690000
 or
 memmap=0x10000$0x18690000
 Some bootloaders may need an escape character before '$',
 like Grub2, otherwise '$' and the following number
 will be eaten.

 memmap=nn[KMG]!ss[KMG]
 [KNL,X86] Mark specific memory as protected.
 Region of memory to be used, from ss to ss+nn.
 The memory region may be marked as e820 type 12 (0xc)
 and is NVDIMM or ADR memory.

 memmap=<size>%<offset>-<oldtype>+<newtype>
 [KNL,ACPI] Convert memory within the specified region
 from <oldtype> to <newtype>. If "-<oldtype>" is left
 out, the whole region will be marked as <newtype>,
 even if previously unavailable. If "+<newtype>" is left
 out, matching memory will be removed. Types are
 specified as e820 types, e.g., 1 = RAM, 2 = reserved,
 3 = ACPI, 12 = PRAM.

 memory_corruption_check=0/1 [X86]
 Some BIOSes seem to corrupt the first 64k of
 memory when doing things like suspend/resume.
 Setting this option will scan the memory
 looking for corruption. Enabling this will
 both detect corruption and prevent the kernel
 from using the memory being corrupted.
 However, its intended as a diagnostic tool; if
 repeatable BIOS-originated corruption always
 affects the same memory, you can use memmap=
 to prevent the kernel from using that memory.

 memory_corruption_check_size=size [X86]
 By default it checks for corruption in the low
 64k, making this memory unavailable for normal
 use. Use this parameter to scan for
 corruption in more or less memory.

 memory_corruption_check_period=seconds [X86]
 By default it checks for corruption every 60
 seconds. Use this parameter to check at some
 other rate. 0 disables periodic checking.

 memtest= [KNL,X86,ARM,PPC] Enable memtest
 Format: <integer>
 default : 0 <disable>
 Specifies the number of memtest passes to be
 performed. Each pass selects another test
 pattern from a given set of patterns. Memtest
 fills the memory with this pattern, validates
 memory contents and reserves bad memory
 regions that are detected.

 mem_encrypt= [X86-64] AMD Secure Memory Encryption (SME) control
 Valid arguments: on, off
 Default (depends on kernel configuration option):
 on (CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT=y)
 off (CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT=n)
 mem_encrypt=on: Activate SME
 mem_encrypt=off: Do not activate SME

 Refer to Documentation/x86/amd-memory-encryption.txt
 for details on when memory encryption can be activated.

 mem_sleep_default= [SUSPEND] Default system suspend mode:
 s2idle - Suspend-To-Idle
 shallow - Power-On Suspend or equivalent (if supported)
 deep - Suspend-To-RAM or equivalent (if supported)
 See Documentation/admin-guide/pm/sleep-states.rst.

 meye.*= [HW] Set MotionEye Camera parameters
 See Documentation/media/v4l-drivers/meye.rst.

 mfgpt_irq= [IA-32] Specify the IRQ to use for the
 Multi-Function General Purpose Timers on AMD Geode
 platforms.

 mfgptfix [X86-32] Fix MFGPT timers on AMD Geode platforms when
 the BIOS has incorrectly applied a workaround. TinyBIOS
 version 0.98 is known to be affected, 0.99 fixes the
 problem by letting the user disable the workaround.

 mga= [HW,DRM]

 min_addr=nn[KMG] [KNL,BOOT,ia64] All physical memory below this
 physical address is ignored.

 mini2440= [ARM,HW,KNL]
 Format:[0..2][b][c][t]
 Default: "0tb"
 MINI2440 configuration specification:
 0 - The attached screen is the 3.5" TFT
 1 - The attached screen is the 7" TFT
 2 - The VGA Shield is attached (1024x768)
 Leaving out the screen size parameter will not load
 the TFT driver, and the framebuffer will be left
 unconfigured.
 b - Enable backlight. The TFT backlight pin will be
 linked to the kernel VESA blanking code and a GPIO
 LED. This parameter is not necessary when using the
 VGA shield.
 c - Enable the s3c camera interface.
 t - Reserved for enabling touchscreen support. The
 touchscreen support is not enabled in the mainstream
 kernel as of 2.6.30, a preliminary port can be found
 in the "bleeding edge" mini2440 support kernel at
 http://repo.or.cz/w/linux-2.6/mini2440.git

 mminit_loglevel=
 [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
 parameter allows control of the logging verbosity for
 the additional memory initialisation checks. A value
 of 0 disables mminit logging and a level of 4 will
 log everything. Information is printed at KERN_DEBUG
 so loglevel=8 may also need to be specified.

 module.sig_enforce
 [KNL] When CONFIG_MODULE_SIG is set, this means that
 modules without (valid) signatures will fail to load.
 Note that if CONFIG_MODULE_SIG_FORCE is set, that
 is always true, so this option does nothing.

 module_blacklist= [KNL] Do not load a comma-separated list of
 modules. Useful for debugging problem modules.

 mousedev.tap_time=
 [MOUSE] Maximum time between finger touching and
 leaving touchpad surface for touch to be considered
 a tap and be reported as a left button click (for
 touchpads working in absolute mode only).
 Format: <msecs>
 mousedev.xres= [MOUSE] Horizontal screen resolution, used for devices
 reporting absolute coordinates, such as tablets
 mousedev.yres= [MOUSE] Vertical screen resolution, used for devices
 reporting absolute coordinates, such as tablets

 movablecore= [KNL,X86,IA-64,PPC]
 Format: nn[KMGTPE] | nn%
 This parameter is the complement to kernelcore=, it
 specifies the amount of memory used for migratable
 allocations. If both kernelcore and movablecore is
 specified, then kernelcore will be at *least* the
 specified value but may be more. If movablecore on its
 own is specified, the administrator must be careful
 that the amount of memory usable for all allocations
 is not too small.

 movable_node [KNL] Boot-time switch to make hotplugable memory
 NUMA nodes to be movable. This means that the memory
 of such nodes will be usable only for movable
 allocations which rules out almost all kernel
 allocations. Use with caution!

 MTD_Partition= [MTD]
 Format: <name>,<region-number>,<size>,<offset>

 MTD_Region= [MTD] Format:
 <name>,<region-number>[,<base>,<size>,<buswidth>,<altbuswidth>]

 mtdparts= [MTD]
 See drivers/mtd/cmdlinepart.c.

 multitce=off [PPC] This parameter disables the use of the pSeries
 firmware feature for updating multiple TCE entries
 at a time.

 onenand.bdry= [HW,MTD] Flex-OneNAND Boundary Configuration

 Format: [die0_boundary][,die0_lock][,die1_boundary][,die1_lock]

 boundary - index of last SLC block on Flex-OneNAND.
 The remaining blocks are configured as MLC blocks.
 lock - Configure if Flex-OneNAND boundary should be locked.
 Once locked, the boundary cannot be changed.
 1 indicates lock status, 0 indicates unlock status.

 mtdset= [ARM]
 ARM/S3C2412 JIVE boot control

 See arch/arm/mach-s3c2412/mach-jive.c

 mtouchusb.raw_coordinates=
 [HW] Make the MicroTouch USB driver use raw coordinates
 ('y', default) or cooked coordinates ('n')

 mtrr_chunk_size=nn[KMG] [X86]
 used for mtrr cleanup. It is largest continuous chunk
 that could hold holes aka. UC entries.

 mtrr_gran_size=nn[KMG] [X86]
 Used for mtrr cleanup. It is granularity of mtrr block.
 Default is 1.
 Large value could prevent small alignment from
 using up MTRRs.

 mtrr_spare_reg_nr=n [X86]
 Format: <integer>
 Range: 0,7 : spare reg number
 Default : 1
 Used for mtrr cleanup. It is spare mtrr entries number.
 Set to 2 or more if your graphical card needs more.

 n2= [NET] SDL Inc. RISCom/N2 synchronous serial card

 netdev= [NET] Network devices parameters
 Format: <irq>,<io>,<mem_start>,<mem_end>,<name>
 Note that mem_start is often overloaded to mean
 something different and driver-specific.
 This usage is only documented in each driver source
 file if at all.

 nf_conntrack.acct=
 [NETFILTER] Enable connection tracking flow accounting
 0 to disable accounting
 1 to enable accounting
 Default value is 0.

 nfsaddrs= [NFS] Deprecated. Use ip= instead.
 See Documentation/filesystems/nfs/nfsroot.txt.

 nfsroot= [NFS] nfs root filesystem for disk-less boxes.
 See Documentation/filesystems/nfs/nfsroot.txt.

 nfsrootdebug [NFS] enable nfsroot debugging messages.
 See Documentation/filesystems/nfs/nfsroot.txt.

 nfs.callback_nr_threads=
 [NFSv4] set the total number of threads that the
 NFS client will assign to service NFSv4 callback
 requests.

 nfs.callback_tcpport=
 [NFS] set the TCP port on which the NFSv4 callback
 channel should listen.

 nfs.cache_getent=
 [NFS] sets the pathname to the program which is used
 to update the NFS client cache entries.

 nfs.cache_getent_timeout=
 [NFS] sets the timeout after which an attempt to
 update a cache entry is deemed to have failed.

 nfs.idmap_cache_timeout=
 [NFS] set the maximum lifetime for idmapper cache
 entries.

 nfs.enable_ino64=
 [NFS] enable 64-bit inode numbers.
 If zero, the NFS client will fake up a 32-bit inode
 number for the readdir() and stat() syscalls instead
 of returning the full 64-bit number.
 The default is to return 64-bit inode numbers.

 nfs.max_session_cb_slots=
 [NFSv4.1] Sets the maximum number of session
 slots the client will assign to the callback
 channel. This determines the maximum number of
 callbacks the client will process in parallel for
 a particular server.

 nfs.max_session_slots=
 [NFSv4.1] Sets the maximum number of session slots
 the client will attempt to negotiate with the server.
 This limits the number of simultaneous RPC requests
 that the client can send to the NFSv4.1 server.
 Note that there is little point in setting this
 value higher than the max_tcp_slot_table_limit.

 nfs.nfs4_disable_idmapping=
 [NFSv4] When set to the default of '1', this option
 ensures that both the RPC level authentication
 scheme and the NFS level operations agree to use
 numeric uids/gids if the mount is using the
 'sec=sys' security flavour. In effect it is
 disabling idmapping, which can make migration from
 legacy NFSv2/v3 systems to NFSv4 easier.
 Servers that do not support this mode of operation
 will be autodetected by the client, and it will fall
 back to using the idmapper.
 To turn off this behaviour, set the value to '0'.
 nfs.nfs4_unique_id=
 [NFS4] Specify an additional fixed unique ident-
 ification string that NFSv4 clients can insert into
 their nfs_client_id4 string. This is typically a
 UUID that is generated at system install time.

 nfs.send_implementation_id =
 [NFSv4.1] Send client implementation identification
 information in exchange_id requests.
 If zero, no implementation identification information
 will be sent.
 The default is to send the implementation identification
 information.

 nfs.recover_lost_locks =
 [NFSv4] Attempt to recover locks that were lost due
 to a lease timeout on the server. Please note that
 doing this risks data corruption, since there are
 no guarantees that the file will remain unchanged
 after the locks are lost.
 If you want to enable the kernel legacy behaviour of
 attempting to recover these locks, then set this
 parameter to '1'.
 The default parameter value of '0' causes the kernel
 not to attempt recovery of lost locks.

 nfs4.layoutstats_timer =
 [NFSv4.2] Change the rate at which the kernel sends
 layoutstats to the pNFS metadata server.

 Setting this to value to 0 causes the kernel to use
 whatever value is the default set by the layout
 driver. A non-zero value sets the minimum interval
 in seconds between layoutstats transmissions.

 nfsd.nfs4_disable_idmapping=
 [NFSv4] When set to the default of '1', the NFSv4
 server will return only numeric uids and gids to
 clients using auth_sys, and will accept numeric uids
 and gids from such clients. This is intended to ease
 migration from NFSv2/v3.

 nmi_debug= [KNL,SH] Specify one or more actions to take
 when a NMI is triggered.
 Format: [state][,regs][,debounce][,die]

 nmi_watchdog= [KNL,BUGS=X86] Debugging features for SMP kernels
 Format: [panic,][nopanic,][num]
 Valid num: 0 or 1
 0 - turn hardlockup detector in nmi_watchdog off
 1 - turn hardlockup detector in nmi_watchdog on
 When panic is specified, panic when an NMI watchdog
 timeout occurs (or 'nopanic' to override the opposite
 default). To disable both hard and soft lockup detectors,
 please see 'nowatchdog'.
 This is useful when you use a panic=... timeout and
 need the box quickly up again.

 These settings can be accessed at runtime via
 the nmi_watchdog and hardlockup_panic sysctls.

 netpoll.carrier_timeout=
 [NET] Specifies amount of time (in seconds) that
 netpoll should wait for a carrier. By default netpoll
 waits 4 seconds.

 no387 [BUGS=X86-32] Tells the kernel to use the 387 maths
 emulation library even if a 387 maths coprocessor
 is present.

 no5lvl [X86-64] Disable 5-level paging mode. Forces
 kernel to use 4-level paging instead.

 no_console_suspend
 [HW] Never suspend the console
 Disable suspending of consoles during suspend and
 hibernate operations. Once disabled, debugging
 messages can reach various consoles while the rest
 of the system is being put to sleep (ie, while
 debugging driver suspend/resume hooks). This may
 not work reliably with all consoles, but is known
 to work with serial and VGA consoles.
 To facilitate more flexible debugging, we also add
 console_suspend, a printk module parameter to control
 it. Users could use console_suspend (usually
 /sys/module/printk/parameters/console_suspend) to
 turn on/off it dynamically.

 noaliencache [MM, NUMA, SLAB] Disables the allocation of alien
 caches in the slab allocator. Saves per-node memory,
 but will impact performance.

 noalign [KNL,ARM]

 noaltinstr [S390] Disables alternative instructions patching
 (CPU alternatives feature).

 noapic [SMP,APIC] Tells the kernel to not make use of any
 IOAPICs that may be present in the system.

 noautogroup Disable scheduler automatic task group creation.

 nobats [PPC] Do not use BATs for mapping kernel lowmem
 on "Classic" PPC cores.

 nocache [ARM]

 noclflush [BUGS=X86] Don't use the CLFLUSH instruction

 nodelayacct [KNL] Disable per-task delay accounting

 nodsp [SH] Disable hardware DSP at boot time.

 noefi Disable EFI runtime services support.

 noexec [IA-64]

 noexec [X86]
 On X86-32 available only on PAE configured kernels.
 noexec=on: enable non-executable mappings (default)
 noexec=off: disable non-executable mappings

 nosmap [X86]
 Disable SMAP (Supervisor Mode Access Prevention)
 even if it is supported by processor.

 nosmep [X86]
 Disable SMEP (Supervisor Mode Execution Prevention)
 even if it is supported by processor.

 noexec32 [X86-64]
 This affects only 32-bit executables.
 noexec32=on: enable non-executable mappings (default)
 read doesn't imply executable mappings
 noexec32=off: disable non-executable mappings
 read implies executable mappings

 nofpu [MIPS,SH] Disable hardware FPU at boot time.

 nofxsr [BUGS=X86-32] Disables x86 floating point extended
 register save and restore. The kernel will only save
 legacy floating-point registers on task switch.

 nohugeiomap [KNL,x86] Disable kernel huge I/O mappings.

 nosmt [KNL,S390] Disable symmetric multithreading (SMT).
 Equivalent to smt=1.

 [KNL,x86] Disable symmetric multithreading (SMT).
 nosmt=force: Force disable SMT, cannot be undone
 via the sysfs control file.

 nospectre_v1 [PPC] Disable mitigations for Spectre Variant 1 (bounds
 check bypass). With this option data leaks are possible
 in the system.

 nospectre_v2 [X86] Disable all mitigations for the Spectre variant 2
 (indirect branch prediction) vulnerability. System may
 allow data leaks with this option, which is equivalent
 to spectre_v2=off.

 nospec_store_bypass_disable
 [HW] Disable all mitigations for the Speculative Store Bypass vulnerability

 noxsave [BUGS=X86] Disables x86 extended register state save
 and restore using xsave. The kernel will fallback to
 enabling legacy floating-point and sse state.

 noxsaveopt [X86] Disables xsaveopt used in saving x86 extended
 register states. The kernel will fall back to use
 xsave to save the states. By using this parameter,
 performance of saving the states is degraded because
 xsave doesn't support modified optimization while
 xsaveopt supports it on xsaveopt enabled systems.

 noxsaves [X86] Disables xsaves and xrstors used in saving and
 restoring x86 extended register state in compacted
 form of xsave area. The kernel will fall back to use
 xsaveopt and xrstor to save and restore the states
 in standard form of xsave area. By using this
 parameter, xsave area per process might occupy more
 memory on xsaves enabled systems.

 nohlt [BUGS=ARM,SH] Tells the kernel that the sleep(SH) or
 wfi(ARM) instruction doesn't work correctly and not to
 use it. This is also useful when using JTAG debugger.

 no_file_caps Tells the kernel not to honor file capabilities. The
 only way then for a file to be executed with privilege
 is to be setuid root or executed by root.

 nohalt [IA-64] Tells the kernel not to use the power saving
 function PAL_HALT_LIGHT when idle. This increases
 power-consumption. On the positive side, it reduces
 interrupt wake-up latency, which may improve performance
 in certain environments such as networked servers or
 real-time systems.

 nohibernate [HIBERNATION] Disable hibernation and resume.

 nohz= [KNL] Boottime enable/disable dynamic ticks
 Valid arguments: on, off
 Default: on

 nohz_full= [KNL,BOOT,SMP,ISOL]
 The argument is a cpu list, as described above.
 In kernels built with CONFIG_NO_HZ_FULL=y, set
 the specified list of CPUs whose tick will be stopped
 whenever possible. The boot CPU will be forced outside
 the range to maintain the timekeeping. Any CPUs
 in this list will have their RCU callbacks offloaded,
 just as if they had also been called out in the
 rcu_nocbs= boot parameter.

 noiotrap [SH] Disables trapped I/O port accesses.

 noirqdebug [X86-32] Disables the code which attempts to detect and
 disable unhandled interrupt sources.

 no_timer_check [X86,APIC] Disables the code which tests for
 broken timer IRQ sources.

 noisapnp [ISAPNP] Disables ISA PnP code.

 noinitrd [RAM] Tells the kernel not to load any configured
 initial RAM disk.

 nointremap [X86-64, Intel-IOMMU] Do not enable interrupt
 remapping.
 [Deprecated - use intremap=off]

 nointroute [IA-64]

 noinvpcid [X86] Disable the INVPCID cpu feature.

 nojitter [IA-64] Disables jitter checking for ITC timers.

 no-kvmclock [X86,KVM] Disable paravirtualized KVM clock driver

 no-kvmapf [X86,KVM] Disable paravirtualized asynchronous page
 fault handling.

 no-vmw-sched-clock
 [X86,PV_OPS] Disable paravirtualized VMware scheduler
 clock and use the default one.

 no-steal-acc [X86,KVM] Disable paravirtualized steal time accounting.
 steal time is computed, but won't influence scheduler
 behaviour

 nolapic [X86-32,APIC] Do not enable or use the local APIC.

 nolapic_timer [X86-32,APIC] Do not use the local APIC timer.

 noltlbs [PPC] Do not use large page/tlb entries for kernel
 lowmem mapping on PPC40x and PPC8xx

 nomca [IA-64] Disable machine check abort handling

 nomce [X86-32] Disable Machine Check Exception

 nomfgpt [X86-32] Disable Multi-Function General Purpose
 Timer usage (for AMD Geode machines).

 nonmi_ipi [X86] Disable using NMI IPIs during panic/reboot to
 shutdown the other cpus. Instead use the REBOOT_VECTOR
 irq.

 nomodule Disable module load

 nopat [X86] Disable PAT (page attribute table extension of
 pagetables) support.

 nopcid [X86-64] Disable the PCID cpu feature.

 norandmaps Don't use address space randomization. Equivalent to
 echo 0 > /proc/sys/kernel/randomize_va_space

 noreplace-smp [X86-32,SMP] Don't replace SMP instructions
 with UP alternatives

 nordrand [X86] Disable kernel use of the RDRAND and
 RDSEED instructions even if they are supported
 by the processor. RDRAND and RDSEED are still
 available to user space applications.

 noresume [SWSUSP] Disables resume and restores original swap
 space.

 no-scroll [VGA] Disables scrollback.
 This is required for the Braillex ib80-piezo Braille
 reader made by F.H. Papenmeier (Germany).

 nosbagart [IA-64]

 nosep [BUGS=X86-32] Disables x86 SYSENTER/SYSEXIT support.

 nosmp [SMP] Tells an SMP kernel to act as a UP kernel,
 and disable the IO APIC. legacy for "maxcpus=0".

 nosoftlockup [KNL] Disable the soft-lockup detector.

 nosync [HW,M68K] Disables sync negotiation for all devices.

 nowatchdog [KNL] Disable both lockup detectors, i.e.
 soft-lockup and NMI watchdog (hard-lockup).

 nowb [ARM]

 nox2apic [X86-64,APIC] Do not enable x2APIC mode.

 cpu0_hotplug [X86] Turn on CPU0 hotplug feature when
 CONFIG_BOOTPARAM_HOTPLUG_CPU0 is off.
 Some features depend on CPU0. Known dependencies are:
 1. Resume from suspend/hibernate depends on CPU0.
 Suspend/hibernate will fail if CPU0 is offline and you
 need to online CPU0 before suspend/hibernate.
 2. PIC interrupts also depend on CPU0. CPU0 can't be
 removed if a PIC interrupt is detected.
 It's said poweroff/reboot may depend on CPU0 on some
 machines although I haven't seen such issues so far
 after CPU0 is offline on a few tested machines.
 If the dependencies are under your control, you can
 turn on cpu0_hotplug.

 nps_mtm_hs_ctr= [KNL,ARC]
 This parameter sets the maximum duration, in
 cycles, each HW thread of the CTOP can run
 without interruptions, before HW switches it.
 The actual maximum duration is 16 times this
 parameter's value.
 Format: integer between 1 and 255
 Default: 255

 nptcg= [IA-64] Override max number of concurrent global TLB
 purges which is reported from either PAL_VM_SUMMARY or
 SAL PALO.

 nr_cpus= [SMP] Maximum number of processors that an SMP kernel
 could support. nr_cpus=n : n >= 1 limits the kernel to
 support 'n' processors. It could be larger than the
 number of already plugged CPU during bootup, later in
 runtime you can physically add extra cpu until it reaches
 n. So during boot up some boot time memory for per-cpu
 variables need be pre-allocated for later physical cpu
 hot plugging.

 nr_uarts= [SERIAL] maximum number of UARTs to be registered.

 numa_balancing= [KNL,X86] Enable or disable automatic NUMA balancing.
 Allowed values are enable and disable

 numa_zonelist_order= [KNL, BOOT] Select zonelist order for NUMA.
 'node', 'default' can be specified
 This can be set from sysctl after boot.
 See Documentation/sysctl/vm.txt for details.

 ohci1394_dma=early [HW] enable debugging via the ohci1394 driver.
 See Documentation/debugging-via-ohci1394.txt for more
 info.

 olpc_ec_timeout= [OLPC] ms delay when issuing EC commands
 Rather than timing out after 20 ms if an EC
 command is not properly ACKed, override the length
 of the timeout. We have interrupts disabled while
 waiting for the ACK, so if this is set too high
 interrupts *may* be lost!

 omap_mux= [OMAP] Override bootloader pin multiplexing.
 Format: <mux_mode0.mode_name=value>...
 For example, to override I2C bus2:
 omap_mux=i2c2_scl.i2c2_scl=0x100,i2c2_sda.i2c2_sda=0x100

 oprofile.timer= [HW]
 Use timer interrupt instead of performance counters

 oprofile.cpu_type= Force an oprofile cpu type
 This might be useful if you have an older oprofile
 userland or if you want common events.
 Format: { arch_perfmon }
 arch_perfmon: [X86] Force use of architectural
 perfmon on Intel CPUs instead of the
 CPU specific event set.
 timer: [X86] Force use of architectural NMI
 timer mode (see also oprofile.timer
 for generic hr timer mode)

 oops=panic Always panic on oopses. Default is to just kill the
 process, but there is a small probability of
 deadlocking the machine.
 This will also cause panics on machine check exceptions.
 Useful together with panic=30 to trigger a reboot.

 page_owner= [KNL] Boot-time page_owner enabling option.
 Storage of the information about who allocated
 each page is disabled in default. With this switch,
 we can turn it on.
 on: enable the feature

 page_poison= [KNL] Boot-time parameter changing the state of
 poisoning on the buddy allocator, available with
 CONFIG_PAGE_POISONING=y.
 off: turn off poisoning (default)
 on: turn on poisoning

 panic= [KNL] Kernel behaviour on panic: delay <timeout>
 timeout > 0: seconds before rebooting
 timeout = 0: wait forever
 timeout < 0: reboot immediately
 Format: <timeout>

 panic_on_warn panic() instead of WARN(). Useful to cause kdump
 on a WARN().

 crash_kexec_post_notifiers
 Run kdump after running panic-notifiers and dumping
 kmsg. This only for the users who doubt kdump always
 succeeds in any situation.
 Note that this also increases risks of kdump failure,
 because some panic notifiers can make the crashed
 kernel more unstable.

 parkbd.port= [HW] Parallel port number the keyboard adapter is
 connected to, default is 0.
 Format: <parport#>
 parkbd.mode= [HW] Parallel port keyboard adapter mode of operation,
 0 for XT, 1 for AT (default is AT).
 Format: <mode>

 parport= [HW,PPT] Specify parallel ports. 0 disables.
 Format: { 0 | auto | 0xBBB[,IRQ[,DMA]] }
 Use 'auto' to force the driver to use any
 IRQ/DMA settings detected (the default is to
 ignore detected IRQ/DMA settings because of
 possible conflicts). You can specify the base
 address, IRQ, and DMA settings; IRQ and DMA
 should be numbers, or 'auto' (for using detected
 settings on that particular port), or 'nofifo'
 (to avoid using a FIFO even if it is detected).
 Parallel ports are assigned in the order they
 are specified on the command line, starting
 with parport0.

 parport_init_mode= [HW,PPT]
 Configure VIA parallel port to operate in
 a specific mode. This is necessary on Pegasos
 computer where firmware has no options for setting
 up parallel port mode and sets it to spp.
 Currently this function knows 686a and 8231 chips.
 Format: [spp|ps2|epp|ecp|ecpepp]

 pause_on_oops=
 Halt all CPUs after the first oops has been printed for
 the specified number of seconds. This is to be used if
 your oopses keep scrolling off the screen.

 pcbit= [HW,ISDN]

 pcd. [PARIDE]
 See header of drivers/block/paride/pcd.c.
 See also Documentation/blockdev/paride.txt.

 pci=option[,option...] [PCI] various PCI subsystem options.

 Some options herein operate on a specific device
 or a set of devices (<pci_dev>). These are
 specified in one of the following formats:

 [<domain>:]<bus>:<dev>.<func>[/<dev>.<func>]*
 pci:<vendor>:<device>[:<subvendor>:<subdevice>]

 Note: the first format specifies a PCI
 bus/device/function address which may change
 if new hardware is inserted, if motherboard
 firmware changes, or due to changes caused
 by other kernel parameters. If the
 domain is left unspecified, it is
 taken to be zero. Optionally, a path
 to a device through multiple device/function
 addresses can be specified after the base
 address (this is more robust against
 renumbering issues). The second format
 selects devices using IDs from the
 configuration space which may match multiple
 devices in the system.

 earlydump dump PCI config space before the kernel
 changes anything
 off [X86] don't probe for the PCI bus
 bios [X86-32] force use of PCI BIOS, don't access
 the hardware directly. Use this if your machine
 has a non-standard PCI host bridge.
 nobios [X86-32] disallow use of PCI BIOS, only direct
 hardware access methods are allowed. Use this
 if you experience crashes upon bootup and you
 suspect they are caused by the BIOS.
 conf1 [X86] Force use of PCI Configuration Access
 Mechanism 1 (config address in IO port 0xCF8,
 data in IO port 0xCFC, both 32-bit).
 conf2 [X86] Force use of PCI Configuration Access
 Mechanism 2 (IO port 0xCF8 is an 8-bit port for
 the function, IO port 0xCFA, also 8-bit, sets
 bus number. The config space is then accessed
 through ports 0xC000-0xCFFF).
 See http://wiki.osdev.org/PCI for more info
 on the configuration access mechanisms.
 noaer [PCIE] If the PCIEAER kernel config parameter is
 enabled, this kernel boot option can be used to
 disable the use of PCIE advanced error reporting.
 nodomains [PCI] Disable support for multiple PCI
 root domains (aka PCI segments, in ACPI-speak).
 nommconf [X86] Disable use of MMCONFIG for PCI
 Configuration
 check_enable_amd_mmconf [X86] check for and enable
 properly configured MMIO access to PCI
 config space on AMD family 10h CPU
 nomsi [MSI] If the PCI_MSI kernel config parameter is
 enabled, this kernel boot option can be used to
 disable the use of MSI interrupts system-wide.
 noioapicquirk [APIC] Disable all boot interrupt quirks.
 Safety option to keep boot IRQs enabled. This
 should never be necessary.
 ioapicreroute [APIC] Enable rerouting of boot IRQs to the
 primary IO-APIC for bridges that cannot disable
 boot IRQs. This fixes a source of spurious IRQs
 when the system masks IRQs.
 noioapicreroute [APIC] Disable workaround that uses the
 boot IRQ equivalent of an IRQ that connects to
 a chipset where boot IRQs cannot be disabled.
 The opposite of ioapicreroute.
 biosirq [X86-32] Use PCI BIOS calls to get the interrupt
 routing table. These calls are known to be buggy
 on several machines and they hang the machine
 when used, but on other computers it's the only
 way to get the interrupt routing table. Try
 this option if the kernel is unable to allocate
 IRQs or discover secondary PCI buses on your
 motherboard.
 rom [X86] Assign address space to expansion ROMs.
 Use with caution as certain devices share
 address decoders between ROMs and other
 resources.
 norom [X86] Do not assign address space to
 expansion ROMs that do not already have
 BIOS assigned address ranges.
 nobar [X86] Do not assign address space to the
 BARs that weren't assigned by the BIOS.
 irqmask=0xMMMM [X86] Set a bit mask of IRQs allowed to be
 assigned automatically to PCI devices. You can
 make the kernel exclude IRQs of your ISA cards
 this way.
 pirqaddr=0xAAAAA [X86] Specify the physical address
 of the PIRQ table (normally generated
 by the BIOS) if it is outside the
 F0000h-100000h range.
 lastbus=N [X86] Scan all buses thru bus #N. Can be
 useful if the kernel is unable to find your
 secondary buses and you want to tell it
 explicitly which ones they are.
 assign-busses [X86] Always assign all PCI bus
 numbers ourselves, overriding
 whatever the firmware may have done.
 usepirqmask [X86] Honor the possible IRQ mask stored
 in the BIOS $PIR table. This is needed on
 some systems with broken BIOSes, notably
 some HP Pavilion N5400 and Omnibook XE3
 notebooks. This will have no effect if ACPI
 IRQ routing is enabled.
 noacpi [X86] Do not use ACPI for IRQ routing
 or for PCI scanning.
 use_crs [X86] Use PCI host bridge window information
 from ACPI. On BIOSes from 2008 or later, this
 is enabled by default. If you need to use this,
 please report a bug.
 nocrs [X86] Ignore PCI host bridge windows from ACPI.
 If you need to use this, please report a bug.
 routeirq Do IRQ routing for all PCI devices.
 This is normally done in pci_enable_device(),
 so this option is a temporary workaround
 for broken drivers that don't call it.
 skip_isa_align [X86] do not align io start addr, so can
 handle more pci cards
 noearly [X86] Don't do any early type 1 scanning.
 This might help on some broken boards which
 machine check when some devices' config space
 is read. But various workarounds are disabled
 and some IOMMU drivers will not work.
 bfsort Sort PCI devices into breadth-first order.
 This sorting is done to get a device
 order compatible with older (<= 2.4) kernels.
 nobfsort Don't sort PCI devices into breadth-first order.
 pcie_bus_tune_off Disable PCIe MPS (Max Payload Size)
 tuning and use the BIOS-configured MPS defaults.
 pcie_bus_safe Set every device's MPS to the largest value
 supported by all devices below the root complex.
 pcie_bus_perf Set device MPS to the largest allowable MPS
 based on its parent bus. Also set MRRS (Max
 Read Request Size) to the largest supported
 value (no larger than the MPS that the device
 or bus can support) for best performance.
 pcie_bus_peer2peer Set every device's MPS to 128B, which
 every device is guaranteed to support. This
 configuration allows peer-to-peer DMA between
 any pair of devices, possibly at the cost of
 reduced performance. This also guarantees
 that hot-added devices will work.
 cbiosize=nn[KMG] The fixed amount of bus space which is
 reserved for the CardBus bridge's IO window.
 The default value is 256 bytes.
 cbmemsize=nn[KMG] The fixed amount of bus space which is
 reserved for the CardBus bridge's memory
 window. The default value is 64 megabytes.
 resource_alignment=
 Format:
 [<order of align>@]<pci_dev>[; ...]
 Specifies alignment and device to reassign
 aligned memory resources. How to
 specify the device is described above.
 If <order of align> is not specified,
 PAGE_SIZE is used as alignment.
 PCI-PCI bridge can be specified, if resource
 windows need to be expanded.
 To specify the alignment for several
 instances of a device, the PCI vendor,
 device, subvendor, and subdevice may be
 specified, e.g., 4096@pci:8086:9c22:103c:198f
 ecrc= Enable/disable PCIe ECRC (transaction layer
 end-to-end CRC checking).
 bios: Use BIOS/firmware settings. This is the
 the default.
 off: Turn ECRC off
 on: Turn ECRC on.
 hpiosize=nn[KMG] The fixed amount of bus space which is
 reserved for hotplug bridge's IO window.
 Default size is 256 bytes.
 hpmemsize=nn[KMG] The fixed amount of bus space which is
 reserved for hotplug bridge's memory window.
 Default size is 2 megabytes.
 hpbussize=nn The minimum amount of additional bus numbers
 reserved for buses below a hotplug bridge.
 Default is 1.
 realloc= Enable/disable reallocating PCI bridge resources
 if allocations done by BIOS are too small to
 accommodate resources required by all child
 devices.
 off: Turn realloc off
 on: Turn realloc on
 realloc same as realloc=on
 noari do not use PCIe ARI.
 noats [PCIE, Intel-IOMMU, AMD-IOMMU]
 do not use PCIe ATS (and IOMMU device IOTLB).
 pcie_scan_all Scan all possible PCIe devices. Otherwise we
 only look for one device below a PCIe downstream
 port.
 big_root_window Try to add a big 64bit memory window to the PCIe
 root complex on AMD CPUs. Some GFX hardware
 can resize a BAR to allow access to all VRAM.
 Adding the window is slightly risky (it may
 conflict with unreported devices), so this
 taints the kernel.
 disable_acs_redir=<pci_dev>[; ...]
 Specify one or more PCI devices (in the format
 specified above) separated by semicolons.
 Each device specified will have the PCI ACS
 redirect capabilities forced off which will
 allow P2P traffic between devices through
 bridges without forcing it upstream. Note:
 this removes isolation between devices and
 may put more devices in an IOMMU group.

 pcie_aspm= [PCIE] Forcibly enable or disable PCIe Active State Power
 Management.
 off Disable ASPM.
 force Enable ASPM even on devices that claim not to support it.
 WARNING: Forcing ASPM on may cause system lockups.

 pcie_ports= [PCIE] PCIe port services handling:
 native Use native PCIe services (PME, AER, DPC, PCIe hotplug)
 even if the platform doesn't give the OS permission to
 use them. This may cause conflicts if the platform
 also tries to use these services.
 compat Disable native PCIe services (PME, AER, DPC, PCIe
 hotplug).

 pcie_port_pm= [PCIE] PCIe port power management handling:
 off Disable power management of all PCIe ports
 force Forcibly enable power management of all PCIe ports

 pcie_pme= [PCIE,PM] Native PCIe PME signaling options:
 nomsi Do not use MSI for native PCIe PME signaling (this makes
 all PCIe root ports use INTx for all services).

 pcmv= [HW,PCMCIA] BadgePAD 4

 pd_ignore_unused
 [PM]
 Keep all power-domains already enabled by bootloader on,
 even if no driver has claimed them. This is useful
 for debug and development, but should not be
 needed on a platform with proper driver support.

 pd. [PARIDE]
 See Documentation/blockdev/paride.txt.

 pdcchassis= [PARISC,HW] Disable/Enable PDC Chassis Status codes at
 boot time.
 Format: { 0 | 1 }
 See arch/parisc/kernel/pdc_chassis.c

 percpu_alloc= Select which percpu first chunk allocator to use.
 Currently supported values are "embed" and "page".
 Archs may support subset or none of the selections.
 See comments in mm/percpu.c for details on each
 allocator. This parameter is primarily for debugging
 and performance comparison.

 pf. [PARIDE]
 See Documentation/blockdev/paride.txt.

 pg. [PARIDE]
 See Documentation/blockdev/paride.txt.

 pirq= [SMP,APIC] Manual mp-table setup
 See Documentation/x86/i386/IO-APIC.txt.

 plip= [PPT,NET] Parallel port network link
 Format: { parport<nr> | timid | 0 }
 See also Documentation/admin-guide/parport.rst.

 pmtmr= [X86] Manual setup of pmtmr I/O Port.
 Override pmtimer IOPort with a hex value.
 e.g. pmtmr=0x508

 pnp.debug=1 [PNP]
 Enable PNP debug messages (depends on the
 CONFIG_PNP_DEBUG_MESSAGES option). Change at run-time
 via /sys/module/pnp/parameters/debug. We always show
 current resource usage; turning this on also shows
 possible settings and some assignment information.

 pnpacpi= [ACPI]
 { off }

 pnpbios= [ISAPNP]
 { on | off | curr | res | no-curr | no-res }

 pnp_reserve_irq=
 [ISAPNP] Exclude IRQs for the autoconfiguration

 pnp_reserve_dma=
 [ISAPNP] Exclude DMAs for the autoconfiguration

 pnp_reserve_io= [ISAPNP] Exclude I/O ports for the autoconfiguration
 Ranges are in pairs (I/O port base and size).

 pnp_reserve_mem=
 [ISAPNP] Exclude memory regions for the
 autoconfiguration.
 Ranges are in pairs (memory base and size).

 ports= [IP_VS_FTP] IPVS ftp helper module
 Default is 21.
 Up to 8 (IP_VS_APP_MAX_PORTS) ports
 may be specified.
 Format: <port>,<port>....

 powersave=off [PPC] This option disables power saving features.
 It specifically disables cpuidle and sets the
 platform machine description specific power_save
 function to NULL. On Idle the CPU just reduces
 execution priority.

 ppc_strict_facility_enable
 [PPC] This option catches any kernel floating point,
 Altivec, VSX and SPE outside of regions specifically
 allowed (eg kernel_enable_fpu()/kernel_disable_fpu()).
 There is some performance impact when enabling this.

 ppc_tm= [PPC]
 Format: {"off"}
 Disable Hardware Transactional Memory

 print-fatal-signals=
 [KNL] debug: print fatal signals

 If enabled, warn about various signal handling
 related application anomalies: too many signals,
 too many POSIX.1 timers, fatal signals causing a
 coredump - etc.

 If you hit the warning due to signal overflow,
 you might want to try "ulimit -i unlimited".

 default: off.

 printk.always_kmsg_dump=
 Trigger kmsg_dump for cases other than kernel oops or
 panics
 Format: <bool> (1/Y/y=enable, 0/N/n=disable)
 default: disabled

 printk.devkmsg={on,off,ratelimit}
 Control writing to /dev/kmsg.
 on - unlimited logging to /dev/kmsg from userspace
 off - logging to /dev/kmsg disabled
 ratelimit - ratelimit the logging
 Default: ratelimit

 printk.time= Show timing data prefixed to each printk message line
 Format: <bool> (1/Y/y=enable, 0/N/n=disable)

 processor.max_cstate= [HW,ACPI]
 Limit processor to maximum C-state
 max_cstate=9 overrides any DMI blacklist limit.

 processor.nocst [HW,ACPI]
 Ignore the _CST method to determine C-states,
 instead using the legacy FADT method

 profile= [KNL] Enable kernel profiling via /proc/profile
 Format: [<profiletype>,]<number>
 Param: <profiletype>: "schedule", "sleep", or "kvm"
 [defaults to kernel profiling]
 Param: "schedule" - profile schedule points.
 Param: "sleep" - profile D-state sleeping (millisecs).
 Requires CONFIG_SCHEDSTATS
 Param: "kvm" - profile VM exits.
 Param: <number> - step/bucket size as a power of 2 for
 statistical time based profiling.

 prompt_ramdisk= [RAM] List of RAM disks to prompt for floppy disk
 before loading.
 See Documentation/blockdev/ramdisk.txt.

 psi= [KNL] Enable or disable pressure stall information
 tracking.
 Format: <bool>

 psmouse.proto= [HW,MOUSE] Highest PS2 mouse protocol extension to
 probe for; one of (bare|imps|exps|lifebook|any).
 psmouse.rate= [HW,MOUSE] Set desired mouse report rate, in reports
 per second.
 psmouse.resetafter= [HW,MOUSE]
 Try to reset the device after so many bad packets
 (0 = never).
 psmouse.resolution=
 [HW,MOUSE] Set desired mouse resolution, in dpi.
 psmouse.smartscroll=
 [HW,MOUSE] Controls Logitech smartscroll autorepeat.
 0 = disabled, 1 = enabled (default).

 pstore.backend= Specify the name of the pstore backend to use

 pt. [PARIDE]
 See Documentation/blockdev/paride.txt.

 pti= [X86_64] Control Page Table Isolation of user and
 kernel address spaces. Disabling this feature
 removes hardening, but improves performance of
 system calls and interrupts.

 on - unconditionally enable
 off - unconditionally disable
 auto - kernel detects whether your CPU model is
 vulnerable to issues that PTI mitigates

 Not specifying this option is equivalent to pti=auto.

 nopti [X86_64]
 Equivalent to pti=off

 pty.legacy_count=
 [KNL] Number of legacy pty's. Overwrites compiled-in
 default number.

 quiet [KNL] Disable most log messages

 r128= [HW,DRM]

 raid= [HW,RAID]
 See Documentation/admin-guide/md.rst.

 ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
 See Documentation/blockdev/ramdisk.txt.

 random.trust_cpu={on,off}
 [KNL] Enable or disable trusting the use of the
 CPU's random number generator (if available) to
 fully seed the kernel's CRNG. Default is controlled
 by CONFIG_RANDOM_TRUST_CPU.

 ras=option[,option,...] [KNL] RAS-specific options

 cec_disable [X86]
 Disable the Correctable Errors Collector,
 see CONFIG_RAS_CEC help text.

 rcu_nocbs= [KNL]
 The argument is a cpu list, as described above.

 In kernels built with CONFIG_RCU_NOCB_CPU=y, set
 the specified list of CPUs to be no-callback CPUs.
 Invocation of these CPUs' RCU callbacks will be
 offloaded to "rcuox/N" kthreads created for that
 purpose, where "x" is "p" for RCU-preempt, and
 "s" for RCU-sched, and "N" is the CPU number.
 This reduces OS jitter on the offloaded CPUs,
 which can be useful for HPC and real-time
 workloads. It can also improve energy efficiency
 for asymmetric multiprocessors.

 rcu_nocb_poll [KNL]
 Rather than requiring that offloaded CPUs
 (specified by rcu_nocbs= above) explicitly
 awaken the corresponding "rcuoN" kthreads,
 make these kthreads poll for callbacks.
 This improves the real-time response for the
 offloaded CPUs by relieving them of the need to
 wake up the corresponding kthread, but degrades
 energy efficiency by requiring that the kthreads
 periodically wake up to do the polling.

 rcutree.blimit= [KNL]
 Set maximum number of finished RCU callbacks to
 process in one batch.

 rcutree.dump_tree= [KNL]
 Dump the structure of the rcu_node combining tree
 out at early boot. This is used for diagnostic
 purposes, to verify correct tree setup.

 rcutree.gp_cleanup_delay= [KNL]
 Set the number of jiffies to delay each step of
 RCU grace-period cleanup.

 rcutree.gp_init_delay= [KNL]
 Set the number of jiffies to delay each step of
 RCU grace-period initialization.

 rcutree.gp_preinit_delay= [KNL]
 Set the number of jiffies to delay each step of
 RCU grace-period pre-initialization, that is,
 the propagation of recent CPU-hotplug changes up
 the rcu_node combining tree.

 rcutree.rcu_fanout_exact= [KNL]
 Disable autobalancing of the rcu_node combining
 tree. This is used by rcutorture, and might
 possibly be useful for architectures having high
 cache-to-cache transfer latencies.

 rcutree.rcu_fanout_leaf= [KNL]
 Change the number of CPUs assigned to each
 leaf rcu_node structure. Useful for very
 large systems, which will choose the value 64,
 and for NUMA systems with large remote-access
 latencies, which will choose a value aligned
 with the appropriate hardware boundaries.

 rcutree.jiffies_till_sched_qs= [KNL]
 Set required age in jiffies for a
 given grace period before RCU starts
 soliciting quiescent-state help from
 rcu_note_context_switch(). If not specified, the
 kernel will calculate a value based on the most
 recent settings of rcutree.jiffies_till_first_fqs
 and rcutree.jiffies_till_next_fqs.
 This calculated value may be viewed in
 rcutree.jiffies_to_sched_qs. Any attempt to
 set rcutree.jiffies_to_sched_qs will be
 cheerfully overwritten.

 rcutree.jiffies_till_first_fqs= [KNL]
 Set delay from grace-period initialization to
 first attempt to force quiescent states.
 Units are jiffies, minimum value is zero,
 and maximum value is HZ.

 rcutree.jiffies_till_next_fqs= [KNL]
 Set delay between subsequent attempts to force
 quiescent states. Units are jiffies, minimum
 value is one, and maximum value is HZ.

 rcutree.kthread_prio= [KNL,BOOT]
 Set the SCHED_FIFO priority of the RCU per-CPU
 kthreads (rcuc/N). This value is also used for
 the priority of the RCU boost threads (rcub/N)
 and for the RCU grace-period kthreads (rcu_bh,
 rcu_preempt, and rcu_sched). If RCU_BOOST is
 set, valid values are 1-99 and the default is 1
 (the least-favored priority). Otherwise, when
 RCU_BOOST is not set, valid values are 0-99 and
 the default is zero (non-realtime operation).

 rcutree.rcu_nocb_leader_stride= [KNL]
 Set the number of NOCB kthread groups, which
 defaults to the square root of the number of
 CPUs. Larger numbers reduces the wakeup overhead
 on the per-CPU grace-period kthreads, but increases
 that same overhead on each group's leader.

 rcutree.qhimark= [KNL]
 Set threshold of queued RCU callbacks beyond which
 batch limiting is disabled.

 rcutree.qlowmark= [KNL]
 Set threshold of queued RCU callbacks below which
 batch limiting is re-enabled.

 rcutree.rcu_idle_gp_delay= [KNL]
 Set wakeup interval for idle CPUs that have
 RCU callbacks (RCU_FAST_NO_HZ=y).

 rcutree.rcu_idle_lazy_gp_delay= [KNL]
 Set wakeup interval for idle CPUs that have
 only "lazy" RCU callbacks (RCU_FAST_NO_HZ=y).
 Lazy RCU callbacks are those which RCU can
 prove do nothing more than free memory.

 rcutree.rcu_kick_kthreads= [KNL]
 Cause the grace-period kthread to get an extra
 wake_up() if it sleeps three times longer than
 it should at force-quiescent-state time.
 This wake_up() will be accompanied by a
 WARN_ONCE() splat and an ftrace_dump().

 rcuperf.gp_async= [KNL]
 Measure performance of asynchronous
 grace-period primitives such as call_rcu().

 rcuperf.gp_async_max= [KNL]
 Specify the maximum number of outstanding
 callbacks per writer thread. When a writer
 thread exceeds this limit, it invokes the
 corresponding flavor of rcu_barrier() to allow
 previously posted callbacks to drain.

 rcuperf.gp_exp= [KNL]
 Measure performance of expedited synchronous
 grace-period primitives.

 rcuperf.holdoff= [KNL]
 Set test-start holdoff period. The purpose of
 this parameter is to delay the start of the
 test until boot completes in order to avoid
 interference.

 rcuperf.nreaders= [KNL]
 Set number of RCU readers. The value -1 selects
 N, where N is the number of CPUs. A value
 "n" less than -1 selects N-n+1, where N is again
 the number of CPUs. For example, -2 selects N
 (the number of CPUs), -3 selects N+1, and so on.
 A value of "n" less than or equal to -N selects
 a single reader.

 rcuperf.nwriters= [KNL]
 Set number of RCU writers. The values operate
 the same as for rcuperf.nreaders.
 N, where N is the number of CPUs

 rcuperf.perf_type= [KNL]
 Specify the RCU implementation to test.

 rcuperf.shutdown= [KNL]
 Shut the system down after performance tests
 complete. This is useful for hands-off automated
 testing.

 rcuperf.verbose= [KNL]
 Enable additional printk() statements.

 rcuperf.writer_holdoff= [KNL]
 Write-side holdoff between grace periods,
 in microseconds. The default of zero says
 no holdoff.

 rcutorture.cbflood_inter_holdoff= [KNL]
 Set holdoff time (jiffies) between successive
 callback-flood tests.

 rcutorture.cbflood_intra_holdoff= [KNL]
 Set holdoff time (jiffies) between successive
 bursts of callbacks within a given callback-flood
 test.

 rcutorture.cbflood_n_burst= [KNL]
 Set the number of bursts making up a given
 callback-flood test. Set this to zero to
 disable callback-flood testing.

 rcutorture.cbflood_n_per_burst= [KNL]
 Set the number of callbacks to be registered
 in a given burst of a callback-flood test.

 rcutorture.fqs_duration= [KNL]
 Set duration of force_quiescent_state bursts
 in microseconds.

 rcutorture.fqs_holdoff= [KNL]
 Set holdoff time within force_quiescent_state bursts
 in microseconds.

 rcutorture.fqs_stutter= [KNL]
 Set wait time between force_quiescent_state bursts
 in seconds.

 rcutorture.gp_cond= [KNL]
 Use conditional/asynchronous update-side
 primitives, if available.

 rcutorture.gp_exp= [KNL]
 Use expedited update-side primitives, if available.

 rcutorture.gp_normal= [KNL]
 Use normal (non-expedited) asynchronous
 update-side primitives, if available.

 rcutorture.gp_sync= [KNL]
 Use normal (non-expedited) synchronous
 update-side primitives, if available. If all
 of rcutorture.gp_cond=, rcutorture.gp_exp=,
 rcutorture.gp_normal=, and rcutorture.gp_sync=
 are zero, rcutorture acts as if is interpreted
 they are all non-zero.

 rcutorture.n_barrier_cbs= [KNL]
 Set callbacks/threads for rcu_barrier() testing.

 rcutorture.nfakewriters= [KNL]
 Set number of concurrent RCU writers. These just
 stress RCU, they don't participate in the actual
 test, hence the "fake".

 rcutorture.nreaders= [KNL]
 Set number of RCU readers. The value -1 selects
 N-1, where N is the number of CPUs. A value
 "n" less than -1 selects N-n-2, where N is again
 the number of CPUs. For example, -2 selects N
 (the number of CPUs), -3 selects N+1, and so on.

 rcutorture.object_debug= [KNL]
 Enable debug-object double-call_rcu() testing.

 rcutorture.onoff_holdoff= [KNL]
 Set time (s) after boot for CPU-hotplug testing.

 rcutorture.onoff_interval= [KNL]
 Set time (jiffies) between CPU-hotplug operations,
 or zero to disable CPU-hotplug testing.

 rcutorture.shuffle_interval= [KNL]
 Set task-shuffle interval (s). Shuffling tasks
 allows some CPUs to go into dyntick-idle mode
 during the rcutorture test.

 rcutorture.shutdown_secs= [KNL]
 Set time (s) after boot system shutdown. This
 is useful for hands-off automated testing.

 rcutorture.stall_cpu= [KNL]
 Duration of CPU stall (s) to test RCU CPU stall
 warnings, zero to disable.

 rcutorture.stall_cpu_holdoff= [KNL]
 Time to wait (s) after boot before inducing stall.

 rcutorture.stall_cpu_irqsoff= [KNL]
 Disable interrupts while stalling if set.

 rcutorture.stat_interval= [KNL]
 Time (s) between statistics printk()s.

 rcutorture.stutter= [KNL]
 Time (s) to stutter testing, for example, specifying
 five seconds causes the test to run for five seconds,
 wait for five seconds, and so on. This tests RCU's
 ability to transition abruptly to and from idle.

 rcutorture.test_boost= [KNL]
 Test RCU priority boosting? 0=no, 1=maybe, 2=yes.
 "Maybe" means test if the RCU implementation
 under test support RCU priority boosting.

 rcutorture.test_boost_duration= [KNL]
 Duration (s) of each individual boost test.

 rcutorture.test_boost_interval= [KNL]
 Interval (s) between each boost test.

 rcutorture.test_no_idle_hz= [KNL]
 Test RCU's dyntick-idle handling. See also the
 rcutorture.shuffle_interval parameter.

 rcutorture.torture_type= [KNL]
 Specify the RCU implementation to test.

 rcutorture.verbose= [KNL]
 Enable additional printk() statements.

 rcupdate.rcu_cpu_stall_suppress= [KNL]
 Suppress RCU CPU stall warning messages.

 rcupdate.rcu_cpu_stall_timeout= [KNL]
 Set timeout for RCU CPU stall warning messages.

 rcupdate.rcu_expedited= [KNL]
 Use expedited grace-period primitives, for
 example, synchronize_rcu_expedited() instead
 of synchronize_rcu(). This reduces latency,
 but can increase CPU utilization, degrade
 real-time latency, and degrade energy efficiency.
 No effect on CONFIG_TINY_RCU kernels.

 rcupdate.rcu_normal= [KNL]
 Use only normal grace-period primitives,
 for example, synchronize_rcu() instead of
 synchronize_rcu_expedited(). This improves
 real-time latency, CPU utilization, and
 energy efficiency, but can expose users to
 increased grace-period latency. This parameter
 overrides rcupdate.rcu_expedited. No effect on
 CONFIG_TINY_RCU kernels.

 rcupdate.rcu_normal_after_boot= [KNL]
 Once boot has completed (that is, after
 rcu_end_inkernel_boot() has been invoked), use
 only normal grace-period primitives. No effect
 on CONFIG_TINY_RCU kernels.

 rcupdate.rcu_task_stall_timeout= [KNL]
 Set timeout in jiffies for RCU task stall warning
 messages. Disable with a value less than or equal
 to zero.

 rcupdate.rcu_self_test= [KNL]
 Run the RCU early boot self tests

 rdinit= [KNL]
 Format: <full_path>
 Run specified binary instead of /init from the ramdisk,
 used for early userspace startup. See initrd.

 rdt= [HW,X86,RDT]
 Turn on/off individual RDT features. List is:
 cmt, mbmtotal, mbmlocal, l3cat, l3cdp, l2cat, l2cdp,
 mba.
 E.g. to turn on cmt and turn off mba use:
 rdt=cmt,!mba

 reboot= [KNL]
 Format (x86 or x86_64):
 [w[arm] | c[old] | h[ard] | s[oft] | g[pio]] \
 [[,]s[mp]#### \
 [[,]b[ios] | a[cpi] | k[bd] | t[riple] | e[fi] | p[ci]] \
 [[,]f[orce]
 Where reboot_mode is one of warm (soft) or cold (hard) or gpio,
 reboot_type is one of bios, acpi, kbd, triple, efi, or pci,
 reboot_force is either force or not specified,
 reboot_cpu is s[mp]#### with #### being the processor
 to be used for rebooting.

 relax_domain_level=
 [KNL, SMP] Set scheduler's default relax_domain_level.
 See Documentation/cgroup-v1/cpusets.txt.

 reserve= [KNL,BUGS] Force kernel to ignore I/O ports or memory
 Format: <base1>,<size1>[,<base2>,<size2>,...]
 Reserve I/O ports or memory so the kernel won't use
 them. If <base> is less than 0x10000, the region
 is assumed to be I/O ports; otherwise it is memory.

 reservetop= [X86-32]
 Format: nn[KMG]
 Reserves a hole at the top of the kernel virtual
 address space.

 reservelow= [X86]
 Format: nn[K]
 Set the amount of memory to reserve for BIOS at
 the bottom of the address space.

 reset_devices [KNL] Force drivers to reset the underlying device
 during initialization.

 resume= [SWSUSP]
 Specify the partition device for software suspend
 Format:
 {/dev/<dev> | PARTUUID=<uuid> | <int>:<int> | <hex>}

 resume_offset= [SWSUSP]
 Specify the offset from the beginning of the partition
 given by "resume=" at which the swap header is located,
 in <PAGE_SIZE> units (needed only for swap files).
 See Documentation/power/swsusp-and-swap-files.txt

 resumedelay= [HIBERNATION] Delay (in seconds) to pause before attempting to
 read the resume files

 resumewait [HIBERNATION] Wait (indefinitely) for resume device to show up.
 Useful for devices that are detected asynchronously
 (e.g. USB and MMC devices).

 hibernate= [HIBERNATION]
 noresume Don't check if there's a hibernation image
 present during boot.
 nocompress Don't compress/decompress hibernation images.
 no Disable hibernation and resume.
 protect_image Turn on image protection during restoration
 (that will set all pages holding image data
 during restoration read-only).

 retain_initrd [RAM] Keep initrd memory after extraction

 rfkill.default_state=
 0 "airplane mode". All wifi, bluetooth, wimax, gps, fm,
 etc. communication is blocked by default.
 1 Unblocked.

 rfkill.master_switch_mode=
 0 The "airplane mode" button does nothing.
 1 The "airplane mode" button toggles between everything
 blocked and the previous configuration.
 2 The "airplane mode" button toggles between everything
 blocked and everything unblocked.

 rhash_entries= [KNL,NET]
 Set number of hash buckets for route cache

 ring3mwait=disable
 [KNL] Disable ring 3 MONITOR/MWAIT feature on supported
 CPUs.

 ro [KNL] Mount root device read-only on boot

 rodata= [KNL]
 on Mark read-only kernel memory as read-only (default).
 off Leave read-only kernel memory writable for debugging.

 rockchip.usb_uart
 Enable the uart passthrough on the designated usb port
 on Rockchip SoCs. When active, the signals of the
 debug-uart get routed to the D+ and D- pins of the usb
 port and the regular usb controller gets disabled.

 root= [KNL] Root filesystem
 See name_to_dev_t comment in init/do_mounts.c.

 rootdelay= [KNL] Delay (in seconds) to pause before attempting to
 mount the root filesystem

 rootflags= [KNL] Set root filesystem mount option string

 rootfstype= [KNL] Set root filesystem type

 rootwait [KNL] Wait (indefinitely) for root device to show up.
 Useful for devices that are detected asynchronously
 (e.g. USB and MMC devices).

 rproc_mem=nn[KMG][@address]
 [KNL,ARM,CMA] Remoteproc physical memory block.
 Memory area to be used by remote processor image,
 managed by CMA.

 rw [KNL] Mount root device read-write on boot

 S [KNL] Run init in single mode

 s390_iommu= [HW,S390]
 Set s390 IOTLB flushing mode
 strict
 With strict flushing every unmap operation will result in
 an IOTLB flush. Default is lazy flushing before reuse,
 which is faster.

 sa1100ir [NET]
 See drivers/net/irda/sa1100_ir.c.

 sbni= [NET] Granch SBNI12 leased line adapter

 sched_debug [KNL] Enables verbose scheduler debug messages.

 schedstats= [KNL,X86] Enable or disable scheduled statistics.
 Allowed values are enable and disable. This feature
 incurs a small amount of overhead in the scheduler
 but is useful for debugging and performance tuning.

 skew_tick= [KNL] Offset the periodic timer tick per cpu to mitigate
 xtime_lock contention on larger systems, and/or RCU lock
 contention on all systems with CONFIG_MAXSMP set.
 Format: { "0" | "1" }
 0 -- disable. (may be 1 via CONFIG_CMDLINE="skew_tick=1"
 1 -- enable.
 Note: increases power consumption, thus should only be
 enabled if running jitter sensitive (HPC/RT) workloads.

 security= [SECURITY] Choose a security module to enable at boot.
 If this boot parameter is not specified, only the first
 security module asking for security registration will be
 loaded. An invalid security module name will be treated
 as if no module has been chosen.

 selinux= [SELINUX] Disable or enable SELinux at boot time.
 Format: { "0" | "1" }
 See security/selinux/Kconfig help text.
 0 -- disable.
 1 -- enable.
 Default value is set via kernel config option.
 If enabled at boot time, /selinux/disable can be used
 later to disable prior to initial policy load.

 apparmor= [APPARMOR] Disable or enable AppArmor at boot time
 Format: { "0" | "1" }
 See security/apparmor/Kconfig help text
 0 -- disable.
 1 -- enable.
 Default value is set via kernel config option.

 serialnumber [BUGS=X86-32]

 shapers= [NET]
 Maximal number of shapers.

 simeth= [IA-64]
 simscsi=

 slram= [HW,MTD]

 slab_nomerge [MM]
 Disable merging of slabs with similar size. May be
 necessary if there is some reason to distinguish
 allocs to different slabs, especially in hardened
 environments where the risk of heap overflows and
 layout control by attackers can usually be
 frustrated by disabling merging. This will reduce
 most of the exposure of a heap attack to a single
 cache (risks via metadata attacks are mostly
 unchanged). Debug options disable merging on their
 own.
 For more information see Documentation/vm/slub.rst.

 slab_max_order= [MM, SLAB]
 Determines the maximum allowed order for slabs.
 A high setting may cause OOMs due to memory
 fragmentation. Defaults to 1 for systems with
 more than 32MB of RAM, 0 otherwise.

 slub_debug[=options[,slabs]] [MM, SLUB]
 Enabling slub_debug allows one to determine the
 culprit if slab objects become corrupted. Enabling
 slub_debug can create guard zones around objects and
 may poison objects when not in use. Also tracks the
 last alloc / free. For more information see
 Documentation/vm/slub.rst.

 slub_memcg_sysfs= [MM, SLUB]
 Determines whether to enable sysfs directories for
 memory cgroup sub-caches. 1 to enable, 0 to disable.
 The default is determined by CONFIG_SLUB_MEMCG_SYSFS_ON.
 Enabling this can lead to a very high number of debug
 directories and files being created under
 /sys/kernel/slub.

 slub_max_order= [MM, SLUB]
 Determines the maximum allowed order for slabs.
 A high setting may cause OOMs due to memory
 fragmentation. For more information see
 Documentation/vm/slub.rst.

 slub_min_objects= [MM, SLUB]
 The minimum number of objects per slab. SLUB will
 increase the slab order up to slub_max_order to
 generate a sufficiently large slab able to contain
 the number of objects indicated. The higher the number
 of objects the smaller the overhead of tracking slabs
 and the less frequently locks need to be acquired.
 For more information see Documentation/vm/slub.rst.

 slub_min_order= [MM, SLUB]
 Determines the minimum page order for slabs. Must be
 lower than slub_max_order.
 For more information see Documentation/vm/slub.rst.

 slub_nomerge [MM, SLUB]
 Same with slab_nomerge. This is supported for legacy.
 See slab_nomerge for more information.

 smart2= [HW]
 Format: <io1>[,<io2>[,...,<io8>]]

 smsc-ircc2.nopnp [HW] Don't use PNP to discover SMC devices
 smsc-ircc2.ircc_cfg= [HW] Device configuration I/O port
 smsc-ircc2.ircc_sir= [HW] SIR base I/O port
 smsc-ircc2.ircc_fir= [HW] FIR base I/O port
 smsc-ircc2.ircc_irq= [HW] IRQ line
 smsc-ircc2.ircc_dma= [HW] DMA channel
 smsc-ircc2.ircc_transceiver= [HW] Transceiver type:
 0: Toshiba Satellite 1800 (GP data pin select)
 1: Fast pin select (default)
 2: ATC IRMode

 smt [KNL,S390] Set the maximum number of threads (logical
 CPUs) to use per physical CPU on systems capable of
 symmetric multithreading (SMT). Will be capped to the
 actual hardware limit.
 Format: <integer>
 Default: -1 (no limit)

 softlockup_panic=
 [KNL] Should the soft-lockup detector generate panics.
 Format: <integer>

 A nonzero value instructs the soft-lockup detector
 to panic the machine when a soft-lockup occurs. This
 is also controlled by CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC
 which is the respective build-time switch to that
 functionality.

 softlockup_all_cpu_backtrace=
 [KNL] Should the soft-lockup detector generate
 backtraces on all cpus.
 Format: <integer>

 sonypi.*= [HW] Sony Programmable I/O Control Device driver
 See Documentation/laptops/sonypi.txt

 spectre_v2= [X86] Control mitigation of Spectre variant 2
 (indirect branch speculation) vulnerability.
 The default operation protects the kernel from
 user space attacks.

 on - unconditionally enable, implies
 spectre_v2_user=on
 off - unconditionally disable, implies
 spectre_v2_user=off
 auto - kernel detects whether your CPU model is
 vulnerable

 Selecting 'on' will, and 'auto' may, choose a
 mitigation method at run time according to the
 CPU, the available microcode, the setting of the
 CONFIG_RETPOLINE configuration option, and the
 compiler with which the kernel was built.

 Selecting 'on' will also enable the mitigation
 against user space to user space task attacks.

 Selecting 'off' will disable both the kernel and
 the user space protections.

 Specific mitigations can also be selected manually:

 retpoline - replace indirect branches
 retpoline,generic - google's original retpoline
 retpoline,amd - AMD-specific minimal thunk

 Not specifying this option is equivalent to
 spectre_v2=auto.

 spectre_v2_user=
 [X86] Control mitigation of Spectre variant 2
 (indirect branch speculation) vulnerability between
 user space tasks

 on - Unconditionally enable mitigations. Is
 enforced by spectre_v2=on

 off - Unconditionally disable mitigations. Is
 enforced by spectre_v2=off

 prctl - Indirect branch speculation is enabled,
 but mitigation can be enabled via prctl
 per thread. The mitigation control state
 is inherited on fork.

 prctl,ibpb
 - Like "prctl" above, but only STIBP is
 controlled per thread. IBPB is issued
 always when switching between different user
 space processes.

 seccomp
 - Same as "prctl" above, but all seccomp
 threads will enable the mitigation unless
 they explicitly opt out.

 seccomp,ibpb
 - Like "seccomp" above, but only STIBP is
 controlled per thread. IBPB is issued
 always when switching between different
 user space processes.

 auto - Kernel selects the mitigation depending on
 the available CPU features and vulnerability.

 Default mitigation:
 If CONFIG_SECCOMP=y then "seccomp", otherwise "prctl"

 Not specifying this option is equivalent to
 spectre_v2_user=auto.

 spec_store_bypass_disable=
 [HW] Control Speculative Store Bypass (SSB) Disable mitigation
 (Speculative Store Bypass vulnerability)

 Certain CPUs are vulnerable to an exploit against a
 a common industry wide performance optimization known
 as "Speculative Store Bypass" in which recent stores
 to the same memory location may not be observed by
 later loads during speculative execution. The idea
 is that such stores are unlikely and that they can
 be detected prior to instruction retirement at the
 end of a particular speculation execution window.

 In vulnerable processors, the speculatively forwarded
 store can be used in a cache side channel attack, for
 example to read memory to which the attacker does not
 directly have access (e.g. inside sandboxed code).

 This parameter controls whether the Speculative Store
 Bypass optimization is used.

 On x86 the options are:

 on - Unconditionally disable Speculative Store Bypass
 off - Unconditionally enable Speculative Store Bypass
 auto - Kernel detects whether the CPU model contains an
 implementation of Speculative Store Bypass and
 picks the most appropriate mitigation. If the
 CPU is not vulnerable, "off" is selected. If the
 CPU is vulnerable the default mitigation is
 architecture and Kconfig dependent. See below.
 prctl - Control Speculative Store Bypass per thread
 via prctl. Speculative Store Bypass is enabled
 for a process by default. The state of the control
 is inherited on fork.
 seccomp - Same as "prctl" above, but all seccomp threads
 will disable SSB unless they explicitly opt out.

 Default mitigations:
 X86: If CONFIG_SECCOMP=y "seccomp", otherwise "prctl"

 On powerpc the options are:

 on,auto - On Power8 and Power9 insert a store-forwarding
 barrier on kernel entry and exit. On Power7
 perform a software flush on kernel entry and
 exit.
 off - No action.

 Not specifying this option is equivalent to
 spec_store_bypass_disable=auto.

 spia_io_base= [HW,MTD]
 spia_fio_base=
 spia_pedr=
 spia_peddr=

 srcutree.counter_wrap_check [KNL]
 Specifies how frequently to check for
 grace-period sequence counter wrap for the
 srcu_data structure's ->srcu_gp_seq_needed field.
 The greater the number of bits set in this kernel
 parameter, the less frequently counter wrap will
 be checked for. Note that the bottom two bits
 are ignored.

 srcutree.exp_holdoff [KNL]
 Specifies how many nanoseconds must elapse
 since the end of the last SRCU grace period for
 a given srcu_struct until the next normal SRCU
 grace period will be considered for automatic
 expediting. Set to zero to disable automatic
 expediting.

 ssbd= [ARM64,HW]
 Speculative Store Bypass Disable control

 On CPUs that are vulnerable to the Speculative
 Store Bypass vulnerability and offer a
 firmware based mitigation, this parameter
 indicates how the mitigation should be used:

 force-on: Unconditionally enable mitigation for
 for both kernel and userspace
 force-off: Unconditionally disable mitigation for
 for both kernel and userspace
 kernel: Always enable mitigation in the
 kernel, and offer a prctl interface
 to allow userspace to register its
 interest in being mitigated too.

 stack_guard_gap= [MM]
 override the default stack gap protection. The value
 is in page units and it defines how many pages prior
 to (for stacks growing down) resp. after (for stacks
 growing up) the main stack are reserved for no other
 mapping. Default value is 256 pages.

 stacktrace [FTRACE]
 Enabled the stack tracer on boot up.

 stacktrace_filter=[function-list]
 [FTRACE] Limit the functions that the stack tracer
 will trace at boot up. function-list is a comma separated
 list of functions. This list can be changed at run
 time by the stack_trace_filter file in the debugfs
 tracing directory. Note, this enables stack tracing
 and the stacktrace above is not needed.

 sti= [PARISC,HW]
 Format: <num>
 Set the STI (builtin display/keyboard on the HP-PARISC
 machines) console (graphic card) which should be used
 as the initial boot-console.
 See also comment in drivers/video/console/sticore.c.

 sti_font= [HW]
 See comment in drivers/video/console/sticore.c.

 stifb= [HW]
 Format: bpp:<bpp1>[:<bpp2>[:<bpp3>...]]

 sunrpc.min_resvport=
 sunrpc.max_resvport=
 [NFS,SUNRPC]
 SunRPC servers often require that client requests
 originate from a privileged port (i.e. a port in the
 range 0 < portnr < 1024).
 An administrator who wishes to reserve some of these
 ports for other uses may adjust the range that the
 kernel's sunrpc client considers to be privileged
 using these two parameters to set the minimum and
 maximum port values.

 sunrpc.svc_rpc_per_connection_limit=
 [NFS,SUNRPC]
 Limit the number of requests that the server will
 process in parallel from a single connection.
 The default value is 0 (no limit).

 sunrpc.pool_mode=
 [NFS]
 Control how the NFS server code allocates CPUs to
 service thread pools. Depending on how many NICs
 you have and where their interrupts are bound, this
 option will affect which CPUs will do NFS serving.
 Note: this parameter cannot be changed while the
 NFS server is running.

 auto the server chooses an appropriate mode
 automatically using heuristics
 global a single global pool contains all CPUs
 percpu one pool for each CPU
 pernode one pool for each NUMA node (equivalent
 to global on non-NUMA machines)

 sunrpc.tcp_slot_table_entries=
 sunrpc.udp_slot_table_entries=
 [NFS,SUNRPC]
 Sets the upper limit on the number of simultaneous
 RPC calls that can be sent from the client to a
 server. Increasing these values may allow you to
 improve throughput, but will also increase the
 amount of memory reserved for use by the client.

 suspend.pm_test_delay=
 [SUSPEND]
 Sets the number of seconds to remain in a suspend test
 mode before resuming the system (see
 /sys/power/pm_test). Only available when CONFIG_PM_DEBUG
 is set. Default value is 5.

 swapaccount=[0|1]
 [KNL] Enable accounting of swap in memory resource
 controller if no parameter or 1 is given or disable
 it if 0 is given (See Documentation/cgroup-v1/memory.txt)

 swiotlb= [ARM,IA-64,PPC,MIPS,X86]
 Format: { <int> | force | noforce }
 <int> -- Number of I/O TLB slabs
 force -- force using of bounce buffers even if they
 wouldn't be automatically used by the kernel
 noforce -- Never use bounce buffers (for debugging)

 switches= [HW,M68k]

 sysfs.deprecated=0|1 [KNL]
 Enable/disable old style sysfs layout for old udev
 on older distributions. When this option is enabled
 very new udev will not work anymore. When this option
 is disabled (or CONFIG_SYSFS_DEPRECATED not compiled)
 in older udev will not work anymore.
 Default depends on CONFIG_SYSFS_DEPRECATED_V2 set in
 the kernel configuration.

 sysrq_always_enabled
 [KNL]
 Ignore sysrq setting - this boot parameter will
 neutralize any effect of /proc/sys/kernel/sysrq.
 Useful for debugging.

 tcpmhash_entries= [KNL,NET]
 Set the number of tcp_metrics_hash slots.
 Default value is 8192 or 16384 depending on total
 ram pages. This is used to specify the TCP metrics
 cache size. See Documentation/networking/ip-sysctl.txt
 "tcp_no_metrics_save" section for more details.

 tdfx= [HW,DRM]

 test_suspend= [SUSPEND][,N]
 Specify "mem" (for Suspend-to-RAM) or "standby" (for
 standby suspend) or "freeze" (for suspend type freeze)
 as the system sleep state during system startup with
 the optional capability to repeat N number of times.
 The system is woken from this state using a
 wakeup-capable RTC alarm.

 thash_entries= [KNL,NET]
 Set number of hash buckets for TCP connection

 thermal.act= [HW,ACPI]
 -1: disable all active trip points in all thermal zones
 <degrees C>: override all lowest active trip points

 thermal.crt= [HW,ACPI]
 -1: disable all critical trip points in all thermal zones
 <degrees C>: override all critical trip points

 thermal.nocrt= [HW,ACPI]
 Set to disable actions on ACPI thermal zone
 critical and hot trip points.

 thermal.off= [HW,ACPI]
 1: disable ACPI thermal control

 thermal.psv= [HW,ACPI]
 -1: disable all passive trip points
 <degrees C>: override all passive trip points to this
 value

 thermal.tzp= [HW,ACPI]
 Specify global default ACPI thermal zone polling rate
 <deci-seconds>: poll all this frequency
 0: no polling (default)

 threadirqs [KNL]
 Force threading of all interrupt handlers except those
 marked explicitly IRQF_NO_THREAD.

 tmem [KNL,XEN]
 Enable the Transcendent memory driver if built-in.

 tmem.cleancache=0|1 [KNL, XEN]
 Default is on (1). Disable the usage of the cleancache
 API to send anonymous pages to the hypervisor.

 tmem.frontswap=0|1 [KNL, XEN]
 Default is on (1). Disable the usage of the frontswap
 API to send swap pages to the hypervisor. If disabled
 the selfballooning and selfshrinking are force disabled.

 tmem.selfballooning=0|1 [KNL, XEN]
 Default is on (1). Disable the driving of swap pages
 to the hypervisor.

 tmem.selfshrinking=0|1 [KNL, XEN]
 Default is on (1). Partial swapoff that immediately
 transfers pages from Xen hypervisor back to the
 kernel based on different criteria.

 topology= [S390]
 Format: {off | on}
 Specify if the kernel should make use of the cpu
 topology information if the hardware supports this.
 The scheduler will make use of this information and
 e.g. base its process migration decisions on it.
 Default is on.

 topology_updates= [KNL, PPC, NUMA]
 Format: {off}
 Specify if the kernel should ignore (off)
 topology updates sent by the hypervisor to this
 LPAR.

 tp720= [HW,PS2]

 tpm_suspend_pcr=[HW,TPM]
 Format: integer pcr id
 Specify that at suspend time, the tpm driver
 should extend the specified pcr with zeros,
 as a workaround for some chips which fail to
 flush the last written pcr on TPM_SaveState.
 This will guarantee that all the other pcrs
 are saved.

 trace_buf_size=nn[KMG]
 [FTRACE] will set tracing buffer size on each cpu.

 trace_event=[event-list]
 [FTRACE] Set and start specified trace events in order
 to facilitate early boot debugging. The event-list is a
 comma separated list of trace events to enable. See
 also Documentation/trace/events.rst

 trace_options=[option-list]
 [FTRACE] Enable or disable tracer options at boot.
 The option-list is a comma delimited list of options
 that can be enabled or disabled just as if you were
 to echo the option name into

 /sys/kernel/debug/tracing/trace_options

 For example, to enable stacktrace option (to dump the
 stack trace of each event), add to the command line:

 trace_options=stacktrace

 See also Documentation/trace/ftrace.rst "trace options"
 section.

 tp_printk[FTRACE]
 Have the tracepoints sent to printk as well as the
 tracing ring buffer. This is useful for early boot up
 where the system hangs or reboots and does not give the
 option for reading the tracing buffer or performing a
 ftrace_dump_on_oops.

 To turn off having tracepoints sent to printk,
 echo 0 > /proc/sys/kernel/tracepoint_printk
 Note, echoing 1 into this file without the
 tracepoint_printk kernel cmdline option has no effect.

 ** CAUTION **

 Having tracepoints sent to printk() and activating high
 frequency tracepoints such as irq or sched, can cause
 the system to live lock.

 traceoff_on_warning
 [FTRACE] enable this option to disable tracing when a
 warning is hit. This turns off "tracing_on". Tracing can
 be enabled again by echoing '1' into the "tracing_on"
 file located in /sys/kernel/debug/tracing/

 This option is useful, as it disables the trace before
 the WARNING dump is called, which prevents the trace to
 be filled with content caused by the warning output.

 This option can also be set at run time via the sysctl
 option: kernel/traceoff_on_warning

 transparent_hugepage=
 [KNL]
 Format: [always|madvise|never]
 Can be used to control the default behavior of the system
 with respect to transparent hugepages.
 See Documentation/admin-guide/mm/transhuge.rst
 for more details.

 tsc= Disable clocksource stability checks for TSC.
 Format: <string>
 [x86] reliable: mark tsc clocksource as reliable, this
 disables clocksource verification at runtime, as well
 as the stability checks done at bootup. Used to enable
 high-resolution timer mode on older hardware, and in
 virtualized environment.
 [x86] noirqtime: Do not use TSC to do irq accounting.
 Used to run time disable IRQ_TIME_ACCOUNTING on any
 platforms where RDTSC is slow and this accounting
 can add overhead.
 [x86] unstable: mark the TSC clocksource as unstable, this
 marks the TSC unconditionally unstable at bootup and
 avoids any further wobbles once the TSC watchdog notices.

 turbografx.map[2|3]= [HW,JOY]
 TurboGraFX parallel port interface
 Format:
 <port#>,<js1>,<js2>,<js3>,<js4>,<js5>,<js6>,<js7>
 See also Documentation/input/devices/joystick-parport.rst

 udbg-immortal [PPC] When debugging early kernel crashes that
 happen after console_init() and before a proper
 console driver takes over, this boot options might
 help "seeing" what's going on.

 uhash_entries= [KNL,NET]
 Set number of hash buckets for UDP/UDP-Lite connections

 uhci-hcd.ignore_oc=
 [USB] Ignore overcurrent events (default N).
 Some badly-designed motherboards generate lots of
 bogus events, for ports that aren't wired to
 anything. Set this parameter to avoid log spamming.
 Note that genuine overcurrent events won't be
 reported either.

 unknown_nmi_panic
 [X86] Cause panic on unknown NMI.

 usbcore.authorized_default=
 [USB] Default USB device authorization:
 (default -1 = authorized except for wireless USB,
 0 = not authorized, 1 = authorized)

 usbcore.autosuspend=
 [USB] The autosuspend time delay (in seconds) used
 for newly-detected USB devices (default 2). This
 is the time required before an idle device will be
 autosuspended. Devices for which the delay is set
 to a negative value won't be autosuspended at all.

 usbcore.usbfs_snoop=
 [USB] Set to log all usbfs traffic (default 0 = off).

 usbcore.usbfs_snoop_max=
 [USB] Maximum number of bytes to snoop in each URB
 (default = 65536).

 usbcore.blinkenlights=
 [USB] Set to cycle leds on hubs (default 0 = off).

 usbcore.old_scheme_first=
 [USB] Start with the old device initialization
 scheme, applies only to low and full-speed devices
 (default 0 = off).

 usbcore.usbfs_memory_mb=
 [USB] Memory limit (in MB) for buffers allocated by
 usbfs (default = 16, 0 = max = 2047).

 usbcore.use_both_schemes=
 [USB] Try the other device initialization scheme
 if the first one fails (default 1 = enabled).

 usbcore.initial_descriptor_timeout=
 [USB] Specifies timeout for the initial 64-byte
 USB_REQ_GET_DESCRIPTOR request in milliseconds
 (default 5000 = 5.0 seconds).

 usbcore.nousb [USB] Disable the USB subsystem

 usbcore.quirks=
 [USB] A list of quirk entries to augment the built-in
 usb core quirk list. List entries are separated by
 commas. Each entry has the form
 VendorID:ProductID:Flags. The IDs are 4-digit hex
 numbers and Flags is a set of letters. Each letter
 will change the built-in quirk; setting it if it is
 clear and clearing it if it is set. The letters have
 the following meanings:
 a = USB_QUIRK_STRING_FETCH_255 (string
 descriptors must not be fetched using
 a 255-byte read);
 b = USB_QUIRK_RESET_RESUME (device can't resume
 correctly so reset it instead);
 c = USB_QUIRK_NO_SET_INTF (device can't handle
 Set-Interface requests);
 d = USB_QUIRK_CONFIG_INTF_STRINGS (device can't
 handle its Configuration or Interface
 strings);
 e = USB_QUIRK_RESET (device can't be reset
 (e.g morph devices), don't use reset);
 f = USB_QUIRK_HONOR_BNUMINTERFACES (device has
 more interface descriptions than the
 bNumInterfaces count, and can't handle
 talking to these interfaces);
 g = USB_QUIRK_DELAY_INIT (device needs a pause
 during initialization, after we read
 the device descriptor);
 h = USB_QUIRK_LINEAR_UFRAME_INTR_BINTERVAL (For
 high speed and super speed interrupt
 endpoints, the USB 2.0 and USB 3.0 spec
 require the interval in microframes (1
 microframe = 125 microseconds) to be
 calculated as interval = 2 ^
 (bInterval-1).
 Devices with this quirk report their
 bInterval as the result of this
 calculation instead of the exponent
 variable used in the calculation);
 i = USB_QUIRK_DEVICE_QUALIFIER (device can't
 handle device_qualifier descriptor
 requests);
 j = USB_QUIRK_IGNORE_REMOTE_WAKEUP (device
 generates spurious wakeup, ignore
 remote wakeup capability);
 k = USB_QUIRK_NO_LPM (device can't handle Link
 Power Management);
 l = USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL
 (Device reports its bInterval as linear
 frames instead of the USB 2.0
 calculation);
 m = USB_QUIRK_DISCONNECT_SUSPEND (Device needs
 to be disconnected before suspend to
 prevent spurious wakeup);
 n = USB_QUIRK_DELAY_CTRL_MSG (Device needs a
 pause after every control message);
 o = USB_QUIRK_HUB_SLOW_RESET (Hub needs extra
 delay after resetting its port);
 Example: quirks=0781:5580:bk,0a5c:5834:gij

 usbhid.mousepoll=
 [USBHID] The interval which mice are to be polled at.

 usbhid.jspoll=
 [USBHID] The interval which joysticks are to be polled at.

 usbhid.kbpoll=
 [USBHID] The interval which keyboards are to be polled at.

 usb-storage.delay_use=
 [UMS] The delay in seconds before a new device is
 scanned for Logical Units (default 1).

 usb-storage.quirks=
 [UMS] A list of quirks entries to supplement or
 override the built-in unusual_devs list. List
 entries are separated by commas. Each entry has
 the form VID:PID:Flags where VID and PID are Vendor
 and Product ID values (4-digit hex numbers) and
 Flags is a set of characters, each corresponding
 to a common usb-storage quirk flag as follows:
 a = SANE_SENSE (collect more than 18 bytes
 of sense data);
 b = BAD_SENSE (don't collect more than 18
 bytes of sense data);
 c = FIX_CAPACITY (decrease the reported
 device capacity by one sector);
 d = NO_READ_DISC_INFO (don't use
 READ_DISC_INFO command);
 e = NO_READ_CAPACITY_16 (don't use
 READ_CAPACITY_16 command);
 f = NO_REPORT_OPCODES (don't use report opcodes
 command, uas only);
 g = MAX_SECTORS_240 (don't transfer more than
 240 sectors at a time, uas only);
 h = CAPACITY_HEURISTICS (decrease the
 reported device capacity by one
 sector if the number is odd);
 i = IGNORE_DEVICE (don't bind to this
 device);
 j = NO_REPORT_LUNS (don't use report luns
 command, uas only);
 l = NOT_LOCKABLE (don't try to lock and
 unlock ejectable media);
 m = MAX_SECTORS_64 (don't transfer more
 than 64 sectors = 32 KB at a time);
 n = INITIAL_READ10 (force a retry of the
 initial READ(10) command);
 o = CAPACITY_OK (accept the capacity
 reported by the device);
 p = WRITE_CACHE (the device cache is ON
 by default);
 r = IGNORE_RESIDUE (the device reports
 bogus residue values);
 s = SINGLE_LUN (the device has only one
 Logical Unit);
 t = NO_ATA_1X (don't allow ATA(12) and ATA(16)
 commands, uas only);
 u = IGNORE_UAS (don't bind to the uas driver);
 w = NO_WP_DETECT (don't test whether the
 medium is write-protected).
 y = ALWAYS_SYNC (issue a SYNCHRONIZE_CACHE
 even if the device claims no cache)
 Example: quirks=0419:aaf5:rl,0421:0433:rc

 user_debug= [KNL,ARM]
 Format: <int>
 See arch/arm/Kconfig.debug help text.
 1 - undefined instruction events
 2 - system calls
 4 - invalid data aborts
 8 - SIGSEGV faults
 16 - SIGBUS faults
 Example: user_debug=31

 userpte=
 [X86] Flags controlling user PTE allocations.

 nohigh = do not allocate PTE pages in
 HIGHMEM regardless of setting
 of CONFIG_HIGHPTE.

 vdso= [X86,SH]
 On X86_32, this is an alias for vdso32=. Otherwise:

 vdso=1: enable VDSO (the default)
 vdso=0: disable VDSO mapping

 vdso32= [X86] Control the 32-bit vDSO
 vdso32=1: enable 32-bit VDSO
 vdso32=0 or vdso32=2: disable 32-bit VDSO

 See the help text for CONFIG_COMPAT_VDSO for more
 details. If CONFIG_COMPAT_VDSO is set, the default is
 vdso32=0; otherwise, the default is vdso32=1.

 For compatibility with older kernels, vdso32=2 is an
 alias for vdso32=0.

 Try vdso32=0 if you encounter an error that says:
 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!

 vector= [IA-64,SMP]
 vector=percpu: enable percpu vector domain

 video= [FB] Frame buffer configuration
 See Documentation/fb/modedb.txt.

 video.brightness_switch_enabled= [0,1]
 If set to 1, on receiving an ACPI notify event
 generated by hotkey, video driver will adjust brightness
 level and then send out the event to user space through
 the allocated input device; If set to 0, video driver
 will only send out the event without touching backlight
 brightness level.
 default: 1

 virtio_mmio.device=
 [VMMIO] Memory mapped virtio (platform) device.

 <size>@<baseaddr>:<irq>[:<id>]
 where:
 <size> := size (can use standard suffixes
 like K, M and G)
 <baseaddr> := physical base address
 <irq> := interrupt number (as passed to
 request_irq())
 <id> := (optional) platform device id
 example:
 virtio_mmio.device=1K@0x100b0000:48:7

 Can be used multiple times for multiple devices.

 vga= [BOOT,X86-32] Select a particular video mode
 See Documentation/x86/boot.txt and
 Documentation/svga.txt.
 Use vga=ask for menu.
 This is actually a boot loader parameter; the value is
 passed to the kernel using a special protocol.

 vm_debug[=options] [KNL] Available with CONFIG_DEBUG_VM=y.
 May slow down system boot speed, especially when
 enabled on systems with a large amount of memory.
 All options are enabled by default, and this
 interface is meant to allow for selectively
 enabling or disabling specific virtual memory
 debugging features.

 Available options are:
 P Enable page structure init time poisoning
 - Disable all of the above options

 vmalloc=nn[KMG] [KNL,BOOT] Forces the vmalloc area to have an exact
 size of <nn>. This can be used to increase the
 minimum size (128MB on x86). It can also be used to
 decrease the size and leave more room for directly
 mapped kernel RAM.

 vmcp_cma=nn[MG] [KNL,S390]
 Sets the memory size reserved for contiguous memory
 allocations for the vmcp device driver.

 vmhalt= [KNL,S390] Perform z/VM CP command after system halt.
 Format: <command>

 vmpanic= [KNL,S390] Perform z/VM CP command after kernel panic.
 Format: <command>

 vmpoff= [KNL,S390] Perform z/VM CP command after power off.
 Format: <command>

 vsyscall= [X86-64]
 Controls the behavior of vsyscalls (i.e. calls to
 fixed addresses of 0xffffffffff600x00 from legacy
 code). Most statically-linked binaries and older
 versions of glibc use these calls. Because these
 functions are at fixed addresses, they make nice
 targets for exploits that can control RIP.

 emulate [default] Vsyscalls turn into traps and are
 emulated reasonably safely.

 native Vsyscalls are native syscall instructions.
 This is a little bit faster than trapping
 and makes a few dynamic recompilers work
 better than they would in emulation mode.
 It also makes exploits much easier to write.

 none Vsyscalls don't work at all. This makes
 them quite hard to use for exploits but
 might break your system.

 vt.color= [VT] Default text color.
 Format: 0xYX, X = foreground, Y = background.
 Default: 0x07 = light gray on black.

 vt.cur_default= [VT] Default cursor shape.
 Format: 0xCCBBAA, where AA, BB, and CC are the same as
 the parameters of the <Esc>[?A;B;Cc escape sequence;
 see VGA-softcursor.txt. Default: 2 = underline.

 vt.default_blu= [VT]
 Format: <blue0>,<blue1>,<blue2>,...,<blue15>
 Change the default blue palette of the console.
 This is a 16-member array composed of values
 ranging from 0-255.

 vt.default_grn= [VT]
 Format: <green0>,<green1>,<green2>,...,<green15>
 Change the default green palette of the console.
 This is a 16-member array composed of values
 ranging from 0-255.

 vt.default_red= [VT]
 Format: <red0>,<red1>,<red2>,...,<red15>
 Change the default red palette of the console.
 This is a 16-member array composed of values
 ranging from 0-255.

 vt.default_utf8=
 [VT]
 Format=<0|1>
 Set system-wide default UTF-8 mode for all tty's.
 Default is 1, i.e. UTF-8 mode is enabled for all
 newly opened terminals.

 vt.global_cursor_default=
 [VT]
 Format=<-1|0|1>
 Set system-wide default for whether a cursor
 is shown on new VTs. Default is -1,
 i.e. cursors will be created by default unless
 overridden by individual drivers. 0 will hide
 cursors, 1 will display them.

 vt.italic= [VT] Default color for italic text; 0-15.
 Default: 2 = green.

 vt.underline= [VT] Default color for underlined text; 0-15.
 Default: 3 = cyan.

 watchdog timers [HW,WDT] For information on watchdog timers,
 see Documentation/watchdog/watchdog-parameters.txt
 or other driver-specific files in the
 Documentation/watchdog/ directory.

 workqueue.watchdog_thresh=
 If CONFIG_WQ_WATCHDOG is configured, workqueue can
 warn stall conditions and dump internal state to
 help debugging. 0 disables workqueue stall
 detection; otherwise, it's the stall threshold
 duration in seconds. The default value is 30 and
 it can be updated at runtime by writing to the
 corresponding sysfs file.

 workqueue.disable_numa
 By default, all work items queued to unbound
 workqueues are affine to the NUMA nodes they're
 issued on, which results in better behavior in
 general. If NUMA affinity needs to be disabled for
 whatever reason, this option can be used. Note
 that this also can be controlled per-workqueue for
 workqueues visible under /sys/bus/workqueue/.

 workqueue.power_efficient
 Per-cpu workqueues are generally preferred because
 they show better performance thanks to cache
 locality; unfortunately, per-cpu workqueues tend to
 be more power hungry than unbound workqueues.

 Enabling this makes the per-cpu workqueues which
 were observed to contribute significantly to power
 consumption unbound, leading to measurably lower
 power usage at the cost of small performance
 overhead.

 The default value of this parameter is determined by
 the config option CONFIG_WQ_POWER_EFFICIENT_DEFAULT.

 workqueue.debug_force_rr_cpu
 Workqueue used to implicitly guarantee that work
 items queued without explicit CPU specified are put
 on the local CPU. This guarantee is no longer true
 and while local CPU is still preferred work items
 may be put on foreign CPUs. This debug option
 forces round-robin CPU selection to flush out
 usages which depend on the now broken guarantee.
 When enabled, memory and cache locality will be
 impacted.

 x2apic_phys [X86-64,APIC] Use x2apic physical mode instead of
 default x2apic cluster mode on platforms
 supporting x2apic.

 x86_intel_mid_timer= [X86-32,APBT]
 Choose timer option for x86 Intel MID platform.
 Two valid options are apbt timer only and lapic timer
 plus one apbt timer for broadcast timer.
 x86_intel_mid_timer=apbt_only | lapic_and_apbt

 xen_512gb_limit [KNL,X86-64,XEN]
 Restricts the kernel running paravirtualized under Xen
 to use only up to 512 GB of RAM. The reason to do so is
 crash analysis tools and Xen tools for doing domain
 save/restore/migration must be enabled to handle larger
 domains.

 xen_emul_unplug= [HW,X86,XEN]
 Unplug Xen emulated devices
 Format: [unplug0,][unplug1]
 ide-disks -- unplug primary master IDE devices
 aux-ide-disks -- unplug non-primary-master IDE devices
 nics -- unplug network devices
 all -- unplug all emulated devices (NICs and IDE disks)
 unnecessary -- unplugging emulated devices is
 unnecessary even if the host did not respond to
 the unplug protocol
 never -- do not unplug even if version check succeeds

 xen_nopvspin [X86,XEN]
 Disables the ticketlock slowpath using Xen PV
 optimizations.

 xen_nopv [X86]
 Disables the PV optimizations forcing the HVM guest to
 run as generic HVM guest with no PV drivers.

 xen_scrub_pages= [XEN]
 Boolean option to control scrubbing pages before giving them back
 to Xen, for use by other domains. Can be also changed at runtime
 with /sys/devices/system/xen_memory/xen_memory0/scrub_pages.
 Default value controlled with CONFIG_XEN_SCRUB_PAGES_DEFAULT.

 xirc2ps_cs= [NET,PCMCIA]
 Format:
 <irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]

 xhci-hcd.quirks [USB,KNL]
 A hex value specifying bitmask with supplemental xhci
 host controller quirks. Meaning of each bit can be
 consulted in header drivers/usb/host/xhci.h.

Todo

Add more DRM drivers.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Linux allocated devices (4.x+ version)

This list is the Linux Device List, the official registry of allocated
device numbers and /dev directory nodes for the Linux operating
system.

The LaTeX version of this document is no longer maintained, nor is
the document that used to reside at lanana.org. This version in the
mainline Linux kernel is the master document. Updates shall be sent
as patches to the kernel maintainers (see the
Documentation/process/submitting-patches.rst document).
Specifically explore the sections titled “CHAR and MISC DRIVERS”, and
“BLOCK LAYER” in the MAINTAINERS file to find the right maintainers
to involve for character and block devices.

This document is included by reference into the Filesystem Hierarchy
Standard (FHS). The FHS is available from http://www.pathname.com/fhs/.

Allocations marked (68k/Amiga) apply to Linux/68k on the Amiga
platform only. Allocations marked (68k/Atari) apply to Linux/68k on
the Atari platform only.

This document is in the public domain. The authors requests, however,
that semantically altered versions are not distributed without
permission of the authors, assuming the authors can be contacted without
an unreasonable effort.

注意

DEVICE DRIVERS AUTHORS PLEASE READ THIS

Linux now has extensive support for dynamic allocation of device numbering
and can use sysfs and udev (systemd) to handle the naming needs.
There are still some exceptions in the serial and boot device area. Before
asking for a device number make sure you actually need one.

To have a major number allocated, or a minor number in situations
where that applies (e.g. busmice), please submit a patch and send to
the authors as indicated above.

Keep the description of the device in the same format
as this list. The reason for this is that it is the only way we have
found to ensure we have all the requisite information to publish your
device and avoid conflicts.

Finally, sometimes we have to play “namespace police.” Please don’t be
offended. We often get submissions for /dev names that would be bound
to cause conflicts down the road. We are trying to avoid getting in a
situation where we would have to suffer an incompatible forward
change. Therefore, please consult with us before you make your
device names and numbers in any way public, at least to the point
where it would be at all difficult to get them changed.

Your cooperation is appreciated.

 0 Unnamed devices (e.g. non-device mounts)
 0 = reserved as null device number
 See block major 144, 145, 146 for expansion areas.

 1 char Memory devices
 1 = /dev/mem Physical memory access
 2 = /dev/kmem Kernel virtual memory access
 3 = /dev/null Null device
 4 = /dev/port I/O port access
 5 = /dev/zero Null byte source
 6 = /dev/core OBSOLETE - replaced by /proc/kcore
 7 = /dev/full Returns ENOSPC on write
 8 = /dev/random Nondeterministic random number gen.
 9 = /dev/urandom Faster, less secure random number gen.
 10 = /dev/aio Asynchronous I/O notification interface
 11 = /dev/kmsg Writes to this come out as printk's, reads
 export the buffered printk records.
 12 = /dev/oldmem OBSOLETE - replaced by /proc/vmcore

 1 block RAM disk
 0 = /dev/ram0 First RAM disk
 1 = /dev/ram1 Second RAM disk
 ...
 250 = /dev/initrd Initial RAM disk

 Older kernels had /dev/ramdisk (1, 1) here.
 /dev/initrd refers to a RAM disk which was preloaded
 by the boot loader; newer kernels use /dev/ram0 for
 the initrd.

 2 char Pseudo-TTY masters
 0 = /dev/ptyp0 First PTY master
 1 = /dev/ptyp1 Second PTY master
 ...
 255 = /dev/ptyef 256th PTY master

 Pseudo-tty's are named as follows:
 * Masters are "pty", slaves are "tty";
 * the fourth letter is one of pqrstuvwxyzabcde indicating
 the 1st through 16th series of 16 pseudo-ttys each, and
 * the fifth letter is one of 0123456789abcdef indicating
 the position within the series.

 These are the old-style (BSD) PTY devices; Unix98
 devices are on major 128 and above and use the PTY
 master multiplex (/dev/ptmx) to acquire a PTY on
 demand.

 2 block Floppy disks
 0 = /dev/fd0 Controller 0, drive 0, autodetect
 1 = /dev/fd1 Controller 0, drive 1, autodetect
 2 = /dev/fd2 Controller 0, drive 2, autodetect
 3 = /dev/fd3 Controller 0, drive 3, autodetect
 128 = /dev/fd4 Controller 1, drive 0, autodetect
 129 = /dev/fd5 Controller 1, drive 1, autodetect
 130 = /dev/fd6 Controller 1, drive 2, autodetect
 131 = /dev/fd7 Controller 1, drive 3, autodetect

 To specify format, add to the autodetect device number:
 0 = /dev/fd? Autodetect format
 4 = /dev/fd?d360 5.25" 360K in a 360K drive(1)
 20 = /dev/fd?h360 5.25" 360K in a 1200K drive(1)
 48 = /dev/fd?h410 5.25" 410K in a 1200K drive
 64 = /dev/fd?h420 5.25" 420K in a 1200K drive
 24 = /dev/fd?h720 5.25" 720K in a 1200K drive
 80 = /dev/fd?h880 5.25" 880K in a 1200K drive(1)
 8 = /dev/fd?h1200 5.25" 1200K in a 1200K drive(1)
 40 = /dev/fd?h1440 5.25" 1440K in a 1200K drive(1)
 56 = /dev/fd?h1476 5.25" 1476K in a 1200K drive
 72 = /dev/fd?h1494 5.25" 1494K in a 1200K drive
 92 = /dev/fd?h1600 5.25" 1600K in a 1200K drive(1)

 12 = /dev/fd?u360 3.5" 360K Double Density(2)
 16 = /dev/fd?u720 3.5" 720K Double Density(1)
 120 = /dev/fd?u800 3.5" 800K Double Density(2)
 52 = /dev/fd?u820 3.5" 820K Double Density
 68 = /dev/fd?u830 3.5" 830K Double Density
 84 = /dev/fd?u1040 3.5" 1040K Double Density(1)
 88 = /dev/fd?u1120 3.5" 1120K Double Density(1)
 28 = /dev/fd?u1440 3.5" 1440K High Density(1)
 124 = /dev/fd?u1600 3.5" 1600K High Density(1)
 44 = /dev/fd?u1680 3.5" 1680K High Density(3)
 60 = /dev/fd?u1722 3.5" 1722K High Density
 76 = /dev/fd?u1743 3.5" 1743K High Density
 96 = /dev/fd?u1760 3.5" 1760K High Density
 116 = /dev/fd?u1840 3.5" 1840K High Density(3)
 100 = /dev/fd?u1920 3.5" 1920K High Density(1)
 32 = /dev/fd?u2880 3.5" 2880K Extra Density(1)
 104 = /dev/fd?u3200 3.5" 3200K Extra Density
 108 = /dev/fd?u3520 3.5" 3520K Extra Density
 112 = /dev/fd?u3840 3.5" 3840K Extra Density(1)

 36 = /dev/fd?CompaQ Compaq 2880K drive; obsolete?

 (1) Autodetectable format
 (2) Autodetectable format in a Double Density (720K) drive only
 (3) Autodetectable format in a High Density (1440K) drive only

 NOTE: The letter in the device name (d, q, h or u)
 signifies the type of drive: 5.25" Double Density (d),
 5.25" Quad Density (q), 5.25" High Density (h) or 3.5"
 (any model, u). The use of the capital letters D, H
 and E for the 3.5" models have been deprecated, since
 the drive type is insignificant for these devices.

 3 char Pseudo-TTY slaves
 0 = /dev/ttyp0 First PTY slave
 1 = /dev/ttyp1 Second PTY slave
 ...
 255 = /dev/ttyef 256th PTY slave

 These are the old-style (BSD) PTY devices; Unix98
 devices are on major 136 and above.

 3 block First MFM, RLL and IDE hard disk/CD-ROM interface
 0 = /dev/hda Master: whole disk (or CD-ROM)
 64 = /dev/hdb Slave: whole disk (or CD-ROM)

 For partitions, add to the whole disk device number:
 0 = /dev/hd? Whole disk
 1 = /dev/hd?1 First partition
 2 = /dev/hd?2 Second partition
 ...
 63 = /dev/hd?63 63rd partition

 For Linux/i386, partitions 1-4 are the primary
 partitions, and 5 and above are logical partitions.
 Other versions of Linux use partitioning schemes
 appropriate to their respective architectures.

 4 char TTY devices
 0 = /dev/tty0 Current virtual console

 1 = /dev/tty1 First virtual console
 ...
 63 = /dev/tty63 63rd virtual console
 64 = /dev/ttyS0 First UART serial port
 ...
 255 = /dev/ttyS191 192nd UART serial port

 UART serial ports refer to 8250/16450/16550 series devices.

 Older versions of the Linux kernel used this major
 number for BSD PTY devices. As of Linux 2.1.115, this
 is no longer supported. Use major numbers 2 and 3.

 4 block Aliases for dynamically allocated major devices to be used
 when its not possible to create the real device nodes
 because the root filesystem is mounted read-only.

 0 = /dev/root

 5 char Alternate TTY devices
 0 = /dev/tty Current TTY device
 1 = /dev/console System console
 2 = /dev/ptmx PTY master multiplex
 3 = /dev/ttyprintk User messages via printk TTY device
 64 = /dev/cua0 Callout device for ttyS0
 ...
 255 = /dev/cua191 Callout device for ttyS191

 (5,1) is /dev/console starting with Linux 2.1.71. See
 the section on terminal devices for more information
 on /dev/console.

 6 char Parallel printer devices
 0 = /dev/lp0 Parallel printer on parport0
 1 = /dev/lp1 Parallel printer on parport1
 ...

 Current Linux kernels no longer have a fixed mapping
 between parallel ports and I/O addresses. Instead,
 they are redirected through the parport multiplex layer.

 7 char Virtual console capture devices
 0 = /dev/vcs Current vc text (glyph) contents
 1 = /dev/vcs1 tty1 text (glyph) contents
 ...
 63 = /dev/vcs63 tty63 text (glyph) contents
 64 = /dev/vcsu Current vc text (unicode) contents
 65 = /dev/vcsu1 tty1 text (unicode) contents
 ...
 127 = /dev/vcsu63 tty63 text (unicode) contents
 128 = /dev/vcsa Current vc text/attribute (glyph) contents
 129 = /dev/vcsa1 tty1 text/attribute (glyph) contents
 ...
 191 = /dev/vcsa63 tty63 text/attribute (glyph) contents

 NOTE: These devices permit both read and write access.

 7 block Loopback devices
 0 = /dev/loop0 First loop device
 1 = /dev/loop1 Second loop device
 ...

 The loop devices are used to mount filesystems not
 associated with block devices. The binding to the
 loop devices is handled by mount(8) or losetup(8).

 8 block SCSI disk devices (0-15)
 0 = /dev/sda First SCSI disk whole disk
 16 = /dev/sdb Second SCSI disk whole disk
 32 = /dev/sdc Third SCSI disk whole disk
 ...
 240 = /dev/sdp Sixteenth SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 9 char SCSI tape devices
 0 = /dev/st0 First SCSI tape, mode 0
 1 = /dev/st1 Second SCSI tape, mode 0
 ...
 32 = /dev/st0l First SCSI tape, mode 1
 33 = /dev/st1l Second SCSI tape, mode 1
 ...
 64 = /dev/st0m First SCSI tape, mode 2
 65 = /dev/st1m Second SCSI tape, mode 2
 ...
 96 = /dev/st0a First SCSI tape, mode 3
 97 = /dev/st1a Second SCSI tape, mode 3
 ...
 128 = /dev/nst0 First SCSI tape, mode 0, no rewind
 129 = /dev/nst1 Second SCSI tape, mode 0, no rewind
 ...
 160 = /dev/nst0l First SCSI tape, mode 1, no rewind
 161 = /dev/nst1l Second SCSI tape, mode 1, no rewind
 ...
 192 = /dev/nst0m First SCSI tape, mode 2, no rewind
 193 = /dev/nst1m Second SCSI tape, mode 2, no rewind
 ...
 224 = /dev/nst0a First SCSI tape, mode 3, no rewind
 225 = /dev/nst1a Second SCSI tape, mode 3, no rewind
 ...

 "No rewind" refers to the omission of the default
 automatic rewind on device close. The MTREW or MTOFFL
 ioctl()'s can be used to rewind the tape regardless of
 the device used to access it.

 9 block Metadisk (RAID) devices
 0 = /dev/md0 First metadisk group
 1 = /dev/md1 Second metadisk group
 ...

 The metadisk driver is used to span a
 filesystem across multiple physical disks.

 10 char Non-serial mice, misc features
 0 = /dev/logibm Logitech bus mouse
 1 = /dev/psaux PS/2-style mouse port
 2 = /dev/inportbm Microsoft Inport bus mouse
 3 = /dev/atibm ATI XL bus mouse
 4 = /dev/jbm J-mouse
 4 = /dev/amigamouse Amiga mouse (68k/Amiga)
 5 = /dev/atarimouse Atari mouse
 6 = /dev/sunmouse Sun mouse
 7 = /dev/amigamouse1 Second Amiga mouse
 8 = /dev/smouse Simple serial mouse driver
 9 = /dev/pc110pad IBM PC-110 digitizer pad
 10 = /dev/adbmouse Apple Desktop Bus mouse
 11 = /dev/vrtpanel Vr41xx embedded touch panel
 13 = /dev/vpcmouse Connectix Virtual PC Mouse
 14 = /dev/touchscreen/ucb1x00 UCB 1x00 touchscreen
 15 = /dev/touchscreen/mk712 MK712 touchscreen
 128 = /dev/beep Fancy beep device
 129 =
 130 = /dev/watchdog Watchdog timer port
 131 = /dev/temperature Machine internal temperature
 132 = /dev/hwtrap Hardware fault trap
 133 = /dev/exttrp External device trap
 134 = /dev/apm_bios Advanced Power Management BIOS
 135 = /dev/rtc Real Time Clock
 137 = /dev/vhci Bluetooth virtual HCI driver
 139 = /dev/openprom SPARC OpenBoot PROM
 140 = /dev/relay8 Berkshire Products Octal relay card
 141 = /dev/relay16 Berkshire Products ISO-16 relay card
 142 =
 143 = /dev/pciconf PCI configuration space
 144 = /dev/nvram Non-volatile configuration RAM
 145 = /dev/hfmodem Soundcard shortwave modem control
 146 = /dev/graphics Linux/SGI graphics device
 147 = /dev/opengl Linux/SGI OpenGL pipe
 148 = /dev/gfx Linux/SGI graphics effects device
 149 = /dev/input/mouse Linux/SGI Irix emulation mouse
 150 = /dev/input/keyboard Linux/SGI Irix emulation keyboard
 151 = /dev/led Front panel LEDs
 152 = /dev/kpoll Kernel Poll Driver
 153 = /dev/mergemem Memory merge device
 154 = /dev/pmu Macintosh PowerBook power manager
 155 = /dev/isictl MultiTech ISICom serial control
 156 = /dev/lcd Front panel LCD display
 157 = /dev/ac Applicom Intl Profibus card
 158 = /dev/nwbutton Netwinder external button
 159 = /dev/nwdebug Netwinder debug interface
 160 = /dev/nwflash Netwinder flash memory
 161 = /dev/userdma User-space DMA access
 162 = /dev/smbus System Management Bus
 163 = /dev/lik Logitech Internet Keyboard
 164 = /dev/ipmo Intel Intelligent Platform Management
 165 = /dev/vmmon VMware virtual machine monitor
 166 = /dev/i2o/ctl I2O configuration manager
 167 = /dev/specialix_sxctl Specialix serial control
 168 = /dev/tcldrv Technology Concepts serial control
 169 = /dev/specialix_rioctl Specialix RIO serial control
 170 = /dev/thinkpad/thinkpad IBM Thinkpad devices
 171 = /dev/srripc QNX4 API IPC manager
 172 = /dev/usemaclone Semaphore clone device
 173 = /dev/ipmikcs Intelligent Platform Management
 174 = /dev/uctrl SPARCbook 3 microcontroller
 175 = /dev/agpgart AGP Graphics Address Remapping Table
 176 = /dev/gtrsc Gorgy Timing radio clock
 177 = /dev/cbm Serial CBM bus
 178 = /dev/jsflash JavaStation OS flash SIMM
 179 = /dev/xsvc High-speed shared-mem/semaphore service
 180 = /dev/vrbuttons Vr41xx button input device
 181 = /dev/toshiba Toshiba laptop SMM support
 182 = /dev/perfctr Performance-monitoring counters
 183 = /dev/hwrng Generic random number generator
 184 = /dev/cpu/microcode CPU microcode update interface
 186 = /dev/atomicps Atomic shapshot of process state data
 187 = /dev/irnet IrNET device
 188 = /dev/smbusbios SMBus BIOS
 189 = /dev/ussp_ctl User space serial port control
 190 = /dev/crash Mission Critical Linux crash dump facility
 191 = /dev/pcl181 <information missing>
 192 = /dev/nas_xbus NAS xbus LCD/buttons access
 193 = /dev/d7s SPARC 7-segment display
 194 = /dev/zkshim Zero-Knowledge network shim control
 195 = /dev/elographics/e2201 Elographics touchscreen E271-2201
 196 = /dev/vfio/vfio VFIO userspace driver interface
 197 = /dev/pxa3xx-gcu PXA3xx graphics controller unit driver
 198 = /dev/sexec Signed executable interface
 199 = /dev/scanners/cuecat :CueCat barcode scanner
 200 = /dev/net/tun TAP/TUN network device
 201 = /dev/button/gulpb Transmeta GULP-B buttons
 202 = /dev/emd/ctl Enhanced Metadisk RAID (EMD) control
 203 = /dev/cuse Cuse (character device in user-space)
 204 = /dev/video/em8300 EM8300 DVD decoder control
 205 = /dev/video/em8300_mv EM8300 DVD decoder video
 206 = /dev/video/em8300_ma EM8300 DVD decoder audio
 207 = /dev/video/em8300_sp EM8300 DVD decoder subpicture
 208 = /dev/compaq/cpqphpc Compaq PCI Hot Plug Controller
 209 = /dev/compaq/cpqrid Compaq Remote Insight Driver
 210 = /dev/impi/bt IMPI coprocessor block transfer
 211 = /dev/impi/smic IMPI coprocessor stream interface
 212 = /dev/watchdogs/0 First watchdog device
 213 = /dev/watchdogs/1 Second watchdog device
 214 = /dev/watchdogs/2 Third watchdog device
 215 = /dev/watchdogs/3 Fourth watchdog device
 216 = /dev/fujitsu/apanel Fujitsu/Siemens application panel
 217 = /dev/ni/natmotn National Instruments Motion
 218 = /dev/kchuid Inter-process chuid control
 219 = /dev/modems/mwave MWave modem firmware upload
 220 = /dev/mptctl Message passing technology (MPT) control
 221 = /dev/mvista/hssdsi Montavista PICMG hot swap system driver
 222 = /dev/mvista/hasi Montavista PICMG high availability
 223 = /dev/input/uinput User level driver support for input
 224 = /dev/tpm TCPA TPM driver
 225 = /dev/pps Pulse Per Second driver
 226 = /dev/systrace Systrace device
 227 = /dev/mcelog X86_64 Machine Check Exception driver
 228 = /dev/hpet HPET driver
 229 = /dev/fuse Fuse (virtual filesystem in user-space)
 230 = /dev/midishare MidiShare driver
 231 = /dev/snapshot System memory snapshot device
 232 = /dev/kvm Kernel-based virtual machine (hardware virtualization extensions)
 233 = /dev/kmview View-OS A process with a view
 234 = /dev/btrfs-control Btrfs control device
 235 = /dev/autofs Autofs control device
 236 = /dev/mapper/control Device-Mapper control device
 237 = /dev/loop-control Loopback control device
 238 = /dev/vhost-net Host kernel accelerator for virtio net
 239 = /dev/uhid User-space I/O driver support for HID subsystem
 240 = /dev/userio Serio driver testing device
 241 = /dev/vhost-vsock Host kernel driver for virtio vsock

 242-254 Reserved for local use
 255 Reserved for MISC_DYNAMIC_MINOR

 11 char Raw keyboard device (Linux/SPARC only)
 0 = /dev/kbd Raw keyboard device

 11 char Serial Mux device (Linux/PA-RISC only)
 0 = /dev/ttyB0 First mux port
 1 = /dev/ttyB1 Second mux port
 ...

 11 block SCSI CD-ROM devices
 0 = /dev/scd0 First SCSI CD-ROM
 1 = /dev/scd1 Second SCSI CD-ROM
 ...

 The prefix /dev/sr (instead of /dev/scd) has been deprecated.

 12 char QIC-02 tape
 2 = /dev/ntpqic11 QIC-11, no rewind-on-close
 3 = /dev/tpqic11 QIC-11, rewind-on-close
 4 = /dev/ntpqic24 QIC-24, no rewind-on-close
 5 = /dev/tpqic24 QIC-24, rewind-on-close
 6 = /dev/ntpqic120 QIC-120, no rewind-on-close
 7 = /dev/tpqic120 QIC-120, rewind-on-close
 8 = /dev/ntpqic150 QIC-150, no rewind-on-close
 9 = /dev/tpqic150 QIC-150, rewind-on-close

 The device names specified are proposed -- if there
 are "standard" names for these devices, please let me know.

 12 block

 13 char Input core
 0 = /dev/input/js0 First joystick
 1 = /dev/input/js1 Second joystick
 ...
 32 = /dev/input/mouse0 First mouse
 33 = /dev/input/mouse1 Second mouse
 ...
 63 = /dev/input/mice Unified mouse
 64 = /dev/input/event0 First event queue
 65 = /dev/input/event1 Second event queue
 ...

 Each device type has 5 bits (32 minors).

 13 block Previously used for the XT disk (/dev/xdN)
 Deleted in kernel v3.9.

 14 char Open Sound System (OSS)
 0 = /dev/mixer Mixer control
 1 = /dev/sequencer Audio sequencer
 2 = /dev/midi00 First MIDI port
 3 = /dev/dsp Digital audio
 4 = /dev/audio Sun-compatible digital audio
 6 =
 7 = /dev/audioctl SPARC audio control device
 8 = /dev/sequencer2 Sequencer -- alternate device
 16 = /dev/mixer1 Second soundcard mixer control
 17 = /dev/patmgr0 Sequencer patch manager
 18 = /dev/midi01 Second MIDI port
 19 = /dev/dsp1 Second soundcard digital audio
 20 = /dev/audio1 Second soundcard Sun digital audio
 33 = /dev/patmgr1 Sequencer patch manager
 34 = /dev/midi02 Third MIDI port
 50 = /dev/midi03 Fourth MIDI port

 14 block

 15 char Joystick
 0 = /dev/js0 First analog joystick
 1 = /dev/js1 Second analog joystick
 ...
 128 = /dev/djs0 First digital joystick
 129 = /dev/djs1 Second digital joystick
 ...
 15 block Sony CDU-31A/CDU-33A CD-ROM
 0 = /dev/sonycd Sony CDU-31a CD-ROM

 16 char Non-SCSI scanners
 0 = /dev/gs4500 Genius 4500 handheld scanner

 16 block GoldStar CD-ROM
 0 = /dev/gscd GoldStar CD-ROM

 17 char OBSOLETE (was Chase serial card)
 0 = /dev/ttyH0 First Chase port
 1 = /dev/ttyH1 Second Chase port
 ...
 17 block Optics Storage CD-ROM
 0 = /dev/optcd Optics Storage CD-ROM

 18 char OBSOLETE (was Chase serial card - alternate devices)
 0 = /dev/cuh0 Callout device for ttyH0
 1 = /dev/cuh1 Callout device for ttyH1
 ...
 18 block Sanyo CD-ROM
 0 = /dev/sjcd Sanyo CD-ROM

 19 char Cyclades serial card
 0 = /dev/ttyC0 First Cyclades port
 ...
 31 = /dev/ttyC31 32nd Cyclades port

 19 block "Double" compressed disk
 0 = /dev/double0 First compressed disk
 ...
 7 = /dev/double7 Eighth compressed disk
 128 = /dev/cdouble0 Mirror of first compressed disk
 ...
 135 = /dev/cdouble7 Mirror of eighth compressed disk

 See the Double documentation for the meaning of the
 mirror devices.

 20 char Cyclades serial card - alternate devices
 0 = /dev/cub0 Callout device for ttyC0
 ...
 31 = /dev/cub31 Callout device for ttyC31

 20 block Hitachi CD-ROM (under development)
 0 = /dev/hitcd Hitachi CD-ROM

 21 char Generic SCSI access
 0 = /dev/sg0 First generic SCSI device
 1 = /dev/sg1 Second generic SCSI device
 ...

 Most distributions name these /dev/sga, /dev/sgb...;
 this sets an unnecessary limit of 26 SCSI devices in
 the system and is counter to standard Linux
 device-naming practice.

 21 block Acorn MFM hard drive interface
 0 = /dev/mfma First MFM drive whole disk
 64 = /dev/mfmb Second MFM drive whole disk

 This device is used on the ARM-based Acorn RiscPC.
 Partitions are handled the same way as for IDE disks
 (see major number 3).

 22 char Digiboard serial card
 0 = /dev/ttyD0 First Digiboard port
 1 = /dev/ttyD1 Second Digiboard port
 ...
 22 block Second IDE hard disk/CD-ROM interface
 0 = /dev/hdc Master: whole disk (or CD-ROM)
 64 = /dev/hdd Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 23 char Digiboard serial card - alternate devices
 0 = /dev/cud0 Callout device for ttyD0
 1 = /dev/cud1 Callout device for ttyD1
 ...
 23 block Mitsumi proprietary CD-ROM
 0 = /dev/mcd Mitsumi CD-ROM

 24 char Stallion serial card
 0 = /dev/ttyE0 Stallion port 0 card 0
 1 = /dev/ttyE1 Stallion port 1 card 0
 ...
 64 = /dev/ttyE64 Stallion port 0 card 1
 65 = /dev/ttyE65 Stallion port 1 card 1
 ...
 128 = /dev/ttyE128 Stallion port 0 card 2
 129 = /dev/ttyE129 Stallion port 1 card 2
 ...
 192 = /dev/ttyE192 Stallion port 0 card 3
 193 = /dev/ttyE193 Stallion port 1 card 3
 ...
 24 block Sony CDU-535 CD-ROM
 0 = /dev/cdu535 Sony CDU-535 CD-ROM

 25 char Stallion serial card - alternate devices
 0 = /dev/cue0 Callout device for ttyE0
 1 = /dev/cue1 Callout device for ttyE1
 ...
 64 = /dev/cue64 Callout device for ttyE64
 65 = /dev/cue65 Callout device for ttyE65
 ...
 128 = /dev/cue128 Callout device for ttyE128
 129 = /dev/cue129 Callout device for ttyE129
 ...
 192 = /dev/cue192 Callout device for ttyE192
 193 = /dev/cue193 Callout device for ttyE193
 ...
 25 block First Matsushita (Panasonic/SoundBlaster) CD-ROM
 0 = /dev/sbpcd0 Panasonic CD-ROM controller 0 unit 0
 1 = /dev/sbpcd1 Panasonic CD-ROM controller 0 unit 1
 2 = /dev/sbpcd2 Panasonic CD-ROM controller 0 unit 2
 3 = /dev/sbpcd3 Panasonic CD-ROM controller 0 unit 3

 26 char

 26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM
 0 = /dev/sbpcd4 Panasonic CD-ROM controller 1 unit 0
 1 = /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 1
 2 = /dev/sbpcd6 Panasonic CD-ROM controller 1 unit 2
 3 = /dev/sbpcd7 Panasonic CD-ROM controller 1 unit 3

 27 char QIC-117 tape
 0 = /dev/qft0 Unit 0, rewind-on-close
 1 = /dev/qft1 Unit 1, rewind-on-close
 2 = /dev/qft2 Unit 2, rewind-on-close
 3 = /dev/qft3 Unit 3, rewind-on-close
 4 = /dev/nqft0 Unit 0, no rewind-on-close
 5 = /dev/nqft1 Unit 1, no rewind-on-close
 6 = /dev/nqft2 Unit 2, no rewind-on-close
 7 = /dev/nqft3 Unit 3, no rewind-on-close
 16 = /dev/zqft0 Unit 0, rewind-on-close, compression
 17 = /dev/zqft1 Unit 1, rewind-on-close, compression
 18 = /dev/zqft2 Unit 2, rewind-on-close, compression
 19 = /dev/zqft3 Unit 3, rewind-on-close, compression
 20 = /dev/nzqft0 Unit 0, no rewind-on-close, compression
 21 = /dev/nzqft1 Unit 1, no rewind-on-close, compression
 22 = /dev/nzqft2 Unit 2, no rewind-on-close, compression
 23 = /dev/nzqft3 Unit 3, no rewind-on-close, compression
 32 = /dev/rawqft0 Unit 0, rewind-on-close, no file marks
 33 = /dev/rawqft1 Unit 1, rewind-on-close, no file marks
 34 = /dev/rawqft2 Unit 2, rewind-on-close, no file marks
 35 = /dev/rawqft3 Unit 3, rewind-on-close, no file marks
 36 = /dev/nrawqft0 Unit 0, no rewind-on-close, no file marks
 37 = /dev/nrawqft1 Unit 1, no rewind-on-close, no file marks
 38 = /dev/nrawqft2 Unit 2, no rewind-on-close, no file marks
 39 = /dev/nrawqft3 Unit 3, no rewind-on-close, no file marks

 27 block Third Matsushita (Panasonic/SoundBlaster) CD-ROM
 0 = /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 0
 1 = /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 1
 2 = /dev/sbpcd10 Panasonic CD-ROM controller 2 unit 2
 3 = /dev/sbpcd11 Panasonic CD-ROM controller 2 unit 3

 28 char Stallion serial card - card programming
 0 = /dev/staliomem0 First Stallion card I/O memory
 1 = /dev/staliomem1 Second Stallion card I/O memory
 2 = /dev/staliomem2 Third Stallion card I/O memory
 3 = /dev/staliomem3 Fourth Stallion card I/O memory

 28 char Atari SLM ACSI laser printer (68k/Atari)
 0 = /dev/slm0 First SLM laser printer
 1 = /dev/slm1 Second SLM laser printer
 ...
 28 block Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM
 0 = /dev/sbpcd12 Panasonic CD-ROM controller 3 unit 0
 1 = /dev/sbpcd13 Panasonic CD-ROM controller 3 unit 1
 2 = /dev/sbpcd14 Panasonic CD-ROM controller 3 unit 2
 3 = /dev/sbpcd15 Panasonic CD-ROM controller 3 unit 3

 28 block ACSI disk (68k/Atari)
 0 = /dev/ada First ACSI disk whole disk
 16 = /dev/adb Second ACSI disk whole disk
 32 = /dev/adc Third ACSI disk whole disk
 ...
 240 = /dev/adp 16th ACSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15, like SCSI.

 29 char Universal frame buffer
 0 = /dev/fb0 First frame buffer
 1 = /dev/fb1 Second frame buffer
 ...
 31 = /dev/fb31 32nd frame buffer

 29 block Aztech/Orchid/Okano/Wearnes CD-ROM
 0 = /dev/aztcd Aztech CD-ROM

 30 char iBCS-2 compatibility devices
 0 = /dev/socksys Socket access
 1 = /dev/spx SVR3 local X interface
 32 = /dev/inet/ip Network access
 33 = /dev/inet/icmp
 34 = /dev/inet/ggp
 35 = /dev/inet/ipip
 36 = /dev/inet/tcp
 37 = /dev/inet/egp
 38 = /dev/inet/pup
 39 = /dev/inet/udp
 40 = /dev/inet/idp
 41 = /dev/inet/rawip

 Additionally, iBCS-2 requires the following links:

 /dev/ip -> /dev/inet/ip
 /dev/icmp -> /dev/inet/icmp
 /dev/ggp -> /dev/inet/ggp
 /dev/ipip -> /dev/inet/ipip
 /dev/tcp -> /dev/inet/tcp
 /dev/egp -> /dev/inet/egp
 /dev/pup -> /dev/inet/pup
 /dev/udp -> /dev/inet/udp
 /dev/idp -> /dev/inet/idp
 /dev/rawip -> /dev/inet/rawip
 /dev/inet/arp -> /dev/inet/udp
 /dev/inet/rip -> /dev/inet/udp
 /dev/nfsd -> /dev/socksys
 /dev/X0R -> /dev/null (? apparently not required ?)

 30 block Philips LMS CM-205 CD-ROM
 0 = /dev/cm205cd Philips LMS CM-205 CD-ROM

 /dev/lmscd is an older name for this device. This
 driver does not work with the CM-205MS CD-ROM.

 31 char MPU-401 MIDI
 0 = /dev/mpu401data MPU-401 data port
 1 = /dev/mpu401stat MPU-401 status port

 31 block ROM/flash memory card
 0 = /dev/rom0 First ROM card (rw)
 ...
 7 = /dev/rom7 Eighth ROM card (rw)
 8 = /dev/rrom0 First ROM card (ro)
 ...
 15 = /dev/rrom7 Eighth ROM card (ro)
 16 = /dev/flash0 First flash memory card (rw)
 ...
 23 = /dev/flash7 Eighth flash memory card (rw)
 24 = /dev/rflash0 First flash memory card (ro)
 ...
 31 = /dev/rflash7 Eighth flash memory card (ro)

 The read-write (rw) devices support back-caching
 written data in RAM, as well as writing to flash RAM
 devices. The read-only devices (ro) support reading
 only.

 32 char Specialix serial card
 0 = /dev/ttyX0 First Specialix port
 1 = /dev/ttyX1 Second Specialix port
 ...
 32 block Philips LMS CM-206 CD-ROM
 0 = /dev/cm206cd Philips LMS CM-206 CD-ROM

 33 char Specialix serial card - alternate devices
 0 = /dev/cux0 Callout device for ttyX0
 1 = /dev/cux1 Callout device for ttyX1
 ...
 33 block Third IDE hard disk/CD-ROM interface
 0 = /dev/hde Master: whole disk (or CD-ROM)
 64 = /dev/hdf Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 34 char Z8530 HDLC driver
 0 = /dev/scc0 First Z8530, first port
 1 = /dev/scc1 First Z8530, second port
 2 = /dev/scc2 Second Z8530, first port
 3 = /dev/scc3 Second Z8530, second port
 ...

 In a previous version these devices were named
 /dev/sc1 for /dev/scc0, /dev/sc2 for /dev/scc1, and so
 on.

 34 block Fourth IDE hard disk/CD-ROM interface
 0 = /dev/hdg Master: whole disk (or CD-ROM)
 64 = /dev/hdh Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 35 char tclmidi MIDI driver
 0 = /dev/midi0 First MIDI port, kernel timed
 1 = /dev/midi1 Second MIDI port, kernel timed
 2 = /dev/midi2 Third MIDI port, kernel timed
 3 = /dev/midi3 Fourth MIDI port, kernel timed
 64 = /dev/rmidi0 First MIDI port, untimed
 65 = /dev/rmidi1 Second MIDI port, untimed
 66 = /dev/rmidi2 Third MIDI port, untimed
 67 = /dev/rmidi3 Fourth MIDI port, untimed
 128 = /dev/smpte0 First MIDI port, SMPTE timed
 129 = /dev/smpte1 Second MIDI port, SMPTE timed
 130 = /dev/smpte2 Third MIDI port, SMPTE timed
 131 = /dev/smpte3 Fourth MIDI port, SMPTE timed

 35 block Slow memory ramdisk
 0 = /dev/slram Slow memory ramdisk

 36 char Netlink support
 0 = /dev/route Routing, device updates, kernel to user
 1 = /dev/skip enSKIP security cache control
 3 = /dev/fwmonitor Firewall packet copies
 16 = /dev/tap0 First Ethertap device
 ...
 31 = /dev/tap15 16th Ethertap device

 36 block OBSOLETE (was MCA ESDI hard disk)

 37 char IDE tape
 0 = /dev/ht0 First IDE tape
 1 = /dev/ht1 Second IDE tape
 ...
 128 = /dev/nht0 First IDE tape, no rewind-on-close
 129 = /dev/nht1 Second IDE tape, no rewind-on-close
 ...

 Currently, only one IDE tape drive is supported.

 37 block Zorro II ramdisk
 0 = /dev/z2ram Zorro II ramdisk

 38 char Myricom PCI Myrinet board
 0 = /dev/mlanai0 First Myrinet board
 1 = /dev/mlanai1 Second Myrinet board
 ...

 This device is used for status query, board control
 and "user level packet I/O." This board is also
 accessible as a standard networking "eth" device.

 38 block OBSOLETE (was Linux/AP+)

 39 char ML-16P experimental I/O board
 0 = /dev/ml16pa-a0 First card, first analog channel
 1 = /dev/ml16pa-a1 First card, second analog channel
 ...
 15 = /dev/ml16pa-a15 First card, 16th analog channel
 16 = /dev/ml16pa-d First card, digital lines
 17 = /dev/ml16pa-c0 First card, first counter/timer
 18 = /dev/ml16pa-c1 First card, second counter/timer
 19 = /dev/ml16pa-c2 First card, third counter/timer
 32 = /dev/ml16pb-a0 Second card, first analog channel
 33 = /dev/ml16pb-a1 Second card, second analog channel
 ...
 47 = /dev/ml16pb-a15 Second card, 16th analog channel
 48 = /dev/ml16pb-d Second card, digital lines
 49 = /dev/ml16pb-c0 Second card, first counter/timer
 50 = /dev/ml16pb-c1 Second card, second counter/timer
 51 = /dev/ml16pb-c2 Second card, third counter/timer
 ...
 39 block

 40 char

 40 block

 41 char Yet Another Micro Monitor
 0 = /dev/yamm Yet Another Micro Monitor

 41 block

 42 char Demo/sample use

 42 block Demo/sample use

 This number is intended for use in sample code, as
 well as a general "example" device number. It
 should never be used for a device driver that is being
 distributed; either obtain an official number or use
 the local/experimental range. The sudden addition or
 removal of a driver with this number should not cause
 ill effects to the system (bugs excepted.)

 IN PARTICULAR, ANY DISTRIBUTION WHICH CONTAINS A
 DEVICE DRIVER USING MAJOR NUMBER 42 IS NONCOMPLIANT.

 43 char isdn4linux virtual modem
 0 = /dev/ttyI0 First virtual modem
 ...
 63 = /dev/ttyI63 64th virtual modem

 43 block Network block devices
 0 = /dev/nb0 First network block device
 1 = /dev/nb1 Second network block device
 ...

 Network Block Device is somehow similar to loopback
 devices: If you read from it, it sends packet across
 network asking server for data. If you write to it, it
 sends packet telling server to write. It could be used
 to mounting filesystems over the net, swapping over
 the net, implementing block device in userland etc.

 44 char isdn4linux virtual modem - alternate devices
 0 = /dev/cui0 Callout device for ttyI0
 ...
 63 = /dev/cui63 Callout device for ttyI63

 44 block Flash Translation Layer (FTL) filesystems
 0 = /dev/ftla FTL on first Memory Technology Device
 16 = /dev/ftlb FTL on second Memory Technology Device
 32 = /dev/ftlc FTL on third Memory Technology Device
 ...
 240 = /dev/ftlp FTL on 16th Memory Technology Device

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the partition
 limit is 15 rather than 63 per disk (same as SCSI.)

 45 char isdn4linux ISDN BRI driver
 0 = /dev/isdn0 First virtual B channel raw data
 ...
 63 = /dev/isdn63 64th virtual B channel raw data
 64 = /dev/isdnctrl0 First channel control/debug
 ...
 127 = /dev/isdnctrl63 64th channel control/debug

 128 = /dev/ippp0 First SyncPPP device
 ...
 191 = /dev/ippp63 64th SyncPPP device

 255 = /dev/isdninfo ISDN monitor interface

 45 block Parallel port IDE disk devices
 0 = /dev/pda First parallel port IDE disk
 16 = /dev/pdb Second parallel port IDE disk
 32 = /dev/pdc Third parallel port IDE disk
 48 = /dev/pdd Fourth parallel port IDE disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the partition
 limit is 15 rather than 63 per disk.

 46 char Comtrol Rocketport serial card
 0 = /dev/ttyR0 First Rocketport port
 1 = /dev/ttyR1 Second Rocketport port
 ...
 46 block Parallel port ATAPI CD-ROM devices
 0 = /dev/pcd0 First parallel port ATAPI CD-ROM
 1 = /dev/pcd1 Second parallel port ATAPI CD-ROM
 2 = /dev/pcd2 Third parallel port ATAPI CD-ROM
 3 = /dev/pcd3 Fourth parallel port ATAPI CD-ROM

 47 char Comtrol Rocketport serial card - alternate devices
 0 = /dev/cur0 Callout device for ttyR0
 1 = /dev/cur1 Callout device for ttyR1
 ...
 47 block Parallel port ATAPI disk devices
 0 = /dev/pf0 First parallel port ATAPI disk
 1 = /dev/pf1 Second parallel port ATAPI disk
 2 = /dev/pf2 Third parallel port ATAPI disk
 3 = /dev/pf3 Fourth parallel port ATAPI disk

 This driver is intended for floppy disks and similar
 devices and hence does not support partitioning.

 48 char SDL RISCom serial card
 0 = /dev/ttyL0 First RISCom port
 1 = /dev/ttyL1 Second RISCom port
 ...
 48 block Mylex DAC960 PCI RAID controller; first controller
 0 = /dev/rd/c0d0 First disk, whole disk
 8 = /dev/rd/c0d1 Second disk, whole disk
 ...
 248 = /dev/rd/c0d31 32nd disk, whole disk

 For partitions add:
 0 = /dev/rd/c?d? Whole disk
 1 = /dev/rd/c?d?p1 First partition
 ...
 7 = /dev/rd/c?d?p7 Seventh partition

 49 char SDL RISCom serial card - alternate devices
 0 = /dev/cul0 Callout device for ttyL0
 1 = /dev/cul1 Callout device for ttyL1
 ...
 49 block Mylex DAC960 PCI RAID controller; second controller
 0 = /dev/rd/c1d0 First disk, whole disk
 8 = /dev/rd/c1d1 Second disk, whole disk
 ...
 248 = /dev/rd/c1d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 50 char Reserved for GLINT

 50 block Mylex DAC960 PCI RAID controller; third controller
 0 = /dev/rd/c2d0 First disk, whole disk
 8 = /dev/rd/c2d1 Second disk, whole disk
 ...
 248 = /dev/rd/c2d31 32nd disk, whole disk

 51 char Baycom radio modem OR Radio Tech BIM-XXX-RS232 radio modem
 0 = /dev/bc0 First Baycom radio modem
 1 = /dev/bc1 Second Baycom radio modem
 ...
 51 block Mylex DAC960 PCI RAID controller; fourth controller
 0 = /dev/rd/c3d0 First disk, whole disk
 8 = /dev/rd/c3d1 Second disk, whole disk
 ...
 248 = /dev/rd/c3d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 52 char Spellcaster DataComm/BRI ISDN card
 0 = /dev/dcbri0 First DataComm card
 1 = /dev/dcbri1 Second DataComm card
 2 = /dev/dcbri2 Third DataComm card
 3 = /dev/dcbri3 Fourth DataComm card

 52 block Mylex DAC960 PCI RAID controller; fifth controller
 0 = /dev/rd/c4d0 First disk, whole disk
 8 = /dev/rd/c4d1 Second disk, whole disk
 ...
 248 = /dev/rd/c4d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 53 char BDM interface for remote debugging MC683xx microcontrollers
 0 = /dev/pd_bdm0 PD BDM interface on lp0
 1 = /dev/pd_bdm1 PD BDM interface on lp1
 2 = /dev/pd_bdm2 PD BDM interface on lp2
 4 = /dev/icd_bdm0 ICD BDM interface on lp0
 5 = /dev/icd_bdm1 ICD BDM interface on lp1
 6 = /dev/icd_bdm2 ICD BDM interface on lp2

 This device is used for the interfacing to the MC683xx
 microcontrollers via Background Debug Mode by use of a
 Parallel Port interface. PD is the Motorola Public
 Domain Interface and ICD is the commercial interface
 by P&E.

 53 block Mylex DAC960 PCI RAID controller; sixth controller
 0 = /dev/rd/c5d0 First disk, whole disk
 8 = /dev/rd/c5d1 Second disk, whole disk
 ...
 248 = /dev/rd/c5d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 54 char Electrocardiognosis Holter serial card
 0 = /dev/holter0 First Holter port
 1 = /dev/holter1 Second Holter port
 2 = /dev/holter2 Third Holter port

 A custom serial card used by Electrocardiognosis SRL
 <mseritan@ottonel.pub.ro> to transfer data from Holter
 24-hour heart monitoring equipment.

 54 block Mylex DAC960 PCI RAID controller; seventh controller
 0 = /dev/rd/c6d0 First disk, whole disk
 8 = /dev/rd/c6d1 Second disk, whole disk
 ...
 248 = /dev/rd/c6d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 55 char DSP56001 digital signal processor
 0 = /dev/dsp56k First DSP56001

 55 block Mylex DAC960 PCI RAID controller; eighth controller
 0 = /dev/rd/c7d0 First disk, whole disk
 8 = /dev/rd/c7d1 Second disk, whole disk
 ...
 248 = /dev/rd/c7d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 56 char Apple Desktop Bus
 0 = /dev/adb ADB bus control

 Additional devices will be added to this number, all
 starting with /dev/adb.

 56 block Fifth IDE hard disk/CD-ROM interface
 0 = /dev/hdi Master: whole disk (or CD-ROM)
 64 = /dev/hdj Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 57 char Hayes ESP serial card
 0 = /dev/ttyP0 First ESP port
 1 = /dev/ttyP1 Second ESP port
 ...

 57 block Sixth IDE hard disk/CD-ROM interface
 0 = /dev/hdk Master: whole disk (or CD-ROM)
 64 = /dev/hdl Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 58 char Hayes ESP serial card - alternate devices
 0 = /dev/cup0 Callout device for ttyP0
 1 = /dev/cup1 Callout device for ttyP1
 ...

 58 block Reserved for logical volume manager

 59 char sf firewall package
 0 = /dev/firewall Communication with sf kernel module

 59 block Generic PDA filesystem device
 0 = /dev/pda0 First PDA device
 1 = /dev/pda1 Second PDA device
 ...

 The pda devices are used to mount filesystems on
 remote pda's (basically slow handheld machines with
 proprietary OS's and limited memory and storage
 running small fs translation drivers) through serial /
 IRDA / parallel links.

 NAMING CONFLICT -- PROPOSED REVISED NAME /dev/rpda0 etc

 60-63 char LOCAL/EXPERIMENTAL USE

 60-63 block LOCAL/EXPERIMENTAL USE
 Allocated for local/experimental use. For devices not
 assigned official numbers, these ranges should be
 used in order to avoid conflicting with future assignments.

 64 char ENskip kernel encryption package
 0 = /dev/enskip Communication with ENskip kernel module

 64 block Scramdisk/DriveCrypt encrypted devices
 0 = /dev/scramdisk/master Master node for ioctls
 1 = /dev/scramdisk/1 First encrypted device
 2 = /dev/scramdisk/2 Second encrypted device
 ...
 255 = /dev/scramdisk/255 255th encrypted device

 The filename of the encrypted container and the passwords
 are sent via ioctls (using the sdmount tool) to the master
 node which then activates them via one of the
 /dev/scramdisk/x nodes for loop mounting (all handled
 through the sdmount tool).

 Requested by: andy@scramdisklinux.org

 65 char Sundance "plink" Transputer boards (obsolete, unused)
 0 = /dev/plink0 First plink device
 1 = /dev/plink1 Second plink device
 2 = /dev/plink2 Third plink device
 3 = /dev/plink3 Fourth plink device
 64 = /dev/rplink0 First plink device, raw
 65 = /dev/rplink1 Second plink device, raw
 66 = /dev/rplink2 Third plink device, raw
 67 = /dev/rplink3 Fourth plink device, raw
 128 = /dev/plink0d First plink device, debug
 129 = /dev/plink1d Second plink device, debug
 130 = /dev/plink2d Third plink device, debug
 131 = /dev/plink3d Fourth plink device, debug
 192 = /dev/rplink0d First plink device, raw, debug
 193 = /dev/rplink1d Second plink device, raw, debug
 194 = /dev/rplink2d Third plink device, raw, debug
 195 = /dev/rplink3d Fourth plink device, raw, debug

 This is a commercial driver; contact James Howes
 <jth@prosig.demon.co.uk> for information.

 65 block SCSI disk devices (16-31)
 0 = /dev/sdq 17th SCSI disk whole disk
 16 = /dev/sdr 18th SCSI disk whole disk
 32 = /dev/sds 19th SCSI disk whole disk
 ...
 240 = /dev/sdaf 32nd SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 66 char YARC PowerPC PCI coprocessor card
 0 = /dev/yppcpci0 First YARC card
 1 = /dev/yppcpci1 Second YARC card
 ...

 66 block SCSI disk devices (32-47)
 0 = /dev/sdag 33th SCSI disk whole disk
 16 = /dev/sdah 34th SCSI disk whole disk
 32 = /dev/sdai 35th SCSI disk whole disk
 ...
 240 = /dev/sdav 48nd SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 67 char Coda network file system
 0 = /dev/cfs0 Coda cache manager

 See http://www.coda.cs.cmu.edu for information about Coda.

 67 block SCSI disk devices (48-63)
 0 = /dev/sdaw 49th SCSI disk whole disk
 16 = /dev/sdax 50th SCSI disk whole disk
 32 = /dev/sday 51st SCSI disk whole disk
 ...
 240 = /dev/sdbl 64th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 68 char CAPI 2.0 interface
 0 = /dev/capi20 Control device
 1 = /dev/capi20.00 First CAPI 2.0 application
 2 = /dev/capi20.01 Second CAPI 2.0 application
 ...
 20 = /dev/capi20.19 19th CAPI 2.0 application

 ISDN CAPI 2.0 driver for use with CAPI 2.0
 applications; currently supports the AVM B1 card.

 68 block SCSI disk devices (64-79)
 0 = /dev/sdbm 65th SCSI disk whole disk
 16 = /dev/sdbn 66th SCSI disk whole disk
 32 = /dev/sdbo 67th SCSI disk whole disk
 ...
 240 = /dev/sdcb 80th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 69 char MA16 numeric accelerator card
 0 = /dev/ma16 Board memory access

 69 block SCSI disk devices (80-95)
 0 = /dev/sdcc 81st SCSI disk whole disk
 16 = /dev/sdcd 82nd SCSI disk whole disk
 32 = /dev/sdce 83th SCSI disk whole disk
 ...
 240 = /dev/sdcr 96th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 70 char SpellCaster Protocol Services Interface
 0 = /dev/apscfg Configuration interface
 1 = /dev/apsauth Authentication interface
 2 = /dev/apslog Logging interface
 3 = /dev/apsdbg Debugging interface
 64 = /dev/apsisdn ISDN command interface
 65 = /dev/apsasync Async command interface
 128 = /dev/apsmon Monitor interface

 70 block SCSI disk devices (96-111)
 0 = /dev/sdcs 97th SCSI disk whole disk
 16 = /dev/sdct 98th SCSI disk whole disk
 32 = /dev/sdcu 99th SCSI disk whole disk
 ...
 240 = /dev/sddh 112nd SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 71 char Computone IntelliPort II serial card
 0 = /dev/ttyF0 IntelliPort II board 0, port 0
 1 = /dev/ttyF1 IntelliPort II board 0, port 1
 ...
 63 = /dev/ttyF63 IntelliPort II board 0, port 63
 64 = /dev/ttyF64 IntelliPort II board 1, port 0
 65 = /dev/ttyF65 IntelliPort II board 1, port 1
 ...
 127 = /dev/ttyF127 IntelliPort II board 1, port 63
 128 = /dev/ttyF128 IntelliPort II board 2, port 0
 129 = /dev/ttyF129 IntelliPort II board 2, port 1
 ...
 191 = /dev/ttyF191 IntelliPort II board 2, port 63
 192 = /dev/ttyF192 IntelliPort II board 3, port 0
 193 = /dev/ttyF193 IntelliPort II board 3, port 1
 ...
 255 = /dev/ttyF255 IntelliPort II board 3, port 63

 71 block SCSI disk devices (112-127)
 0 = /dev/sddi 113th SCSI disk whole disk
 16 = /dev/sddj 114th SCSI disk whole disk
 32 = /dev/sddk 115th SCSI disk whole disk
 ...
 240 = /dev/sddx 128th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 72 char Computone IntelliPort II serial card - alternate devices
 0 = /dev/cuf0 Callout device for ttyF0
 1 = /dev/cuf1 Callout device for ttyF1
 ...
 63 = /dev/cuf63 Callout device for ttyF63
 64 = /dev/cuf64 Callout device for ttyF64
 65 = /dev/cuf65 Callout device for ttyF65
 ...
 127 = /dev/cuf127 Callout device for ttyF127
 128 = /dev/cuf128 Callout device for ttyF128
 129 = /dev/cuf129 Callout device for ttyF129
 ...
 191 = /dev/cuf191 Callout device for ttyF191
 192 = /dev/cuf192 Callout device for ttyF192
 193 = /dev/cuf193 Callout device for ttyF193
 ...
 255 = /dev/cuf255 Callout device for ttyF255

 72 block Compaq Intelligent Drive Array, first controller
 0 = /dev/ida/c0d0 First logical drive whole disk
 16 = /dev/ida/c0d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c0d15 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 73 char Computone IntelliPort II serial card - control devices
 0 = /dev/ip2ipl0 Loadware device for board 0
 1 = /dev/ip2stat0 Status device for board 0
 4 = /dev/ip2ipl1 Loadware device for board 1
 5 = /dev/ip2stat1 Status device for board 1
 8 = /dev/ip2ipl2 Loadware device for board 2
 9 = /dev/ip2stat2 Status device for board 2
 12 = /dev/ip2ipl3 Loadware device for board 3
 13 = /dev/ip2stat3 Status device for board 3

 73 block Compaq Intelligent Drive Array, second controller
 0 = /dev/ida/c1d0 First logical drive whole disk
 16 = /dev/ida/c1d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c1d15 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 74 char SCI bridge
 0 = /dev/SCI/0 SCI device 0
 1 = /dev/SCI/1 SCI device 1
 ...

 Currently for Dolphin Interconnect Solutions' PCI-SCI
 bridge.

 74 block Compaq Intelligent Drive Array, third controller
 0 = /dev/ida/c2d0 First logical drive whole disk
 16 = /dev/ida/c2d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c2d15 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 75 char Specialix IO8+ serial card
 0 = /dev/ttyW0 First IO8+ port, first card
 1 = /dev/ttyW1 Second IO8+ port, first card
 ...
 8 = /dev/ttyW8 First IO8+ port, second card
 ...

 75 block Compaq Intelligent Drive Array, fourth controller
 0 = /dev/ida/c3d0 First logical drive whole disk
 16 = /dev/ida/c3d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c3d15 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 76 char Specialix IO8+ serial card - alternate devices
 0 = /dev/cuw0 Callout device for ttyW0
 1 = /dev/cuw1 Callout device for ttyW1
 ...
 8 = /dev/cuw8 Callout device for ttyW8
 ...

 76 block Compaq Intelligent Drive Array, fifth controller
 0 = /dev/ida/c4d0 First logical drive whole disk
 16 = /dev/ida/c4d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c4d15 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 77 char ComScire Quantum Noise Generator
 0 = /dev/qng ComScire Quantum Noise Generator

 77 block Compaq Intelligent Drive Array, sixth controller
 0 = /dev/ida/c5d0 First logical drive whole disk
 16 = /dev/ida/c5d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c5d15 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 78 char PAM Software's multimodem boards
 0 = /dev/ttyM0 First PAM modem
 1 = /dev/ttyM1 Second PAM modem
 ...

 78 block Compaq Intelligent Drive Array, seventh controller
 0 = /dev/ida/c6d0 First logical drive whole disk
 16 = /dev/ida/c6d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c6d15 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 79 char PAM Software's multimodem boards - alternate devices
 0 = /dev/cum0 Callout device for ttyM0
 1 = /dev/cum1 Callout device for ttyM1
 ...

 79 block Compaq Intelligent Drive Array, eighth controller
 0 = /dev/ida/c7d0 First logical drive whole disk
 16 = /dev/ida/c7d1 Second logical drive whole disk
 ...
 240 = /dev/ida/c715 16th logical drive whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 80 char Photometrics AT200 CCD camera
 0 = /dev/at200 Photometrics AT200 CCD camera

 80 block I2O hard disk
 0 = /dev/i2o/hda First I2O hard disk, whole disk
 16 = /dev/i2o/hdb Second I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hdp 16th I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 81 char video4linux
 0 = /dev/video0 Video capture/overlay device
 ...
 63 = /dev/video63 Video capture/overlay device
 64 = /dev/radio0 Radio device
 ...
 127 = /dev/radio63 Radio device
 128 = /dev/swradio0 Software Defined Radio device
 ...
 191 = /dev/swradio63 Software Defined Radio device
 224 = /dev/vbi0 Vertical blank interrupt
 ...
 255 = /dev/vbi31 Vertical blank interrupt

 Minor numbers are allocated dynamically unless
 CONFIG_VIDEO_FIXED_MINOR_RANGES (default n)
 configuration option is set.

 81 block I2O hard disk
 0 = /dev/i2o/hdq 17th I2O hard disk, whole disk
 16 = /dev/i2o/hdr 18th I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hdaf 32nd I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 82 char WiNRADiO communications receiver card
 0 = /dev/winradio0 First WiNRADiO card
 1 = /dev/winradio1 Second WiNRADiO card
 ...

 The driver and documentation may be obtained from
 http://www.winradio.com/

 82 block I2O hard disk
 0 = /dev/i2o/hdag 33rd I2O hard disk, whole disk
 16 = /dev/i2o/hdah 34th I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hdav 48th I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 83 char Matrox mga_vid video driver
 0 = /dev/mga_vid0 1st video card
 1 = /dev/mga_vid1 2nd video card
 2 = /dev/mga_vid2 3rd video card
 ...
 15 = /dev/mga_vid15 16th video card

 83 block I2O hard disk
 0 = /dev/i2o/hdaw 49th I2O hard disk, whole disk
 16 = /dev/i2o/hdax 50th I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hdbl 64th I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 84 char Ikon 1011[57] Versatec Greensheet Interface
 0 = /dev/ihcp0 First Greensheet port
 1 = /dev/ihcp1 Second Greensheet port

 84 block I2O hard disk
 0 = /dev/i2o/hdbm 65th I2O hard disk, whole disk
 16 = /dev/i2o/hdbn 66th I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hdcb 80th I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 85 char Linux/SGI shared memory input queue
 0 = /dev/shmiq Master shared input queue
 1 = /dev/qcntl0 First device pushed
 2 = /dev/qcntl1 Second device pushed
 ...

 85 block I2O hard disk
 0 = /dev/i2o/hdcc 81st I2O hard disk, whole disk
 16 = /dev/i2o/hdcd 82nd I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hdcr 96th I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 86 char SCSI media changer
 0 = /dev/sch0 First SCSI media changer
 1 = /dev/sch1 Second SCSI media changer
 ...

 86 block I2O hard disk
 0 = /dev/i2o/hdcs 97th I2O hard disk, whole disk
 16 = /dev/i2o/hdct 98th I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hddh 112th I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 87 char Sony Control-A1 stereo control bus
 0 = /dev/controla0 First device on chain
 1 = /dev/controla1 Second device on chain
 ...

 87 block I2O hard disk
 0 = /dev/i2o/hddi 113rd I2O hard disk, whole disk
 16 = /dev/i2o/hddj 114th I2O hard disk, whole disk
 ...
 240 = /dev/i2o/hddx 128th I2O hard disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 88 char COMX synchronous serial card
 0 = /dev/comx0 COMX channel 0
 1 = /dev/comx1 COMX channel 1
 ...

 88 block Seventh IDE hard disk/CD-ROM interface
 0 = /dev/hdm Master: whole disk (or CD-ROM)
 64 = /dev/hdn Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 89 char I2C bus interface
 0 = /dev/i2c-0 First I2C adapter
 1 = /dev/i2c-1 Second I2C adapter
 ...

 89 block Eighth IDE hard disk/CD-ROM interface
 0 = /dev/hdo Master: whole disk (or CD-ROM)
 64 = /dev/hdp Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 90 char Memory Technology Device (RAM, ROM, Flash)
 0 = /dev/mtd0 First MTD (rw)
 1 = /dev/mtdr0 First MTD (ro)
 ...
 30 = /dev/mtd15 16th MTD (rw)
 31 = /dev/mtdr15 16th MTD (ro)

 90 block Ninth IDE hard disk/CD-ROM interface
 0 = /dev/hdq Master: whole disk (or CD-ROM)
 64 = /dev/hdr Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 91 char CAN-Bus devices
 0 = /dev/can0 First CAN-Bus controller
 1 = /dev/can1 Second CAN-Bus controller
 ...

 91 block Tenth IDE hard disk/CD-ROM interface
 0 = /dev/hds Master: whole disk (or CD-ROM)
 64 = /dev/hdt Slave: whole disk (or CD-ROM)

 Partitions are handled the same way as for the first
 interface (see major number 3).

 92 char Reserved for ith Kommunikationstechnik MIC ISDN card

 92 block PPDD encrypted disk driver
 0 = /dev/ppdd0 First encrypted disk
 1 = /dev/ppdd1 Second encrypted disk
 ...

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 93 char

 93 block NAND Flash Translation Layer filesystem
 0 = /dev/nftla First NFTL layer
 16 = /dev/nftlb Second NFTL layer
 ...
 240 = /dev/nftlp 16th NTFL layer

 94 char

 94 block IBM S/390 DASD block storage
 0 = /dev/dasda First DASD device, major
 1 = /dev/dasda1 First DASD device, block 1
 2 = /dev/dasda2 First DASD device, block 2
 3 = /dev/dasda3 First DASD device, block 3
 4 = /dev/dasdb Second DASD device, major
 5 = /dev/dasdb1 Second DASD device, block 1
 6 = /dev/dasdb2 Second DASD device, block 2
 7 = /dev/dasdb3 Second DASD device, block 3
 ...

 95 char IP filter
 0 = /dev/ipl Filter control device/log file
 1 = /dev/ipnat NAT control device/log file
 2 = /dev/ipstate State information log file
 3 = /dev/ipauth Authentication control device/log file
 ...

 96 char Parallel port ATAPI tape devices
 0 = /dev/pt0 First parallel port ATAPI tape
 1 = /dev/pt1 Second parallel port ATAPI tape
 ...
 128 = /dev/npt0 First p.p. ATAPI tape, no rewind
 129 = /dev/npt1 Second p.p. ATAPI tape, no rewind
 ...

 96 block Inverse NAND Flash Translation Layer
 0 = /dev/inftla First INFTL layer
 16 = /dev/inftlb Second INFTL layer
 ...
 240 = /dev/inftlp 16th INTFL layer

 97 char Parallel port generic ATAPI interface
 0 = /dev/pg0 First parallel port ATAPI device
 1 = /dev/pg1 Second parallel port ATAPI device
 2 = /dev/pg2 Third parallel port ATAPI device
 3 = /dev/pg3 Fourth parallel port ATAPI device

 These devices support the same API as the generic SCSI
 devices.

 98 char Control and Measurement Device (comedi)
 0 = /dev/comedi0 First comedi device
 1 = /dev/comedi1 Second comedi device
 ...

 See http://stm.lbl.gov/comedi.

 98 block User-mode virtual block device
 0 = /dev/ubda First user-mode block device
 16 = /dev/udbb Second user-mode block device
 ...

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 This device is used by the user-mode virtual kernel port.

 99 char Raw parallel ports
 0 = /dev/parport0 First parallel port
 1 = /dev/parport1 Second parallel port
 ...

 99 block JavaStation flash disk
 0 = /dev/jsfd JavaStation flash disk

 100 char Telephony for Linux
 0 = /dev/phone0 First telephony device
 1 = /dev/phone1 Second telephony device
 ...

 101 char Motorola DSP 56xxx board
 0 = /dev/mdspstat Status information
 1 = /dev/mdsp1 First DSP board I/O controls
 ...
 16 = /dev/mdsp16 16th DSP board I/O controls

 101 block AMI HyperDisk RAID controller
 0 = /dev/amiraid/ar0 First array whole disk
 16 = /dev/amiraid/ar1 Second array whole disk
 ...
 240 = /dev/amiraid/ar15 16th array whole disk

 For each device, partitions are added as:
 0 = /dev/amiraid/ar? Whole disk
 1 = /dev/amiraid/ar?p1 First partition
 2 = /dev/amiraid/ar?p2 Second partition
 ...
 15 = /dev/amiraid/ar?p15 15th partition

 102 char

 102 block Compressed block device
 0 = /dev/cbd/a First compressed block device, whole device
 16 = /dev/cbd/b Second compressed block device, whole device
 ...
 240 = /dev/cbd/p 16th compressed block device, whole device

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 103 char Arla network file system
 0 = /dev/nnpfs0 First NNPFS device
 1 = /dev/nnpfs1 Second NNPFS device

 Arla is a free clone of the Andrew File System, AFS.
 The NNPFS device gives user mode filesystem
 implementations a kernel presence for caching and easy
 mounting. For more information about the project,
 write to <arla-drinkers@stacken.kth.se> or see
 http://www.stacken.kth.se/project/arla/

 103 block Audit device
 0 = /dev/audit Audit device

 104 char Flash BIOS support

 104 block Compaq Next Generation Drive Array, first controller
 0 = /dev/cciss/c0d0 First logical drive, whole disk
 16 = /dev/cciss/c0d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c0d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 105 char Comtrol VS-1000 serial controller
 0 = /dev/ttyV0 First VS-1000 port
 1 = /dev/ttyV1 Second VS-1000 port
 ...

 105 block Compaq Next Generation Drive Array, second controller
 0 = /dev/cciss/c1d0 First logical drive, whole disk
 16 = /dev/cciss/c1d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c1d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 106 char Comtrol VS-1000 serial controller - alternate devices
 0 = /dev/cuv0 First VS-1000 port
 1 = /dev/cuv1 Second VS-1000 port
 ...

 106 block Compaq Next Generation Drive Array, third controller
 0 = /dev/cciss/c2d0 First logical drive, whole disk
 16 = /dev/cciss/c2d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c2d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 107 char 3Dfx Voodoo Graphics device
 0 = /dev/3dfx Primary 3Dfx graphics device

 107 block Compaq Next Generation Drive Array, fourth controller
 0 = /dev/cciss/c3d0 First logical drive, whole disk
 16 = /dev/cciss/c3d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c3d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 108 char Device independent PPP interface
 0 = /dev/ppp Device independent PPP interface

 108 block Compaq Next Generation Drive Array, fifth controller
 0 = /dev/cciss/c4d0 First logical drive, whole disk
 16 = /dev/cciss/c4d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c4d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 109 char Reserved for logical volume manager

 109 block Compaq Next Generation Drive Array, sixth controller
 0 = /dev/cciss/c5d0 First logical drive, whole disk
 16 = /dev/cciss/c5d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c5d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 110 char miroMEDIA Surround board
 0 = /dev/srnd0 First miroMEDIA Surround board
 1 = /dev/srnd1 Second miroMEDIA Surround board
 ...

 110 block Compaq Next Generation Drive Array, seventh controller
 0 = /dev/cciss/c6d0 First logical drive, whole disk
 16 = /dev/cciss/c6d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c6d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 111 char

 111 block Compaq Next Generation Drive Array, eighth controller
 0 = /dev/cciss/c7d0 First logical drive, whole disk
 16 = /dev/cciss/c7d1 Second logical drive, whole disk
 ...
 240 = /dev/cciss/c7d15 16th logical drive, whole disk

 Partitions are handled the same way as for Mylex
 DAC960 (see major number 48) except that the limit on
 partitions is 15.

 112 char ISI serial card
 0 = /dev/ttyM0 First ISI port
 1 = /dev/ttyM1 Second ISI port
 ...

 There is currently a device-naming conflict between
 these and PAM multimodems (major 78).

 112 block IBM iSeries virtual disk
 0 = /dev/iseries/vda First virtual disk, whole disk
 8 = /dev/iseries/vdb Second virtual disk, whole disk
 ...
 200 = /dev/iseries/vdz 26th virtual disk, whole disk
 208 = /dev/iseries/vdaa 27th virtual disk, whole disk
 ...
 248 = /dev/iseries/vdaf 32nd virtual disk, whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 7.

 113 char ISI serial card - alternate devices
 0 = /dev/cum0 Callout device for ttyM0
 1 = /dev/cum1 Callout device for ttyM1
 ...

 113 block IBM iSeries virtual CD-ROM
 0 = /dev/iseries/vcda First virtual CD-ROM
 1 = /dev/iseries/vcdb Second virtual CD-ROM
 ...

 114 char Picture Elements ISE board
 0 = /dev/ise0 First ISE board
 1 = /dev/ise1 Second ISE board
 ...
 128 = /dev/isex0 Control node for first ISE board
 129 = /dev/isex1 Control node for second ISE board
 ...

 The ISE board is an embedded computer, optimized for
 image processing. The /dev/iseN nodes are the general
 I/O access to the board, the /dev/isex0 nodes command
 nodes used to control the board.

 114 block IDE BIOS powered software RAID interfaces such as the
 Promise Fastrak

 0 = /dev/ataraid/d0
 1 = /dev/ataraid/d0p1
 2 = /dev/ataraid/d0p2
 ...
 16 = /dev/ataraid/d1
 17 = /dev/ataraid/d1p1
 18 = /dev/ataraid/d1p2
 ...
 255 = /dev/ataraid/d15p15

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 115 char TI link cable devices (115 was formerly the console driver speaker)
 0 = /dev/tipar0 Parallel cable on first parallel port
 ...
 7 = /dev/tipar7 Parallel cable on seventh parallel port

 8 = /dev/tiser0 Serial cable on first serial port
 ...
 15 = /dev/tiser7 Serial cable on seventh serial port

 16 = /dev/tiusb0 First USB cable
 ...
 47 = /dev/tiusb31 32nd USB cable

 115 block NetWare (NWFS) Devices (0-255)

 The NWFS (NetWare) devices are used to present a
 collection of NetWare Mirror Groups or NetWare
 Partitions as a logical storage segment for
 use in mounting NetWare volumes. A maximum of
 256 NetWare volumes can be supported in a single
 machine.

 http://cgfa.telepac.pt/ftp2/kernel.org/linux/kernel/people/jmerkey/nwfs/

 0 = /dev/nwfs/v0 First NetWare (NWFS) Logical Volume
 1 = /dev/nwfs/v1 Second NetWare (NWFS) Logical Volume
 2 = /dev/nwfs/v2 Third NetWare (NWFS) Logical Volume
 ...
 255 = /dev/nwfs/v255 Last NetWare (NWFS) Logical Volume

 116 char Advanced Linux Sound Driver (ALSA)

 116 block MicroMemory battery backed RAM adapter (NVRAM)
 Supports 16 boards, 15 partitions each.
 Requested by neilb at cse.unsw.edu.au.

 0 = /dev/umem/d0 Whole of first board
 1 = /dev/umem/d0p1 First partition of first board
 2 = /dev/umem/d0p2 Second partition of first board
 15 = /dev/umem/d0p15 15th partition of first board

 16 = /dev/umem/d1 Whole of second board
 17 = /dev/umem/d1p1 First partition of second board
 ...
 255= /dev/umem/d15p15 15th partition of 16th board.

 117 char COSA/SRP synchronous serial card
 0 = /dev/cosa0c0 1st board, 1st channel
 1 = /dev/cosa0c1 1st board, 2nd channel
 ...
 16 = /dev/cosa1c0 2nd board, 1st channel
 17 = /dev/cosa1c1 2nd board, 2nd channel
 ...

 117 block Enterprise Volume Management System (EVMS)

 The EVMS driver uses a layered, plug-in model to provide
 unparalleled flexibility and extensibility in managing
 storage. This allows for easy expansion or customization
 of various levels of volume management. Requested by
 Mark Peloquin (peloquin at us.ibm.com).

 Note: EVMS populates and manages all the devnodes in
 /dev/evms.

 http://sf.net/projects/evms

 0 = /dev/evms/block_device EVMS block device
 1 = /dev/evms/legacyname1 First EVMS legacy device
 2 = /dev/evms/legacyname2 Second EVMS legacy device
 ...
 Both ranges can grow (down or up) until they meet.
 ...
 254 = /dev/evms/EVMSname2 Second EVMS native device
 255 = /dev/evms/EVMSname1 First EVMS native device

 Note: legacyname(s) are derived from the normal legacy
 device names. For example, /dev/hda5 would become
 /dev/evms/hda5.

 118 char IBM Cryptographic Accelerator
 0 = /dev/ica Virtual interface to all IBM Crypto Accelerators
 1 = /dev/ica0 IBMCA Device 0
 2 = /dev/ica1 IBMCA Device 1
 ...

 119 char VMware virtual network control
 0 = /dev/vnet0 1st virtual network
 1 = /dev/vnet1 2nd virtual network
 ...

 120-127 char LOCAL/EXPERIMENTAL USE

 120-127 block LOCAL/EXPERIMENTAL USE
 Allocated for local/experimental use. For devices not
 assigned official numbers, these ranges should be
 used in order to avoid conflicting with future assignments.

 128-135 char Unix98 PTY masters

 These devices should not have corresponding device
 nodes; instead they should be accessed through the
 /dev/ptmx cloning interface.

 128 block SCSI disk devices (128-143)
 0 = /dev/sddy 129th SCSI disk whole disk
 16 = /dev/sddz 130th SCSI disk whole disk
 32 = /dev/sdea 131th SCSI disk whole disk
 ...
 240 = /dev/sden 144th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 129 block SCSI disk devices (144-159)
 0 = /dev/sdeo 145th SCSI disk whole disk
 16 = /dev/sdep 146th SCSI disk whole disk
 32 = /dev/sdeq 147th SCSI disk whole disk
 ...
 240 = /dev/sdfd 160th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 130 char (Misc devices)

 130 block SCSI disk devices (160-175)
 0 = /dev/sdfe 161st SCSI disk whole disk
 16 = /dev/sdff 162nd SCSI disk whole disk
 32 = /dev/sdfg 163rd SCSI disk whole disk
 ...
 240 = /dev/sdft 176th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 131 block SCSI disk devices (176-191)
 0 = /dev/sdfu 177th SCSI disk whole disk
 16 = /dev/sdfv 178th SCSI disk whole disk
 32 = /dev/sdfw 179th SCSI disk whole disk
 ...
 240 = /dev/sdgj 192nd SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 132 block SCSI disk devices (192-207)
 0 = /dev/sdgk 193rd SCSI disk whole disk
 16 = /dev/sdgl 194th SCSI disk whole disk
 32 = /dev/sdgm 195th SCSI disk whole disk
 ...
 240 = /dev/sdgz 208th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 133 block SCSI disk devices (208-223)
 0 = /dev/sdha 209th SCSI disk whole disk
 16 = /dev/sdhb 210th SCSI disk whole disk
 32 = /dev/sdhc 211th SCSI disk whole disk
 ...
 240 = /dev/sdhp 224th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 134 block SCSI disk devices (224-239)
 0 = /dev/sdhq 225th SCSI disk whole disk
 16 = /dev/sdhr 226th SCSI disk whole disk
 32 = /dev/sdhs 227th SCSI disk whole disk
 ...
 240 = /dev/sdif 240th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 135 block SCSI disk devices (240-255)
 0 = /dev/sdig 241st SCSI disk whole disk
 16 = /dev/sdih 242nd SCSI disk whole disk
 32 = /dev/sdih 243rd SCSI disk whole disk
 ...
 240 = /dev/sdiv 256th SCSI disk whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 136-143 char Unix98 PTY slaves
 0 = /dev/pts/0 First Unix98 pseudo-TTY
 1 = /dev/pts/1 Second Unix98 pseudo-TTY
 ...

 These device nodes are automatically generated with
 the proper permissions and modes by mounting the
 devpts filesystem onto /dev/pts with the appropriate
 mount options (distribution dependent, however, on
 most distributions the appropriate options are
 "mode=0620,gid=<gid of the "tty" group>".)

 136 block Mylex DAC960 PCI RAID controller; ninth controller
 0 = /dev/rd/c8d0 First disk, whole disk
 8 = /dev/rd/c8d1 Second disk, whole disk
 ...
 248 = /dev/rd/c8d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 137 block Mylex DAC960 PCI RAID controller; tenth controller
 0 = /dev/rd/c9d0 First disk, whole disk
 8 = /dev/rd/c9d1 Second disk, whole disk
 ...
 248 = /dev/rd/c9d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 138 block Mylex DAC960 PCI RAID controller; eleventh controller
 0 = /dev/rd/c10d0 First disk, whole disk
 8 = /dev/rd/c10d1 Second disk, whole disk
 ...
 248 = /dev/rd/c10d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 139 block Mylex DAC960 PCI RAID controller; twelfth controller
 0 = /dev/rd/c11d0 First disk, whole disk
 8 = /dev/rd/c11d1 Second disk, whole disk
 ...
 248 = /dev/rd/c11d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 140 block Mylex DAC960 PCI RAID controller; thirteenth controller
 0 = /dev/rd/c12d0 First disk, whole disk
 8 = /dev/rd/c12d1 Second disk, whole disk
 ...
 248 = /dev/rd/c12d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 141 block Mylex DAC960 PCI RAID controller; fourteenth controller
 0 = /dev/rd/c13d0 First disk, whole disk
 8 = /dev/rd/c13d1 Second disk, whole disk
 ...
 248 = /dev/rd/c13d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 142 block Mylex DAC960 PCI RAID controller; fifteenth controller
 0 = /dev/rd/c14d0 First disk, whole disk
 8 = /dev/rd/c14d1 Second disk, whole disk
 ...
 248 = /dev/rd/c14d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 143 block Mylex DAC960 PCI RAID controller; sixteenth controller
 0 = /dev/rd/c15d0 First disk, whole disk
 8 = /dev/rd/c15d1 Second disk, whole disk
 ...
 248 = /dev/rd/c15d31 32nd disk, whole disk

 Partitions are handled as for major 48.

 144 char Encapsulated PPP
 0 = /dev/pppox0 First PPP over Ethernet
 ...
 63 = /dev/pppox63 64th PPP over Ethernet

 This is primarily used for ADSL.

 The SST 5136-DN DeviceNet interface driver has been
 relocated to major 183 due to an unfortunate conflict.

 144 block Expansion Area #1 for more non-device (e.g. NFS) mounts
 0 = mounted device 256
 255 = mounted device 511

 145 char SAM9407-based soundcard
 0 = /dev/sam0_mixer
 1 = /dev/sam0_sequencer
 2 = /dev/sam0_midi00
 3 = /dev/sam0_dsp
 4 = /dev/sam0_audio
 6 = /dev/sam0_sndstat
 18 = /dev/sam0_midi01
 34 = /dev/sam0_midi02
 50 = /dev/sam0_midi03
 64 = /dev/sam1_mixer
 ...
 128 = /dev/sam2_mixer
 ...
 192 = /dev/sam3_mixer
 ...

 Device functions match OSS, but offer a number of
 addons, which are sam9407 specific. OSS can be
 operated simultaneously, taking care of the codec.

 145 block Expansion Area #2 for more non-device (e.g. NFS) mounts
 0 = mounted device 512
 255 = mounted device 767

 146 char SYSTRAM SCRAMNet mirrored-memory network
 0 = /dev/scramnet0 First SCRAMNet device
 1 = /dev/scramnet1 Second SCRAMNet device
 ...

 146 block Expansion Area #3 for more non-device (e.g. NFS) mounts
 0 = mounted device 768
 255 = mounted device 1023

 147 char Aureal Semiconductor Vortex Audio device
 0 = /dev/aureal0 First Aureal Vortex
 1 = /dev/aureal1 Second Aureal Vortex
 ...

 147 block Distributed Replicated Block Device (DRBD)
 0 = /dev/drbd0 First DRBD device
 1 = /dev/drbd1 Second DRBD device
 ...

 148 char Technology Concepts serial card
 0 = /dev/ttyT0 First TCL port
 1 = /dev/ttyT1 Second TCL port
 ...

 149 char Technology Concepts serial card - alternate devices
 0 = /dev/cut0 Callout device for ttyT0
 1 = /dev/cut0 Callout device for ttyT1
 ...

 150 char Real-Time Linux FIFOs
 0 = /dev/rtf0 First RTLinux FIFO
 1 = /dev/rtf1 Second RTLinux FIFO
 ...

 151 char DPT I2O SmartRaid V controller
 0 = /dev/dpti0 First DPT I2O adapter
 1 = /dev/dpti1 Second DPT I2O adapter
 ...

 152 char EtherDrive Control Device
 0 = /dev/etherd/ctl Connect/Disconnect an EtherDrive
 1 = /dev/etherd/err Monitor errors
 2 = /dev/etherd/raw Raw AoE packet monitor

 152 block EtherDrive Block Devices
 0 = /dev/etherd/0 EtherDrive 0
 ...
 255 = /dev/etherd/255 EtherDrive 255

 153 char SPI Bus Interface (sometimes referred to as MicroWire)
 0 = /dev/spi0 First SPI device on the bus
 1 = /dev/spi1 Second SPI device on the bus
 ...
 15 = /dev/spi15 Sixteenth SPI device on the bus

 153 block Enhanced Metadisk RAID (EMD) storage units
 0 = /dev/emd/0 First unit
 1 = /dev/emd/0p1 Partition 1 on First unit
 2 = /dev/emd/0p2 Partition 2 on First unit
 ...
 15 = /dev/emd/0p15 Partition 15 on First unit

 16 = /dev/emd/1 Second unit
 32 = /dev/emd/2 Third unit
 ...
 240 = /dev/emd/15 Sixteenth unit

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 154 char Specialix RIO serial card
 0 = /dev/ttySR0 First RIO port
 ...
 255 = /dev/ttySR255 256th RIO port

 155 char Specialix RIO serial card - alternate devices
 0 = /dev/cusr0 Callout device for ttySR0
 ...
 255 = /dev/cusr255 Callout device for ttySR255

 156 char Specialix RIO serial card
 0 = /dev/ttySR256 257th RIO port
 ...
 255 = /dev/ttySR511 512th RIO port

 157 char Specialix RIO serial card - alternate devices
 0 = /dev/cusr256 Callout device for ttySR256
 ...
 255 = /dev/cusr511 Callout device for ttySR511

 158 char Dialogic GammaLink fax driver
 0 = /dev/gfax0 GammaLink channel 0
 1 = /dev/gfax1 GammaLink channel 1
 ...

 159 char RESERVED

 159 block RESERVED

 160 char General Purpose Instrument Bus (GPIB)
 0 = /dev/gpib0 First GPIB bus
 1 = /dev/gpib1 Second GPIB bus
 ...

 160 block Carmel 8-port SATA Disks on First Controller
 0 = /dev/carmel/0 SATA disk 0 whole disk
 1 = /dev/carmel/0p1 SATA disk 0 partition 1
 ...
 31 = /dev/carmel/0p31 SATA disk 0 partition 31

 32 = /dev/carmel/1 SATA disk 1 whole disk
 64 = /dev/carmel/2 SATA disk 2 whole disk
 ...
 224 = /dev/carmel/7 SATA disk 7 whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 31.

 161 char IrCOMM devices (IrDA serial/parallel emulation)
 0 = /dev/ircomm0 First IrCOMM device
 1 = /dev/ircomm1 Second IrCOMM device
 ...
 16 = /dev/irlpt0 First IrLPT device
 17 = /dev/irlpt1 Second IrLPT device
 ...

 161 block Carmel 8-port SATA Disks on Second Controller
 0 = /dev/carmel/8 SATA disk 8 whole disk
 1 = /dev/carmel/8p1 SATA disk 8 partition 1
 ...
 31 = /dev/carmel/8p31 SATA disk 8 partition 31

 32 = /dev/carmel/9 SATA disk 9 whole disk
 64 = /dev/carmel/10 SATA disk 10 whole disk
 ...
 224 = /dev/carmel/15 SATA disk 15 whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 31.

 162 char Raw block device interface
 0 = /dev/rawctl Raw I/O control device
 1 = /dev/raw/raw1 First raw I/O device
 2 = /dev/raw/raw2 Second raw I/O device
 ...
 max minor number of raw device is set by kernel config
 MAX_RAW_DEVS or raw module parameter 'max_raw_devs'

 163 char

 164 char Chase Research AT/PCI-Fast serial card
 0 = /dev/ttyCH0 AT/PCI-Fast board 0, port 0
 ...
 15 = /dev/ttyCH15 AT/PCI-Fast board 0, port 15
 16 = /dev/ttyCH16 AT/PCI-Fast board 1, port 0
 ...
 31 = /dev/ttyCH31 AT/PCI-Fast board 1, port 15
 32 = /dev/ttyCH32 AT/PCI-Fast board 2, port 0
 ...
 47 = /dev/ttyCH47 AT/PCI-Fast board 2, port 15
 48 = /dev/ttyCH48 AT/PCI-Fast board 3, port 0
 ...
 63 = /dev/ttyCH63 AT/PCI-Fast board 3, port 15

 165 char Chase Research AT/PCI-Fast serial card - alternate devices
 0 = /dev/cuch0 Callout device for ttyCH0
 ...
 63 = /dev/cuch63 Callout device for ttyCH63

 166 char ACM USB modems
 0 = /dev/ttyACM0 First ACM modem
 1 = /dev/ttyACM1 Second ACM modem
 ...

 167 char ACM USB modems - alternate devices
 0 = /dev/cuacm0 Callout device for ttyACM0
 1 = /dev/cuacm1 Callout device for ttyACM1
 ...

 168 char Eracom CSA7000 PCI encryption adaptor
 0 = /dev/ecsa0 First CSA7000
 1 = /dev/ecsa1 Second CSA7000
 ...

 169 char Eracom CSA8000 PCI encryption adaptor
 0 = /dev/ecsa8-0 First CSA8000
 1 = /dev/ecsa8-1 Second CSA8000
 ...

 170 char AMI MegaRAC remote access controller
 0 = /dev/megarac0 First MegaRAC card
 1 = /dev/megarac1 Second MegaRAC card
 ...

 171 char Reserved for IEEE 1394 (Firewire)

 172 char Moxa Intellio serial card
 0 = /dev/ttyMX0 First Moxa port
 1 = /dev/ttyMX1 Second Moxa port
 ...
 127 = /dev/ttyMX127 128th Moxa port
 128 = /dev/moxactl Moxa control port

 173 char Moxa Intellio serial card - alternate devices
 0 = /dev/cumx0 Callout device for ttyMX0
 1 = /dev/cumx1 Callout device for ttyMX1
 ...
 127 = /dev/cumx127 Callout device for ttyMX127

 174 char SmartIO serial card
 0 = /dev/ttySI0 First SmartIO port
 1 = /dev/ttySI1 Second SmartIO port
 ...

 175 char SmartIO serial card - alternate devices
 0 = /dev/cusi0 Callout device for ttySI0
 1 = /dev/cusi1 Callout device for ttySI1
 ...

 176 char nCipher nFast PCI crypto accelerator
 0 = /dev/nfastpci0 First nFast PCI device
 1 = /dev/nfastpci1 First nFast PCI device
 ...

 177 char TI PCILynx memory spaces
 0 = /dev/pcilynx/aux0 AUX space of first PCILynx card
 ...
 15 = /dev/pcilynx/aux15 AUX space of 16th PCILynx card
 16 = /dev/pcilynx/rom0 ROM space of first PCILynx card
 ...
 31 = /dev/pcilynx/rom15 ROM space of 16th PCILynx card
 32 = /dev/pcilynx/ram0 RAM space of first PCILynx card
 ...
 47 = /dev/pcilynx/ram15 RAM space of 16th PCILynx card

 178 char Giganet cLAN1xxx virtual interface adapter
 0 = /dev/clanvi0 First cLAN adapter
 1 = /dev/clanvi1 Second cLAN adapter
 ...

 179 block MMC block devices
 0 = /dev/mmcblk0 First SD/MMC card
 1 = /dev/mmcblk0p1 First partition on first MMC card
 8 = /dev/mmcblk1 Second SD/MMC card
 ...

 The start of next SD/MMC card can be configured with
 CONFIG_MMC_BLOCK_MINORS, or overridden at boot/modprobe
 time using the mmcblk.perdev_minors option. That would
 bump the offset between each card to be the configured
 value instead of the default 8.

 179 char CCube DVXChip-based PCI products
 0 = /dev/dvxirq0 First DVX device
 1 = /dev/dvxirq1 Second DVX device
 ...

 180 char USB devices
 0 = /dev/usb/lp0 First USB printer
 ...
 15 = /dev/usb/lp15 16th USB printer
 48 = /dev/usb/scanner0 First USB scanner
 ...
 63 = /dev/usb/scanner15 16th USB scanner
 64 = /dev/usb/rio500 Diamond Rio 500
 65 = /dev/usb/usblcd USBLCD Interface (info@usblcd.de)
 66 = /dev/usb/cpad0 Synaptics cPad (mouse/LCD)
 96 = /dev/usb/hiddev0 1st USB HID device
 ...
 111 = /dev/usb/hiddev15 16th USB HID device
 112 = /dev/usb/auer0 1st auerswald ISDN device
 ...
 127 = /dev/usb/auer15 16th auerswald ISDN device
 128 = /dev/usb/brlvgr0 First Braille Voyager device
 ...
 131 = /dev/usb/brlvgr3 Fourth Braille Voyager device
 132 = /dev/usb/idmouse ID Mouse (fingerprint scanner) device
 133 = /dev/usb/sisusbvga1 First SiSUSB VGA device
 ...
 140 = /dev/usb/sisusbvga8 Eighth SISUSB VGA device
 144 = /dev/usb/lcd USB LCD device
 160 = /dev/usb/legousbtower0 1st USB Legotower device
 ...
 175 = /dev/usb/legousbtower15 16th USB Legotower device
 176 = /dev/usb/usbtmc1 First USB TMC device
 ...
 191 = /dev/usb/usbtmc16 16th USB TMC device
 192 = /dev/usb/yurex1 First USB Yurex device
 ...
 209 = /dev/usb/yurex16 16th USB Yurex device

 180 block USB block devices
 0 = /dev/uba First USB block device
 8 = /dev/ubb Second USB block device
 16 = /dev/ubc Third USB block device
 ...

 181 char Conrad Electronic parallel port radio clocks
 0 = /dev/pcfclock0 First Conrad radio clock
 1 = /dev/pcfclock1 Second Conrad radio clock
 ...

 182 char Picture Elements THR2 binarizer
 0 = /dev/pethr0 First THR2 board
 1 = /dev/pethr1 Second THR2 board
 ...

 183 char SST 5136-DN DeviceNet interface
 0 = /dev/ss5136dn0 First DeviceNet interface
 1 = /dev/ss5136dn1 Second DeviceNet interface
 ...

 This device used to be assigned to major number 144.
 It had to be moved due to an unfortunate conflict.

 184 char Picture Elements' video simulator/sender
 0 = /dev/pevss0 First sender board
 1 = /dev/pevss1 Second sender board
 ...

 185 char InterMezzo high availability file system
 0 = /dev/intermezzo0 First cache manager
 1 = /dev/intermezzo1 Second cache manager
 ...

 See http://web.archive.org/web/20080115195241/
 http://inter-mezzo.org/index.html

 186 char Object-based storage control device
 0 = /dev/obd0 First obd control device
 1 = /dev/obd1 Second obd control device
 ...

 See ftp://ftp.lustre.org/pub/obd for code and information.

 187 char DESkey hardware encryption device
 0 = /dev/deskey0 First DES key
 1 = /dev/deskey1 Second DES key
 ...

 188 char USB serial converters
 0 = /dev/ttyUSB0 First USB serial converter
 1 = /dev/ttyUSB1 Second USB serial converter
 ...

 189 char USB serial converters - alternate devices
 0 = /dev/cuusb0 Callout device for ttyUSB0
 1 = /dev/cuusb1 Callout device for ttyUSB1
 ...

 190 char Kansas City tracker/tuner card
 0 = /dev/kctt0 First KCT/T card
 1 = /dev/kctt1 Second KCT/T card
 ...

 191 char Reserved for PCMCIA

 192 char Kernel profiling interface
 0 = /dev/profile Profiling control device
 1 = /dev/profile0 Profiling device for CPU 0
 2 = /dev/profile1 Profiling device for CPU 1
 ...

 193 char Kernel event-tracing interface
 0 = /dev/trace Tracing control device
 1 = /dev/trace0 Tracing device for CPU 0
 2 = /dev/trace1 Tracing device for CPU 1
 ...

 194 char linVideoStreams (LINVS)
 0 = /dev/mvideo/status0 Video compression status
 1 = /dev/mvideo/stream0 Video stream
 2 = /dev/mvideo/frame0 Single compressed frame
 3 = /dev/mvideo/rawframe0 Raw uncompressed frame
 4 = /dev/mvideo/codec0 Direct codec access
 5 = /dev/mvideo/video4linux0 Video4Linux compatibility

 16 = /dev/mvideo/status1 Second device
 ...
 32 = /dev/mvideo/status2 Third device
 ...
 ...
 240 = /dev/mvideo/status15 16th device
 ...

 195 char Nvidia graphics devices
 0 = /dev/nvidia0 First Nvidia card
 1 = /dev/nvidia1 Second Nvidia card
 ...
 255 = /dev/nvidiactl Nvidia card control device

 196 char Tormenta T1 card
 0 = /dev/tor/0 Master control channel for all cards
 1 = /dev/tor/1 First DS0
 2 = /dev/tor/2 Second DS0
 ...
 48 = /dev/tor/48 48th DS0
 49 = /dev/tor/49 First pseudo-channel
 50 = /dev/tor/50 Second pseudo-channel
 ...

 197 char OpenTNF tracing facility
 0 = /dev/tnf/t0 Trace 0 data extraction
 1 = /dev/tnf/t1 Trace 1 data extraction
 ...
 128 = /dev/tnf/status Tracing facility status
 130 = /dev/tnf/trace Tracing device

 198 char Total Impact TPMP2 quad coprocessor PCI card
 0 = /dev/tpmp2/0 First card
 1 = /dev/tpmp2/1 Second card
 ...

 199 char Veritas volume manager (VxVM) volumes
 0 = /dev/vx/rdsk/*/* First volume
 1 = /dev/vx/rdsk/*/* Second volume
 ...

 199 block Veritas volume manager (VxVM) volumes
 0 = /dev/vx/dsk/*/* First volume
 1 = /dev/vx/dsk/*/* Second volume
 ...

 The namespace in these directories is maintained by
 the user space VxVM software.

 200 char Veritas VxVM configuration interface
 0 = /dev/vx/config Configuration access node
 1 = /dev/vx/trace Volume i/o trace access node
 2 = /dev/vx/iod Volume i/o daemon access node
 3 = /dev/vx/info Volume information access node
 4 = /dev/vx/task Volume tasks access node
 5 = /dev/vx/taskmon Volume tasks monitor daemon

 201 char Veritas VxVM dynamic multipathing driver
 0 = /dev/vx/rdmp/* First multipath device
 1 = /dev/vx/rdmp/* Second multipath device
 ...
 201 block Veritas VxVM dynamic multipathing driver
 0 = /dev/vx/dmp/* First multipath device
 1 = /dev/vx/dmp/* Second multipath device
 ...

 The namespace in these directories is maintained by
 the user space VxVM software.

 202 char CPU model-specific registers
 0 = /dev/cpu/0/msr MSRs on CPU 0
 1 = /dev/cpu/1/msr MSRs on CPU 1
 ...

 202 block Xen Virtual Block Device
 0 = /dev/xvda First Xen VBD whole disk
 16 = /dev/xvdb Second Xen VBD whole disk
 32 = /dev/xvdc Third Xen VBD whole disk
 ...
 240 = /dev/xvdp Sixteenth Xen VBD whole disk

 Partitions are handled in the same way as for IDE
 disks (see major number 3) except that the limit on
 partitions is 15.

 203 char CPU CPUID information
 0 = /dev/cpu/0/cpuid CPUID on CPU 0
 1 = /dev/cpu/1/cpuid CPUID on CPU 1
 ...

 204 char Low-density serial ports
 0 = /dev/ttyLU0 LinkUp Systems L72xx UART - port 0
 1 = /dev/ttyLU1 LinkUp Systems L72xx UART - port 1
 2 = /dev/ttyLU2 LinkUp Systems L72xx UART - port 2
 3 = /dev/ttyLU3 LinkUp Systems L72xx UART - port 3
 4 = /dev/ttyFB0 Intel Footbridge (ARM)
 5 = /dev/ttySA0 StrongARM builtin serial port 0
 6 = /dev/ttySA1 StrongARM builtin serial port 1
 7 = /dev/ttySA2 StrongARM builtin serial port 2
 8 = /dev/ttySC0 SCI serial port (SuperH) - port 0
 9 = /dev/ttySC1 SCI serial port (SuperH) - port 1
 10 = /dev/ttySC2 SCI serial port (SuperH) - port 2
 11 = /dev/ttySC3 SCI serial port (SuperH) - port 3
 12 = /dev/ttyFW0 Firmware console - port 0
 13 = /dev/ttyFW1 Firmware console - port 1
 14 = /dev/ttyFW2 Firmware console - port 2
 15 = /dev/ttyFW3 Firmware console - port 3
 16 = /dev/ttyAM0 ARM "AMBA" serial port 0
 ...
 31 = /dev/ttyAM15 ARM "AMBA" serial port 15
 32 = /dev/ttyDB0 DataBooster serial port 0
 ...
 39 = /dev/ttyDB7 DataBooster serial port 7
 40 = /dev/ttySG0 SGI Altix console port
 41 = /dev/ttySMX0 Motorola i.MX - port 0
 42 = /dev/ttySMX1 Motorola i.MX - port 1
 43 = /dev/ttySMX2 Motorola i.MX - port 2
 44 = /dev/ttyMM0 Marvell MPSC - port 0
 45 = /dev/ttyMM1 Marvell MPSC - port 1
 46 = /dev/ttyCPM0 PPC CPM (SCC or SMC) - port 0
 ...
 47 = /dev/ttyCPM5 PPC CPM (SCC or SMC) - port 5
 50 = /dev/ttyIOC0 Altix serial card
 ...
 81 = /dev/ttyIOC31 Altix serial card
 82 = /dev/ttyVR0 NEC VR4100 series SIU
 83 = /dev/ttyVR1 NEC VR4100 series DSIU
 84 = /dev/ttyIOC84 Altix ioc4 serial card
 ...
 115 = /dev/ttyIOC115 Altix ioc4 serial card
 116 = /dev/ttySIOC0 Altix ioc3 serial card
 ...
 147 = /dev/ttySIOC31 Altix ioc3 serial card
 148 = /dev/ttyPSC0 PPC PSC - port 0
 ...
 153 = /dev/ttyPSC5 PPC PSC - port 5
 154 = /dev/ttyAT0 ATMEL serial port 0
 ...
 169 = /dev/ttyAT15 ATMEL serial port 15
 170 = /dev/ttyNX0 Hilscher netX serial port 0
 ...
 185 = /dev/ttyNX15 Hilscher netX serial port 15
 186 = /dev/ttyJ0 JTAG1 DCC protocol based serial port emulation
 187 = /dev/ttyUL0 Xilinx uartlite - port 0
 ...
 190 = /dev/ttyUL3 Xilinx uartlite - port 3
 191 = /dev/xvc0 Xen virtual console - port 0
 192 = /dev/ttyPZ0 pmac_zilog - port 0
 ...
 195 = /dev/ttyPZ3 pmac_zilog - port 3
 196 = /dev/ttyTX0 TX39/49 serial port 0
 ...
 204 = /dev/ttyTX7 TX39/49 serial port 7
 205 = /dev/ttySC0 SC26xx serial port 0
 206 = /dev/ttySC1 SC26xx serial port 1
 207 = /dev/ttySC2 SC26xx serial port 2
 208 = /dev/ttySC3 SC26xx serial port 3
 209 = /dev/ttyMAX0 MAX3100 serial port 0
 210 = /dev/ttyMAX1 MAX3100 serial port 1
 211 = /dev/ttyMAX2 MAX3100 serial port 2
 212 = /dev/ttyMAX3 MAX3100 serial port 3

 205 char Low-density serial ports (alternate device)
 0 = /dev/culu0 Callout device for ttyLU0
 1 = /dev/culu1 Callout device for ttyLU1
 2 = /dev/culu2 Callout device for ttyLU2
 3 = /dev/culu3 Callout device for ttyLU3
 4 = /dev/cufb0 Callout device for ttyFB0
 5 = /dev/cusa0 Callout device for ttySA0
 6 = /dev/cusa1 Callout device for ttySA1
 7 = /dev/cusa2 Callout device for ttySA2
 8 = /dev/cusc0 Callout device for ttySC0
 9 = /dev/cusc1 Callout device for ttySC1
 10 = /dev/cusc2 Callout device for ttySC2
 11 = /dev/cusc3 Callout device for ttySC3
 12 = /dev/cufw0 Callout device for ttyFW0
 13 = /dev/cufw1 Callout device for ttyFW1
 14 = /dev/cufw2 Callout device for ttyFW2
 15 = /dev/cufw3 Callout device for ttyFW3
 16 = /dev/cuam0 Callout device for ttyAM0
 ...
 31 = /dev/cuam15 Callout device for ttyAM15
 32 = /dev/cudb0 Callout device for ttyDB0
 ...
 39 = /dev/cudb7 Callout device for ttyDB7
 40 = /dev/cusg0 Callout device for ttySG0
 41 = /dev/ttycusmx0 Callout device for ttySMX0
 42 = /dev/ttycusmx1 Callout device for ttySMX1
 43 = /dev/ttycusmx2 Callout device for ttySMX2
 46 = /dev/cucpm0 Callout device for ttyCPM0
 ...
 49 = /dev/cucpm5 Callout device for ttyCPM5
 50 = /dev/cuioc40 Callout device for ttyIOC40
 ...
 81 = /dev/cuioc431 Callout device for ttyIOC431
 82 = /dev/cuvr0 Callout device for ttyVR0
 83 = /dev/cuvr1 Callout device for ttyVR1

 206 char OnStream SC-x0 tape devices
 0 = /dev/osst0 First OnStream SCSI tape, mode 0
 1 = /dev/osst1 Second OnStream SCSI tape, mode 0
 ...
 32 = /dev/osst0l First OnStream SCSI tape, mode 1
 33 = /dev/osst1l Second OnStream SCSI tape, mode 1
 ...
 64 = /dev/osst0m First OnStream SCSI tape, mode 2
 65 = /dev/osst1m Second OnStream SCSI tape, mode 2
 ...
 96 = /dev/osst0a First OnStream SCSI tape, mode 3
 97 = /dev/osst1a Second OnStream SCSI tape, mode 3
 ...
 128 = /dev/nosst0 No rewind version of /dev/osst0
 129 = /dev/nosst1 No rewind version of /dev/osst1
 ...
 160 = /dev/nosst0l No rewind version of /dev/osst0l
 161 = /dev/nosst1l No rewind version of /dev/osst1l
 ...
 192 = /dev/nosst0m No rewind version of /dev/osst0m
 193 = /dev/nosst1m No rewind version of /dev/osst1m
 ...
 224 = /dev/nosst0a No rewind version of /dev/osst0a
 225 = /dev/nosst1a No rewind version of /dev/osst1a
 ...

 The OnStream SC-x0 SCSI tapes do not support the
 standard SCSI SASD command set and therefore need
 their own driver "osst". Note that the IDE, USB (and
 maybe ParPort) versions may be driven via ide-scsi or
 usb-storage SCSI emulation and this osst device and
 driver as well. The ADR-x0 drives are QIC-157
 compliant and don't need osst.

 207 char Compaq ProLiant health feature indicate
 0 = /dev/cpqhealth/cpqw Redirector interface
 1 = /dev/cpqhealth/crom EISA CROM
 2 = /dev/cpqhealth/cdt Data Table
 3 = /dev/cpqhealth/cevt Event Log
 4 = /dev/cpqhealth/casr Automatic Server Recovery
 5 = /dev/cpqhealth/cecc ECC Memory
 6 = /dev/cpqhealth/cmca Machine Check Architecture
 7 = /dev/cpqhealth/ccsm Deprecated CDT
 8 = /dev/cpqhealth/cnmi NMI Handling
 9 = /dev/cpqhealth/css Sideshow Management
 10 = /dev/cpqhealth/cram CMOS interface
 11 = /dev/cpqhealth/cpci PCI IRQ interface

 208 char User space serial ports
 0 = /dev/ttyU0 First user space serial port
 1 = /dev/ttyU1 Second user space serial port
 ...

 209 char User space serial ports (alternate devices)
 0 = /dev/cuu0 Callout device for ttyU0
 1 = /dev/cuu1 Callout device for ttyU1
 ...

 210 char SBE, Inc. sync/async serial card
 0 = /dev/sbei/wxcfg0 Configuration device for board 0
 1 = /dev/sbei/dld0 Download device for board 0
 2 = /dev/sbei/wan00 WAN device, port 0, board 0
 3 = /dev/sbei/wan01 WAN device, port 1, board 0
 4 = /dev/sbei/wan02 WAN device, port 2, board 0
 5 = /dev/sbei/wan03 WAN device, port 3, board 0
 6 = /dev/sbei/wanc00 WAN clone device, port 0, board 0
 7 = /dev/sbei/wanc01 WAN clone device, port 1, board 0
 8 = /dev/sbei/wanc02 WAN clone device, port 2, board 0
 9 = /dev/sbei/wanc03 WAN clone device, port 3, board 0
 10 = /dev/sbei/wxcfg1 Configuration device for board 1
 11 = /dev/sbei/dld1 Download device for board 1
 12 = /dev/sbei/wan10 WAN device, port 0, board 1
 13 = /dev/sbei/wan11 WAN device, port 1, board 1
 14 = /dev/sbei/wan12 WAN device, port 2, board 1
 15 = /dev/sbei/wan13 WAN device, port 3, board 1
 16 = /dev/sbei/wanc10 WAN clone device, port 0, board 1
 17 = /dev/sbei/wanc11 WAN clone device, port 1, board 1
 18 = /dev/sbei/wanc12 WAN clone device, port 2, board 1
 19 = /dev/sbei/wanc13 WAN clone device, port 3, board 1
 ...

 Yes, each board is really spaced 10 (decimal) apart.

 211 char Addinum CPCI1500 digital I/O card
 0 = /dev/addinum/cpci1500/0 First CPCI1500 card
 1 = /dev/addinum/cpci1500/1 Second CPCI1500 card
 ...

 212 char LinuxTV.org DVB driver subsystem
 0 = /dev/dvb/adapter0/video0 first video decoder of first card
 1 = /dev/dvb/adapter0/audio0 first audio decoder of first card
 2 = /dev/dvb/adapter0/sec0 (obsolete/unused)
 3 = /dev/dvb/adapter0/frontend0 first frontend device of first card
 4 = /dev/dvb/adapter0/demux0 first demux device of first card
 5 = /dev/dvb/adapter0/dvr0 first digital video recoder device of first card
 6 = /dev/dvb/adapter0/ca0 first common access port of first card
 7 = /dev/dvb/adapter0/net0 first network device of first card
 8 = /dev/dvb/adapter0/osd0 first on-screen-display device of first card
 9 = /dev/dvb/adapter0/video1 second video decoder of first card
 ...
 64 = /dev/dvb/adapter1/video0 first video decoder of second card
 ...
 128 = /dev/dvb/adapter2/video0 first video decoder of third card
 ...
 196 = /dev/dvb/adapter3/video0 first video decoder of fourth card

 216 char Bluetooth RFCOMM TTY devices
 0 = /dev/rfcomm0 First Bluetooth RFCOMM TTY device
 1 = /dev/rfcomm1 Second Bluetooth RFCOMM TTY device
 ...

 217 char Bluetooth RFCOMM TTY devices (alternate devices)
 0 = /dev/curf0 Callout device for rfcomm0
 1 = /dev/curf1 Callout device for rfcomm1
 ...

 218 char The Logical Company bus Unibus/Qbus adapters
 0 = /dev/logicalco/bci/0 First bus adapter
 1 = /dev/logicalco/bci/1 First bus adapter
 ...

 219 char The Logical Company DCI-1300 digital I/O card
 0 = /dev/logicalco/dci1300/0 First DCI-1300 card
 1 = /dev/logicalco/dci1300/1 Second DCI-1300 card
 ...

 220 char Myricom Myrinet "GM" board
 0 = /dev/myricom/gm0 First Myrinet GM board
 1 = /dev/myricom/gmp0 First board "root access"
 2 = /dev/myricom/gm1 Second Myrinet GM board
 3 = /dev/myricom/gmp1 Second board "root access"
 ...

 221 char VME bus
 0 = /dev/bus/vme/m0 First master image
 1 = /dev/bus/vme/m1 Second master image
 2 = /dev/bus/vme/m2 Third master image
 3 = /dev/bus/vme/m3 Fourth master image
 4 = /dev/bus/vme/s0 First slave image
 5 = /dev/bus/vme/s1 Second slave image
 6 = /dev/bus/vme/s2 Third slave image
 7 = /dev/bus/vme/s3 Fourth slave image
 8 = /dev/bus/vme/ctl Control

 It is expected that all VME bus drivers will use the
 same interface. For interface documentation see
 http://www.vmelinux.org/.

 224 char A2232 serial card
 0 = /dev/ttyY0 First A2232 port
 1 = /dev/ttyY1 Second A2232 port
 ...

 225 char A2232 serial card (alternate devices)
 0 = /dev/cuy0 Callout device for ttyY0
 1 = /dev/cuy1 Callout device for ttyY1
 ...

 226 char Direct Rendering Infrastructure (DRI)
 0 = /dev/dri/card0 First graphics card
 1 = /dev/dri/card1 Second graphics card
 ...

 227 char IBM 3270 terminal Unix tty access
 1 = /dev/3270/tty1 First 3270 terminal
 2 = /dev/3270/tty2 Seconds 3270 terminal
 ...

 228 char IBM 3270 terminal block-mode access
 0 = /dev/3270/tub Controlling interface
 1 = /dev/3270/tub1 First 3270 terminal
 2 = /dev/3270/tub2 Second 3270 terminal
 ...

 229 char IBM iSeries/pSeries virtual console
 0 = /dev/hvc0 First console port
 1 = /dev/hvc1 Second console port
 ...

 230 char IBM iSeries virtual tape
 0 = /dev/iseries/vt0 First virtual tape, mode 0
 1 = /dev/iseries/vt1 Second virtual tape, mode 0
 ...
 32 = /dev/iseries/vt0l First virtual tape, mode 1
 33 = /dev/iseries/vt1l Second virtual tape, mode 1
 ...
 64 = /dev/iseries/vt0m First virtual tape, mode 2
 65 = /dev/iseries/vt1m Second virtual tape, mode 2
 ...
 96 = /dev/iseries/vt0a First virtual tape, mode 3
 97 = /dev/iseries/vt1a Second virtual tape, mode 3
 ...
 128 = /dev/iseries/nvt0 First virtual tape, mode 0, no rewind
 129 = /dev/iseries/nvt1 Second virtual tape, mode 0, no rewind
 ...
 160 = /dev/iseries/nvt0l First virtual tape, mode 1, no rewind
 161 = /dev/iseries/nvt1l Second virtual tape, mode 1, no rewind
 ...
 192 = /dev/iseries/nvt0m First virtual tape, mode 2, no rewind
 193 = /dev/iseries/nvt1m Second virtual tape, mode 2, no rewind
 ...
 224 = /dev/iseries/nvt0a First virtual tape, mode 3, no rewind
 225 = /dev/iseries/nvt1a Second virtual tape, mode 3, no rewind
 ...

 "No rewind" refers to the omission of the default
 automatic rewind on device close. The MTREW or MTOFFL
 ioctl()'s can be used to rewind the tape regardless of
 the device used to access it.

 231 char InfiniBand
 0 = /dev/infiniband/umad0
 1 = /dev/infiniband/umad1
 ...
 63 = /dev/infiniband/umad63 63rd InfiniBandMad device
 64 = /dev/infiniband/issm0 First InfiniBand IsSM device
 65 = /dev/infiniband/issm1 Second InfiniBand IsSM device
 ...
 127 = /dev/infiniband/issm63 63rd InfiniBand IsSM device
 128 = /dev/infiniband/uverbs0 First InfiniBand verbs device
 129 = /dev/infiniband/uverbs1 Second InfiniBand verbs device
 ...
 159 = /dev/infiniband/uverbs31 31st InfiniBand verbs device

 232 char Biometric Devices
 0 = /dev/biometric/sensor0/fingerprint first fingerprint sensor on first device
 1 = /dev/biometric/sensor0/iris first iris sensor on first device
 2 = /dev/biometric/sensor0/retina first retina sensor on first device
 3 = /dev/biometric/sensor0/voiceprint first voiceprint sensor on first device
 4 = /dev/biometric/sensor0/facial first facial sensor on first device
 5 = /dev/biometric/sensor0/hand first hand sensor on first device
 ...
 10 = /dev/biometric/sensor1/fingerprint first fingerprint sensor on second device
 ...
 20 = /dev/biometric/sensor2/fingerprint first fingerprint sensor on third device
 ...

 233 char PathScale InfiniPath interconnect
 0 = /dev/ipath Primary device for programs (any unit)
 1 = /dev/ipath0 Access specifically to unit 0
 2 = /dev/ipath1 Access specifically to unit 1
 ...
 4 = /dev/ipath3 Access specifically to unit 3
 129 = /dev/ipath_sma Device used by Subnet Management Agent
 130 = /dev/ipath_diag Device used by diagnostics programs

 234-254 char RESERVED FOR DYNAMIC ASSIGNMENT
 Character devices that request a dynamic allocation of major number will
 take numbers starting from 254 and downward.

 240-254 block LOCAL/EXPERIMENTAL USE
 Allocated for local/experimental use. For devices not
 assigned official numbers, these ranges should be
 used in order to avoid conflicting with future assignments.

 255 char RESERVED

 255 block RESERVED

 This major is reserved to assist the expansion to a
 larger number space. No device nodes with this major
 should ever be created on the filesystem.
 (This is probably not true anymore, but I'll leave it
 for now /Torben)

 ---LARGE MAJORS!!!!!---

 256 char Equinox SST multi-port serial boards
 0 = /dev/ttyEQ0 First serial port on first Equinox SST board
 127 = /dev/ttyEQ127 Last serial port on first Equinox SST board
 128 = /dev/ttyEQ128 First serial port on second Equinox SST board
 ...
 1027 = /dev/ttyEQ1027 Last serial port on eighth Equinox SST board

 256 block Resident Flash Disk Flash Translation Layer
 0 = /dev/rfda First RFD FTL layer
 16 = /dev/rfdb Second RFD FTL layer
 ...
 240 = /dev/rfdp 16th RFD FTL layer

 257 char Phoenix Technologies Cryptographic Services Driver
 0 = /dev/ptlsec Crypto Services Driver

 257 block SSFDC Flash Translation Layer filesystem
 0 = /dev/ssfdca First SSFDC layer
 8 = /dev/ssfdcb Second SSFDC layer
 16 = /dev/ssfdcc Third SSFDC layer
 24 = /dev/ssfdcd 4th SSFDC layer
 32 = /dev/ssfdce 5th SSFDC layer
 40 = /dev/ssfdcf 6th SSFDC layer
 48 = /dev/ssfdcg 7th SSFDC layer
 56 = /dev/ssfdch 8th SSFDC layer

 258 block ROM/Flash read-only translation layer
 0 = /dev/blockrom0 First ROM card's translation layer interface
 1 = /dev/blockrom1 Second ROM card's translation layer interface
 ...

 259 block Block Extended Major
 Used dynamically to hold additional partition minor
 numbers and allow large numbers of partitions per device

 259 char FPGA configuration interfaces
 0 = /dev/icap0 First Xilinx internal configuration
 1 = /dev/icap1 Second Xilinx internal configuration

 260 char OSD (Object-based-device) SCSI Device
 0 = /dev/osd0 First OSD Device
 1 = /dev/osd1 Second OSD Device
 ...
 255 = /dev/osd255 256th OSD Device

 384-511 char RESERVED FOR DYNAMIC ASSIGNMENT
 Character devices that request a dynamic allocation of major
 number will take numbers starting from 511 and downward,
 once the 234-254 range is full.

Additional /dev/ directory entries

This section details additional entries that should or may exist in
the /dev directory. It is preferred that symbolic links use the same
form (absolute or relative) as is indicated here. Links are
classified as “hard” or “symbolic” depending on the preferred type of
link; if possible, the indicated type of link should be used.

Compulsory links

These links should exist on all systems:

	/dev/fd
	/proc/self/fd
	symbolic
	File descriptors

	/dev/stdin
	fd/0
	symbolic
	stdin file descriptor

	/dev/stdout
	fd/1
	symbolic
	stdout file descriptor

	/dev/stderr
	fd/2
	symbolic
	stderr file descriptor

	/dev/nfsd
	socksys
	symbolic
	Required by iBCS-2

	/dev/X0R
	null
	symbolic
	Required by iBCS-2

Note: /dev/X0R is <letter X>-<digit 0>-<letter R>.

Recommended links

It is recommended that these links exist on all systems:

	/dev/core
	/proc/kcore
	symbolic
	Backward compatibility

	/dev/ramdisk
	ram0
	symbolic
	Backward compatibility

	/dev/ftape
	qft0
	symbolic
	Backward compatibility

	/dev/bttv0
	video0
	symbolic
	Backward compatibility

	/dev/radio
	radio0
	symbolic
	Backward compatibility

	/dev/i2o*
	/dev/i2o/*
	symbolic
	Backward compatibility

	/dev/scd?
	sr?
	hard
	Alternate SCSI CD-ROM name

Locally defined links

The following links may be established locally to conform to the
configuration of the system. This is merely a tabulation of existing
practice, and does not constitute a recommendation. However, if they
exist, they should have the following uses.

	/dev/mouse
	mouse port
	symbolic
	Current mouse device

	/dev/tape
	tape device
	symbolic
	Current tape device

	/dev/cdrom
	CD-ROM device
	symbolic
	Current CD-ROM device

	/dev/cdwriter
	CD-writer
	symbolic
	Current CD-writer device

	/dev/scanner
	scanner
	symbolic
	Current scanner device

	/dev/modem
	modem port
	symbolic
	Current dialout device

	/dev/root
	root device
	symbolic
	Current root filesystem

	/dev/swap
	swap device
	symbolic
	Current swap device

/dev/modem should not be used for a modem which supports dialin as
well as dialout, as it tends to cause lock file problems. If it
exists, /dev/modem should point to the appropriate primary TTY device
(the use of the alternate callout devices is deprecated).

For SCSI devices, /dev/tape and /dev/cdrom should point to the
cooked devices (/dev/st* and /dev/sr*, respectively), whereas
/dev/cdwriter and /dev/scanner should point to the appropriate generic
SCSI devices (/dev/sg*).

/dev/mouse may point to a primary serial TTY device, a hardware mouse
device, or a socket for a mouse driver program (e.g. /dev/gpmdata).

Sockets and pipes

Non-transient sockets and named pipes may exist in /dev. Common entries are:

	/dev/printer
	socket
	lpd local socket

	/dev/log
	socket
	syslog local socket

	/dev/gpmdata
	socket
	gpm mouse multiplexer

Mount points

The following names are reserved for mounting special filesystems
under /dev. These special filesystems provide kernel interfaces that
cannot be provided with standard device nodes.

	/dev/pts
	devpts
	PTY slave filesystem

	/dev/shm
	tmpfs
	POSIX shared memory maintenance access

Terminal devices

Terminal, or TTY devices are a special class of character devices. A
terminal device is any device that could act as a controlling terminal
for a session; this includes virtual consoles, serial ports, and
pseudoterminals (PTYs).

All terminal devices share a common set of capabilities known as line
disciplines; these include the common terminal line discipline as well
as SLIP and PPP modes.

All terminal devices are named similarly; this section explains the
naming and use of the various types of TTYs. Note that the naming
conventions include several historical warts; some of these are
Linux-specific, some were inherited from other systems, and some
reflect Linux outgrowing a borrowed convention.

A hash mark (#) in a device name is used here to indicate a decimal
number without leading zeroes.

Virtual consoles and the console device

Virtual consoles are full-screen terminal displays on the system video
monitor. Virtual consoles are named /dev/tty#, with numbering
starting at /dev/tty1; /dev/tty0 is the current virtual console.
/dev/tty0 is the device that should be used to access the system video
card on those architectures for which the frame buffer devices
(/dev/fb*) are not applicable. Do not use /dev/console
for this purpose.

The console device, /dev/console, is the device to which system
messages should be sent, and on which logins should be permitted in
single-user mode. Starting with Linux 2.1.71, /dev/console is managed
by the kernel; for previous versions it should be a symbolic link to
either /dev/tty0, a specific virtual console such as /dev/tty1, or to
a serial port primary (tty*, not cu*) device, depending on the
configuration of the system.

Serial ports

Serial ports are RS-232 serial ports and any device which simulates
one, either in hardware (such as internal modems) or in software (such
as the ISDN driver.) Under Linux, each serial ports has two device
names, the primary or callin device and the alternate or callout one.
Each kind of device is indicated by a different letter. For any
letter X, the names of the devices are /dev/ttyX# and /dev/cux#,
respectively; for historical reasons, /dev/ttyS# and /dev/ttyC#
correspond to /dev/cua# and /dev/cub#. In the future, it should be
expected that multiple letters will be used; all letters will be upper
case for the “tty” device (e.g. /dev/ttyDP#) and lower case for the
“cu” device (e.g. /dev/cudp#).

The names /dev/ttyQ# and /dev/cuq# are reserved for local use.

The alternate devices provide for kernel-based exclusion and somewhat
different defaults than the primary devices. Their main purpose is to
allow the use of serial ports with programs with no inherent or broken
support for serial ports. Their use is deprecated, and they may be
removed from a future version of Linux.

Arbitration of serial ports is provided by the use of lock files with
the names /var/lock/LCK..ttyX#. The contents of the lock file should
be the PID of the locking process as an ASCII number.

It is common practice to install links such as /dev/modem
which point to serial ports. In order to ensure proper locking in the
presence of these links, it is recommended that software chase
symlinks and lock all possible names; additionally, it is recommended
that a lock file be installed with the corresponding alternate
device. In order to avoid deadlocks, it is recommended that the locks
are acquired in the following order, and released in the reverse:

	The symbolic link name, if any (/var/lock/LCK..modem)

	The “tty” name (/var/lock/LCK..ttyS2)

	The alternate device name (/var/lock/LCK..cua2)

In the case of nested symbolic links, the lock files should be
installed in the order the symlinks are resolved.

Under no circumstances should an application hold a lock while waiting
for another to be released. In addition, applications which attempt
to create lock files for the corresponding alternate device names
should take into account the possibility of being used on a non-serial
port TTY, for which no alternate device would exist.

Pseudoterminals (PTYs)

Pseudoterminals, or PTYs, are used to create login sessions or provide
other capabilities requiring a TTY line discipline (including SLIP or
PPP capability) to arbitrary data-generation processes. Each PTY has
a master side, named /dev/pty[p-za-e][0-9a-f], and a slave side, named
/dev/tty[p-za-e][0-9a-f]. The kernel arbitrates the use of PTYs by
allowing each master side to be opened only once.

Once the master side has been opened, the corresponding slave device
can be used in the same manner as any TTY device. The master and
slave devices are connected by the kernel, generating the equivalent
of a bidirectional pipe with TTY capabilities.

Recent versions of the Linux kernels and GNU libc contain support for
the System V/Unix98 naming scheme for PTYs, which assigns a common
device, /dev/ptmx, to all the masters (opening it will automatically
give you a previously unassigned PTY) and a subdirectory, /dev/pts,
for the slaves; the slaves are named with decimal integers (/dev/pts/#
in our notation). This removes the problem of exhausting the
namespace and enables the kernel to automatically create the device
nodes for the slaves on demand using the “devpts” filesystem.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

L1TF - L1 Terminal Fault

L1 Terminal Fault is a hardware vulnerability which allows unprivileged
speculative access to data which is available in the Level 1 Data Cache
when the page table entry controlling the virtual address, which is used
for the access, has the Present bit cleared or other reserved bits set.

Affected processors

This vulnerability affects a wide range of Intel processors. The
vulnerability is not present on:

	Processors from AMD, Centaur and other non Intel vendors

	Older processor models, where the CPU family is < 6

	A range of Intel ATOM processors (Cedarview, Cloverview, Lincroft,
Penwell, Pineview, Silvermont, Airmont, Merrifield)

	The Intel XEON PHI family

	Intel processors which have the ARCH_CAP_RDCL_NO bit set in the
IA32_ARCH_CAPABILITIES MSR. If the bit is set the CPU is not affected
by the Meltdown vulnerability either. These CPUs should become
available by end of 2018.

Whether a processor is affected or not can be read out from the L1TF
vulnerability file in sysfs. See L1TF system information.

Related CVEs

The following CVE entries are related to the L1TF vulnerability:

	CVE-2018-3615
	L1 Terminal Fault
	SGX related aspects

	CVE-2018-3620
	L1 Terminal Fault
	OS, SMM related aspects

	CVE-2018-3646
	L1 Terminal Fault
	Virtualization related aspects

Problem

If an instruction accesses a virtual address for which the relevant page
table entry (PTE) has the Present bit cleared or other reserved bits set,
then speculative execution ignores the invalid PTE and loads the referenced
data if it is present in the Level 1 Data Cache, as if the page referenced
by the address bits in the PTE was still present and accessible.

While this is a purely speculative mechanism and the instruction will raise
a page fault when it is retired eventually, the pure act of loading the
data and making it available to other speculative instructions opens up the
opportunity for side channel attacks to unprivileged malicious code,
similar to the Meltdown attack.

While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the attack
works across all protection domains. It allows an attack of SGX and also
works from inside virtual machines because the speculation bypasses the
extended page table (EPT) protection mechanism.

Attack scenarios

1. Malicious user space

Operating Systems store arbitrary information in the address bits of a
PTE which is marked non present. This allows a malicious user space
application to attack the physical memory to which these PTEs resolve.
In some cases user-space can maliciously influence the information
encoded in the address bits of the PTE, thus making attacks more
deterministic and more practical.

The Linux kernel contains a mitigation for this attack vector, PTE
inversion, which is permanently enabled and has no performance
impact. The kernel ensures that the address bits of PTEs, which are not
marked present, never point to cacheable physical memory space.

A system with an up to date kernel is protected against attacks from
malicious user space applications.

2. Malicious guest in a virtual machine

The fact that L1TF breaks all domain protections allows malicious guest
OSes, which can control the PTEs directly, and malicious guest user
space applications, which run on an unprotected guest kernel lacking the
PTE inversion mitigation for L1TF, to attack physical host memory.

A special aspect of L1TF in the context of virtualization is symmetric
multi threading (SMT). The Intel implementation of SMT is called
HyperThreading. The fact that Hyperthreads on the affected processors
share the L1 Data Cache (L1D) is important for this. As the flaw allows
only to attack data which is present in L1D, a malicious guest running
on one Hyperthread can attack the data which is brought into the L1D by
the context which runs on the sibling Hyperthread of the same physical
core. This context can be host OS, host user space or a different guest.

If the processor does not support Extended Page Tables, the attack is
only possible, when the hypervisor does not sanitize the content of the
effective (shadow) page tables.

While solutions exist to mitigate these attack vectors fully, these
mitigations are not enabled by default in the Linux kernel because they
can affect performance significantly. The kernel provides several
mechanisms which can be utilized to address the problem depending on the
deployment scenario. The mitigations, their protection scope and impact
are described in the next sections.

The default mitigations and the rationale for choosing them are explained
at the end of this document. See Default mitigations.

L1TF system information

The Linux kernel provides a sysfs interface to enumerate the current L1TF
status of the system: whether the system is vulnerable, and which
mitigations are active. The relevant sysfs file is:

/sys/devices/system/cpu/vulnerabilities/l1tf

The possible values in this file are:

	‘Not affected’
	The processor is not vulnerable

	‘Mitigation: PTE Inversion’
	The host protection is active

If KVM/VMX is enabled and the processor is vulnerable then the following
information is appended to the ‘Mitigation: PTE Inversion’ part:

	SMT status:

	‘VMX: SMT vulnerable’
	SMT is enabled

	‘VMX: SMT disabled’
	SMT is disabled

	L1D Flush mode:

	‘L1D vulnerable’
	L1D flushing is disabled

	‘L1D conditional cache flushes’
	L1D flush is conditionally enabled

	‘L1D cache flushes’
	L1D flush is unconditionally enabled

The resulting grade of protection is discussed in the following sections.

Host mitigation mechanism

The kernel is unconditionally protected against L1TF attacks from malicious
user space running on the host.

Guest mitigation mechanisms

1. L1D flush on VMENTER

To make sure that a guest cannot attack data which is present in the L1D
the hypervisor flushes the L1D before entering the guest.

Flushing the L1D evicts not only the data which should not be accessed
by a potentially malicious guest, it also flushes the guest
data. Flushing the L1D has a performance impact as the processor has to
bring the flushed guest data back into the L1D. Depending on the
frequency of VMEXIT/VMENTER and the type of computations in the guest
performance degradation in the range of 1% to 50% has been observed. For
scenarios where guest VMEXIT/VMENTER are rare the performance impact is
minimal. Virtio and mechanisms like posted interrupts are designed to
confine the VMEXITs to a bare minimum, but specific configurations and
application scenarios might still suffer from a high VMEXIT rate.

	The kernel provides two L1D flush modes:

	
	conditional (‘cond’)

	unconditional (‘always’)

The conditional mode avoids L1D flushing after VMEXITs which execute
only audited code paths before the corresponding VMENTER. These code
paths have been verified that they cannot expose secrets or other
interesting data to an attacker, but they can leak information about the
address space layout of the hypervisor.

Unconditional mode flushes L1D on all VMENTER invocations and provides
maximum protection. It has a higher overhead than the conditional
mode. The overhead cannot be quantified correctly as it depends on the
workload scenario and the resulting number of VMEXITs.

The general recommendation is to enable L1D flush on VMENTER. The kernel
defaults to conditional mode on affected processors.

Note, that L1D flush does not prevent the SMT problem because the
sibling thread will also bring back its data into the L1D which makes it
attackable again.

L1D flush can be controlled by the administrator via the kernel command
line and sysfs control files. See Mitigation control on the kernel command line
and Mitigation control for KVM - module parameter.

2. Guest VCPU confinement to dedicated physical cores

To address the SMT problem, it is possible to make a guest or a group of
guests affine to one or more physical cores. The proper mechanism for
that is to utilize exclusive cpusets to ensure that no other guest or
host tasks can run on these cores.

If only a single guest or related guests run on sibling SMT threads on
the same physical core then they can only attack their own memory and
restricted parts of the host memory.

Host memory is attackable, when one of the sibling SMT threads runs in
host OS (hypervisor) context and the other in guest context. The amount
of valuable information from the host OS context depends on the context
which the host OS executes, i.e. interrupts, soft interrupts and kernel
threads. The amount of valuable data from these contexts cannot be
declared as non-interesting for an attacker without deep inspection of
the code.

Note, that assigning guests to a fixed set of physical cores affects
the ability of the scheduler to do load balancing and might have
negative effects on CPU utilization depending on the hosting
scenario. Disabling SMT might be a viable alternative for particular
scenarios.

For further information about confining guests to a single or to a group
of cores consult the cpusets documentation:

https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

3. Interrupt affinity

Interrupts can be made affine to logical CPUs. This is not universally
true because there are types of interrupts which are truly per CPU
interrupts, e.g. the local timer interrupt. Aside of that multi queue
devices affine their interrupts to single CPUs or groups of CPUs per
queue without allowing the administrator to control the affinities.

Moving the interrupts, which can be affinity controlled, away from CPUs
which run untrusted guests, reduces the attack vector space.

Whether the interrupts with are affine to CPUs, which run untrusted
guests, provide interesting data for an attacker depends on the system
configuration and the scenarios which run on the system. While for some
of the interrupts it can be assumed that they won’t expose interesting
information beyond exposing hints about the host OS memory layout, there
is no way to make general assumptions.

Interrupt affinity can be controlled by the administrator via the
/proc/irq/$NR/smp_affinity[_list] files. Limited documentation is
available at:

https://www.kernel.org/doc/Documentation/IRQ-affinity.txt

4. SMT control

To prevent the SMT issues of L1TF it might be necessary to disable SMT
completely. Disabling SMT can have a significant performance impact, but
the impact depends on the hosting scenario and the type of workloads.
The impact of disabling SMT needs also to be weighted against the impact
of other mitigation solutions like confining guests to dedicated cores.

The kernel provides a sysfs interface to retrieve the status of SMT and
to control it. It also provides a kernel command line interface to
control SMT.

The kernel command line interface consists of the following options:

	nosmt
	Affects the bring up of the secondary CPUs during boot. The
kernel tries to bring all present CPUs online during the
boot process. “nosmt” makes sure that from each physical
core only one - the so called primary (hyper) thread is
activated. Due to a design flaw of Intel processors related
to Machine Check Exceptions the non primary siblings have
to be brought up at least partially and are then shut down
again. “nosmt” can be undone via the sysfs interface.

	nosmt=force
	Has the same effect as “nosmt” but it does not allow to
undo the SMT disable via the sysfs interface.

The sysfs interface provides two files:

	/sys/devices/system/cpu/smt/control

	/sys/devices/system/cpu/smt/active

/sys/devices/system/cpu/smt/control:

This file allows to read out the SMT control state and provides the
ability to disable or (re)enable SMT. The possible states are:

	on
	SMT is supported by the CPU and enabled. All
logical CPUs can be onlined and offlined without
restrictions.

	off
	SMT is supported by the CPU and disabled. Only
the so called primary SMT threads can be onlined
and offlined without restrictions. An attempt to
online a non-primary sibling is rejected

	forceoff
	Same as ‘off’ but the state cannot be controlled.
Attempts to write to the control file are rejected.

	notsupported
	The processor does not support SMT. It’s therefore
not affected by the SMT implications of L1TF.
Attempts to write to the control file are rejected.

The possible states which can be written into this file to control SMT
state are:

	on

	off

	forceoff

/sys/devices/system/cpu/smt/active:

This file reports whether SMT is enabled and active, i.e. if on any
physical core two or more sibling threads are online.

SMT control is also possible at boot time via the l1tf kernel command
line parameter in combination with L1D flush control. See
Mitigation control on the kernel command line.

5. Disabling EPT

Disabling EPT for virtual machines provides full mitigation for L1TF even
with SMT enabled, because the effective page tables for guests are
managed and sanitized by the hypervisor. Though disabling EPT has a
significant performance impact especially when the Meltdown mitigation
KPTI is enabled.

EPT can be disabled in the hypervisor via the ‘kvm-intel.ept’ parameter.

There is ongoing research and development for new mitigation mechanisms to
address the performance impact of disabling SMT or EPT.

Mitigation control on the kernel command line

The kernel command line allows to control the L1TF mitigations at boot
time with the option “l1tf=”. The valid arguments for this option are:

	full
	Provides all available mitigations for the L1TF
vulnerability. Disables SMT and enables all mitigations in
the hypervisors, i.e. unconditional L1D flushing

SMT control and L1D flush control via the sysfs interface
is still possible after boot. Hypervisors will issue a
warning when the first VM is started in a potentially
insecure configuration, i.e. SMT enabled or L1D flush
disabled.

	full,force
	Same as ‘full’, but disables SMT and L1D flush runtime
control. Implies the ‘nosmt=force’ command line option.
(i.e. sysfs control of SMT is disabled.)

	flush
	Leaves SMT enabled and enables the default hypervisor
mitigation, i.e. conditional L1D flushing

SMT control and L1D flush control via the sysfs interface
is still possible after boot. Hypervisors will issue a
warning when the first VM is started in a potentially
insecure configuration, i.e. SMT enabled or L1D flush
disabled.

	flush,nosmt
	Disables SMT and enables the default hypervisor mitigation,
i.e. conditional L1D flushing.

SMT control and L1D flush control via the sysfs interface
is still possible after boot. Hypervisors will issue a
warning when the first VM is started in a potentially
insecure configuration, i.e. SMT enabled or L1D flush
disabled.

	flush,nowarn
	Same as ‘flush’, but hypervisors will not warn when a VM is
started in a potentially insecure configuration.

	off
	Disables hypervisor mitigations and doesn’t emit any
warnings.

The default is ‘flush’. For details about L1D flushing see 1. L1D flush on VMENTER.

Mitigation control for KVM - module parameter

The KVM hypervisor mitigation mechanism, flushing the L1D cache when
entering a guest, can be controlled with a module parameter.

The option/parameter is “kvm-intel.vmentry_l1d_flush=”. It takes the
following arguments:

	always
	L1D cache flush on every VMENTER.

	cond
	Flush L1D on VMENTER only when the code between VMEXIT and
VMENTER can leak host memory which is considered
interesting for an attacker. This still can leak host memory
which allows e.g. to determine the hosts address space layout.

	never
	Disables the mitigation

The parameter can be provided on the kernel command line, as a module
parameter when loading the modules and at runtime modified via the sysfs
file:

/sys/module/kvm_intel/parameters/vmentry_l1d_flush

The default is ‘cond’. If ‘l1tf=full,force’ is given on the kernel command
line, then ‘always’ is enforced and the kvm-intel.vmentry_l1d_flush
module parameter is ignored and writes to the sysfs file are rejected.

Mitigation selection guide

1. No virtualization in use

The system is protected by the kernel unconditionally and no further
action is required.

2. Virtualization with trusted guests

If the guest comes from a trusted source and the guest OS kernel is
guaranteed to have the L1TF mitigations in place the system is fully
protected against L1TF and no further action is required.

To avoid the overhead of the default L1D flushing on VMENTER the
administrator can disable the flushing via the kernel command line and
sysfs control files. See Mitigation control on the kernel command line and
Mitigation control for KVM - module parameter.

3. Virtualization with untrusted guests

3.1. SMT not supported or disabled

If SMT is not supported by the processor or disabled in the BIOS or by
the kernel, it’s only required to enforce L1D flushing on VMENTER.

Conditional L1D flushing is the default behaviour and can be tuned. See
Mitigation control on the kernel command line and Mitigation control for KVM - module parameter.

3.2. EPT not supported or disabled

If EPT is not supported by the processor or disabled in the hypervisor,
the system is fully protected. SMT can stay enabled and L1D flushing on
VMENTER is not required.

EPT can be disabled in the hypervisor via the ‘kvm-intel.ept’ parameter.

3.3. SMT and EPT supported and active

If SMT and EPT are supported and active then various degrees of
mitigations can be employed:

	L1D flushing on VMENTER:

L1D flushing on VMENTER is the minimal protection requirement, but it
is only potent in combination with other mitigation methods.

Conditional L1D flushing is the default behaviour and can be tuned. See
Mitigation control on the kernel command line and Mitigation control for KVM - module parameter.

	Guest confinement:

Confinement of guests to a single or a group of physical cores which
are not running any other processes, can reduce the attack surface
significantly, but interrupts, soft interrupts and kernel threads can
still expose valuable data to a potential attacker. See
2. Guest VCPU confinement to dedicated physical cores.

	Interrupt isolation:

Isolating the guest CPUs from interrupts can reduce the attack surface
further, but still allows a malicious guest to explore a limited amount
of host physical memory. This can at least be used to gain knowledge
about the host address space layout. The interrupts which have a fixed
affinity to the CPUs which run the untrusted guests can depending on
the scenario still trigger soft interrupts and schedule kernel threads
which might expose valuable information. See
3. Interrupt affinity.

The above three mitigation methods combined can provide protection to a
certain degree, but the risk of the remaining attack surface has to be
carefully analyzed. For full protection the following methods are
available:

	Disabling SMT:

Disabling SMT and enforcing the L1D flushing provides the maximum
amount of protection. This mitigation is not depending on any of the
above mitigation methods.

SMT control and L1D flushing can be tuned by the command line
parameters ‘nosmt’, ‘l1tf’, ‘kvm-intel.vmentry_l1d_flush’ and at run
time with the matching sysfs control files. See 4. SMT control,
Mitigation control on the kernel command line and
Mitigation control for KVM - module parameter.

	Disabling EPT:

Disabling EPT provides the maximum amount of protection as well. It is
not depending on any of the above mitigation methods. SMT can stay
enabled and L1D flushing is not required, but the performance impact is
significant.

EPT can be disabled in the hypervisor via the ‘kvm-intel.ept’
parameter.

3.4. Nested virtual machines

When nested virtualization is in use, three operating systems are involved:
the bare metal hypervisor, the nested hypervisor and the nested virtual
machine. VMENTER operations from the nested hypervisor into the nested
guest will always be processed by the bare metal hypervisor. If KVM is the
bare metal hypervisor it will:

	Flush the L1D cache on every switch from the nested hypervisor to the
nested virtual machine, so that the nested hypervisor’s secrets are not
exposed to the nested virtual machine;

	Flush the L1D cache on every switch from the nested virtual machine to
the nested hypervisor; this is a complex operation, and flushing the L1D
cache avoids that the bare metal hypervisor’s secrets are exposed to the
nested virtual machine;

	Instruct the nested hypervisor to not perform any L1D cache flush. This
is an optimization to avoid double L1D flushing.

Default mitigations

The kernel default mitigations for vulnerable processors are:

	PTE inversion to protect against malicious user space. This is done
unconditionally and cannot be controlled.

	L1D conditional flushing on VMENTER when EPT is enabled for
a guest.

The kernel does not by default enforce the disabling of SMT, which leaves
SMT systems vulnerable when running untrusted guests with EPT enabled.

The rationale for this choice is:

	Force disabling SMT can break existing setups, especially with
unattended updates.

	If regular users run untrusted guests on their machine, then L1TF is
just an add on to other malware which might be embedded in an untrusted
guest, e.g. spam-bots or attacks on the local network.

There is no technical way to prevent a user from running untrusted code
on their machines blindly.

	It’s technically extremely unlikely and from today’s knowledge even
impossible that L1TF can be exploited via the most popular attack
mechanisms like JavaScript because these mechanisms have no way to
control PTEs. If this would be possible and not other mitigation would
be possible, then the default might be different.

	The administrators of cloud and hosting setups have to carefully
analyze the risk for their scenarios and make the appropriate
mitigation choices, which might even vary across their deployed
machines and also result in other changes of their overall setup.
There is no way for the kernel to provide a sensible default for this
kind of scenarios.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Reporting bugs

Background

The upstream Linux kernel maintainers only fix bugs for specific kernel
versions. Those versions include the current “release candidate” (or -rc)
kernel, any “stable” kernel versions, and any “long term” kernels.

Please see https://www.kernel.org/ for a list of supported kernels. Any
kernel marked with [EOL] is “end of life” and will not have any fixes
backported to it.

If you’ve found a bug on a kernel version that isn’t listed on kernel.org,
contact your Linux distribution or embedded vendor for support.
Alternatively, you can attempt to run one of the supported stable or -rc
kernels, and see if you can reproduce the bug on that. It’s preferable
to reproduce the bug on the latest -rc kernel.

How to report Linux kernel bugs

Identify the problematic subsystem

Identifying which part of the Linux kernel might be causing your issue
increases your chances of getting your bug fixed. Simply posting to the
generic linux-kernel mailing list (LKML) may cause your bug report to be
lost in the noise of a mailing list that gets 1000+ emails a day.

Instead, try to figure out which kernel subsystem is causing the issue,
and email that subsystem’s maintainer and mailing list. If the subsystem
maintainer doesn’t answer, then expand your scope to mailing lists like
LKML.

Identify who to notify

Once you know the subsystem that is causing the issue, you should send a
bug report. Some maintainers prefer bugs to be reported via bugzilla
(https://bugzilla.kernel.org), while others prefer that bugs be reported
via the subsystem mailing list.

To find out where to send an emailed bug report, find your subsystem or
device driver in the MAINTAINERS file. Search in the file for relevant
entries, and send your bug report to the person(s) listed in the “M:”
lines, making sure to Cc the mailing list(s) in the “L:” lines. When the
maintainer replies to you, make sure to ‘Reply-all’ in order to keep the
public mailing list(s) in the email thread.

If you know which driver is causing issues, you can pass one of the driver
files to the get_maintainer.pl script:

perl scripts/get_maintainer.pl -f <filename>

If it is a security bug, please copy the Security Contact listed in the
MAINTAINERS file. They can help coordinate bugfix and disclosure. See
Documentation/admin-guide/security-bugs.rst for more information.

If you can’t figure out which subsystem caused the issue, you should file
a bug in kernel.org bugzilla and send email to
linux-kernel@vger.kernel.org, referencing the bugzilla URL. (For more
information on the linux-kernel mailing list see
http://www.tux.org/lkml/).

Tips for reporting bugs

If you haven’t reported a bug before, please read:

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

http://www.catb.org/esr/faqs/smart-questions.html

It’s REALLY important to report bugs that seem unrelated as separate email
threads or separate bugzilla entries. If you report several unrelated
bugs at once, it’s difficult for maintainers to tease apart the relevant
data.

Gather information

The most important information in a bug report is how to reproduce the
bug. This includes system information, and (most importantly)
step-by-step instructions for how a user can trigger the bug.

If the failure includes an “OOPS:”, take a picture of the screen, capture
a netconsole trace, or type the message from your screen into the bug
report. Please read “Documentation/admin-guide/bug-hunting.rst” before posting your
bug report. This explains what you should do with the “Oops” information
to make it useful to the recipient.

This is a suggested format for a bug report sent via email or bugzilla.
Having a standardized bug report form makes it easier for you not to
overlook things, and easier for the developers to find the pieces of
information they’re really interested in. If some information is not
relevant to your bug, feel free to exclude it.

First run the ver_linux script included as scripts/ver_linux, which
reports the version of some important subsystems. Run this script with
the command awk -f scripts/ver_linux.

Use that information to fill in all fields of the bug report form, and
post it to the mailing list with a subject of “PROBLEM: <one line
summary from [1.]>” for easy identification by the developers:

[1.] One line summary of the problem:
[2.] Full description of the problem/report:
[3.] Keywords (i.e., modules, networking, kernel):
[4.] Kernel information
[4.1.] Kernel version (from /proc/version):
[4.2.] Kernel .config file:
[5.] Most recent kernel version which did not have the bug:
[6.] Output of Oops.. message (if applicable) with symbolic information
 resolved (see Documentation/admin-guide/bug-hunting.rst)
[7.] A small shell script or example program which triggers the
 problem (if possible)
[8.] Environment
[8.1.] Software (add the output of the ver_linux script here)
[8.2.] Processor information (from /proc/cpuinfo):
[8.3.] Module information (from /proc/modules):
[8.4.] Loaded driver and hardware information (/proc/ioports, /proc/iomem)
[8.5.] PCI information ('lspci -vvv' as root)
[8.6.] SCSI information (from /proc/scsi/scsi)
[8.7.] Other information that might be relevant to the problem
 (please look in /proc and include all information that you
 think to be relevant):
[X.] Other notes, patches, fixes, workarounds:

Follow up

Expectations for bug reporters

Linux kernel maintainers expect bug reporters to be able to follow up on
bug reports. That may include running new tests, applying patches,
recompiling your kernel, and/or re-triggering your bug. The most
frustrating thing for maintainers is for someone to report a bug, and then
never follow up on a request to try out a fix.

That said, it’s still useful for a kernel maintainer to know a bug exists
on a supported kernel, even if you can’t follow up with retests. Follow
up reports, such as replying to the email thread with “I tried the latest
kernel and I can’t reproduce my bug anymore” are also helpful, because
maintainers have to assume silence means things are still broken.

Expectations for kernel maintainers

Linux kernel maintainers are busy, overworked human beings. Some times
they may not be able to address your bug in a day, a week, or two weeks.
If they don’t answer your email, they may be on vacation, or at a Linux
conference. Check the conference schedule at https://LWN.net for more info:

https://lwn.net/Calendar/

In general, kernel maintainers take 1 to 5 business days to respond to
bugs. The majority of kernel maintainers are employed to work on the
kernel, and they may not work on the weekends. Maintainers are scattered
around the world, and they may not work in your time zone. Unless you
have a high priority bug, please wait at least a week after the first bug
report before sending the maintainer a reminder email.

The exceptions to this rule are regressions, kernel crashes, security holes,
or userspace breakage caused by new kernel behavior. Those bugs should be
addressed by the maintainers ASAP. If you suspect a maintainer is not
responding to these types of bugs in a timely manner (especially during a
merge window), escalate the bug to LKML and Linus Torvalds.

Thank you!

[Some of this is taken from Frohwalt Egerer’s original linux-kernel FAQ]

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Security bugs

Linux kernel developers take security very seriously. As such, we’d
like to know when a security bug is found so that it can be fixed and
disclosed as quickly as possible. Please report security bugs to the
Linux kernel security team.

Contact

The Linux kernel security team can be contacted by email at
<security@kernel.org>. This is a private list of security officers
who will help verify the bug report and develop and release a fix.
If you already have a fix, please include it with your report, as
that can speed up the process considerably. It is possible that the
security team will bring in extra help from area maintainers to
understand and fix the security vulnerability.

As it is with any bug, the more information provided the easier it
will be to diagnose and fix. Please review the procedure outlined in
admin-guide/reporting-bugs.rst if you are unclear about what
information is helpful. Any exploit code is very helpful and will not
be released without consent from the reporter unless it has already been
made public.

Disclosure and embargoed information

The security list is not a disclosure channel. For that, see Coordination
below.

Once a robust fix has been developed, the release process starts. Fixes
for publicly known bugs are released immediately.

Although our preference is to release fixes for publicly undisclosed bugs
as soon as they become available, this may be postponed at the request of
the reporter or an affected party for up to 7 calendar days from the start
of the release process, with an exceptional extension to 14 calendar days
if it is agreed that the criticality of the bug requires more time. The
only valid reason for deferring the publication of a fix is to accommodate
the logistics of QA and large scale rollouts which require release
coordination.

Whilst embargoed information may be shared with trusted individuals in
order to develop a fix, such information will not be published alongside
the fix or on any other disclosure channel without the permission of the
reporter. This includes but is not limited to the original bug report
and followup discussions (if any), exploits, CVE information or the
identity of the reporter.

In other words our only interest is in getting bugs fixed. All other
information submitted to the security list and any followup discussions
of the report are treated confidentially even after the embargo has been
lifted, in perpetuity.

Coordination

Fixes for sensitive bugs, such as those that might lead to privilege
escalations, may need to be coordinated with the private
<linux-distros@vs.openwall.org> mailing list so that distribution vendors
are well prepared to issue a fixed kernel upon public disclosure of the
upstream fix. Distros will need some time to test the proposed patch and
will generally request at least a few days of embargo, and vendor update
publication prefers to happen Tuesday through Thursday. When appropriate,
the security team can assist with this coordination, or the reporter can
include linux-distros from the start. In this case, remember to prefix
the email Subject line with “[vs]” as described in the linux-distros wiki:
<http://oss-security.openwall.org/wiki/mailing-lists/distros#how-to-use-the-lists>

CVE assignment

The security team does not normally assign CVEs, nor do we require them
for reports or fixes, as this can needlessly complicate the process and
may delay the bug handling. If a reporter wishes to have a CVE identifier
assigned ahead of public disclosure, they will need to contact the private
linux-distros list, described above. When such a CVE identifier is known
before a patch is provided, it is desirable to mention it in the commit
message if the reporter agrees.

Non-disclosure agreements

The Linux kernel security team is not a formal body and therefore unable
to enter any non-disclosure agreements.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Bug hunting

Kernel bug reports often come with a stack dump like the one below:

------------[cut here]------------
WARNING: CPU: 1 PID: 28102 at kernel/module.c:1108 module_put+0x57/0x70
Modules linked in: dvb_usb_gp8psk(-) dvb_usb dvb_core nvidia_drm(PO) nvidia_modeset(PO) snd_hda_codec_hdmi snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm snd_timer snd soundcore nvidia(PO) [last unloaded: rc_core]
CPU: 1 PID: 28102 Comm: rmmod Tainted: P WC O 4.8.4-build.1 #1
Hardware name: MSI MS-7309/MS-7309, BIOS V1.12 02/23/2009
 00000000 c12ba080 00000000 00000000 c103ed6a c1616014 00000001 00006dc6
 c1615862 00000454 c109e8a7 c109e8a7 00000009 ffffffff 00000000 f13f6a10
 f5f5a600 c103ee33 00000009 00000000 00000000 c109e8a7 f80ca4d0 c109f617
Call Trace:
 [<c12ba080>] ? dump_stack+0x44/0x64
 [<c103ed6a>] ? __warn+0xfa/0x120
 [<c109e8a7>] ? module_put+0x57/0x70
 [<c109e8a7>] ? module_put+0x57/0x70
 [<c103ee33>] ? warn_slowpath_null+0x23/0x30
 [<c109e8a7>] ? module_put+0x57/0x70
 [<f80ca4d0>] ? gp8psk_fe_set_frontend+0x460/0x460 [dvb_usb_gp8psk]
 [<c109f617>] ? symbol_put_addr+0x27/0x50
 [<f80bc9ca>] ? dvb_usb_adapter_frontend_exit+0x3a/0x70 [dvb_usb]
 [<f80bb3bf>] ? dvb_usb_exit+0x2f/0xd0 [dvb_usb]
 [<c13d03bc>] ? usb_disable_endpoint+0x7c/0xb0
 [<f80bb48a>] ? dvb_usb_device_exit+0x2a/0x50 [dvb_usb]
 [<c13d2882>] ? usb_unbind_interface+0x62/0x250
 [<c136b514>] ? __pm_runtime_idle+0x44/0x70
 [<c13620d8>] ? __device_release_driver+0x78/0x120
 [<c1362907>] ? driver_detach+0x87/0x90
 [<c1361c48>] ? bus_remove_driver+0x38/0x90
 [<c13d1c18>] ? usb_deregister+0x58/0xb0
 [<c109fbb0>] ? SyS_delete_module+0x130/0x1f0
 [<c1055654>] ? task_work_run+0x64/0x80
 [<c1000fa5>] ? exit_to_usermode_loop+0x85/0x90
 [<c10013f0>] ? do_fast_syscall_32+0x80/0x130
 [<c1549f43>] ? sysenter_past_esp+0x40/0x6a
---[end trace 6ebc60ef3981792f]---

Such stack traces provide enough information to identify the line inside the
Kernel’s source code where the bug happened. Depending on the severity of
the issue, it may also contain the word Oops, as on this one:

BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<c06969d4>] iret_exc+0x7d0/0xa59
*pdpt = 000000002258a001 *pde = 0000000000000000
Oops: 0002 [#1] PREEMPT SMP
...

Despite being an Oops or some other sort of stack trace, the offended
line is usually required to identify and handle the bug. Along this chapter,
we’ll refer to “Oops” for all kinds of stack traces that need to be analized.

注解

ksymoops is useless on 2.6 or upper. Please use the Oops in its original
format (from dmesg, etc). Ignore any references in this or other docs to
“decoding the Oops” or “running it through ksymoops”.
If you post an Oops from 2.6+ that has been run through ksymoops,
people will just tell you to repost it.

Where is the Oops message is located?

Normally the Oops text is read from the kernel buffers by klogd and
handed to syslogd which writes it to a syslog file, typically
/var/log/messages (depends on /etc/syslog.conf). On systems with
systemd, it may also be stored by the journald daemon, and accessed
by running journalctl command.

Sometimes klogd dies, in which case you can run dmesg > file to
read the data from the kernel buffers and save it. Or you can
cat /proc/kmsg > file, however you have to break in to stop the transfer,
kmsg is a “never ending file”.

If the machine has crashed so badly that you cannot enter commands or
the disk is not available then you have three options:

	Hand copy the text from the screen and type it in after the machine
has restarted. Messy but it is the only option if you have not
planned for a crash. Alternatively, you can take a picture of
the screen with a digital camera - not nice, but better than
nothing. If the messages scroll off the top of the console, you
may find that booting with a higher resolution (eg, vga=791)
will allow you to read more of the text. (Caveat: This needs vesafb,
so won’t help for ‘early’ oopses)

	Boot with a serial console (see
Documentation/admin-guide/serial-console.rst),
run a null modem to a second machine and capture the output there
using your favourite communication program. Minicom works well.

	Use Kdump (see Documentation/kdump/kdump.txt),
extract the kernel ring buffer from old memory with using dmesg
gdbmacro in Documentation/kdump/gdbmacros.txt.

Finding the bug’s location

Reporting a bug works best if you point the location of the bug at the
Kernel source file. There are two methods for doing that. Usually, using
gdb is easier, but the Kernel should be pre-compiled with debug info.

gdb

The GNU debug (gdb) is the best way to figure out the exact file and line
number of the OOPS from the vmlinux file.

The usage of gdb works best on a kernel compiled with CONFIG_DEBUG_INFO.
This can be set by running:

$./scripts/config -d COMPILE_TEST -e DEBUG_KERNEL -e DEBUG_INFO

On a kernel compiled with CONFIG_DEBUG_INFO, you can simply copy the
EIP value from the OOPS:

EIP: 0060:[<c021e50e>] Not tainted VLI

And use GDB to translate that to human-readable form:

$ gdb vmlinux
(gdb) l *0xc021e50e

If you don’t have CONFIG_DEBUG_INFO enabled, you use the function
offset from the OOPS:

EIP is at vt_ioctl+0xda8/0x1482

And recompile the kernel with CONFIG_DEBUG_INFO enabled:

$./scripts/config -d COMPILE_TEST -e DEBUG_KERNEL -e DEBUG_INFO
$ make vmlinux
$ gdb vmlinux
(gdb) l *vt_ioctl+0xda8
0x1888 is in vt_ioctl (drivers/tty/vt/vt_ioctl.c:293).
288 {
289 struct vc_data *vc = NULL;
290 int ret = 0;
291
292 console_lock();
293 if (VT_BUSY(vc_num))
294 ret = -EBUSY;
295 else if (vc_num)
296 vc = vc_deallocate(vc_num);
297 console_unlock();

or, if you want to be more verbose:

(gdb) p vt_ioctl
$1 = {int (struct tty_struct *, unsigned int, unsigned long)} 0xae0 <vt_ioctl>
(gdb) l *0xae0+0xda8

You could, instead, use the object file:

$ make drivers/tty/
$ gdb drivers/tty/vt/vt_ioctl.o
(gdb) l *vt_ioctl+0xda8

If you have a call trace, such as:

Call Trace:
 [<ffffffff8802c8e9>] :jbd:log_wait_commit+0xa3/0xf5
 [<ffffffff810482d9>] autoremove_wake_function+0x0/0x2e
 [<ffffffff8802770b>] :jbd:journal_stop+0x1be/0x1ee
 ...

this shows the problem likely in the :jbd: module. You can load that module
in gdb and list the relevant code:

$ gdb fs/jbd/jbd.ko
(gdb) l *log_wait_commit+0xa3

注解

You can also do the same for any function call at the stack trace,
like this one:

[<f80bc9ca>] ? dvb_usb_adapter_frontend_exit+0x3a/0x70 [dvb_usb]

The position where the above call happened can be seen with:

$ gdb drivers/media/usb/dvb-usb/dvb-usb.o
(gdb) l *dvb_usb_adapter_frontend_exit+0x3a

objdump

To debug a kernel, use objdump and look for the hex offset from the crash
output to find the valid line of code/assembler. Without debug symbols, you
will see the assembler code for the routine shown, but if your kernel has
debug symbols the C code will also be available. (Debug symbols can be enabled
in the kernel hacking menu of the menu configuration.) For example:

$ objdump -r -S -l --disassemble net/dccp/ipv4.o

注解

You need to be at the top level of the kernel tree for this to pick up
your C files.

If you don’t have access to the code you can also debug on some crash dumps
e.g. crash dump output as shown by Dave Miller:

EIP is at +0x14/0x4c0
 ...
Code: 44 24 04 e8 6f 05 00 00 e9 e8 fe ff ff 8d 76 00 8d bc 27 00 00
00 00 55 57 56 53 81 ec bc 00 00 00 8b ac 24 d0 00 00 00 8b 5d 08
<8b> 83 3c 01 00 00 89 44 24 14 8b 45 28 85 c0 89 44 24 18 0f 85

Put the bytes into a "foo.s" file like this:

 .text
 .globl foo
foo:
 .byte /* bytes from Code: part of OOPS dump */

Compile it with "gcc -c -o foo.o foo.s" then look at the output of
"objdump --disassemble foo.o".

Output:

ip_queue_xmit:
 push %ebp
 push %edi
 push %esi
 push %ebx
 sub $0xbc, %esp
 mov 0xd0(%esp), %ebp ! %ebp = arg0 (skb)
 mov 0x8(%ebp), %ebx ! %ebx = skb->sk
 mov 0x13c(%ebx), %eax ! %eax = inet_sk(sk)->opt

Reporting the bug

Once you find where the bug happened, by inspecting its location,
you could either try to fix it yourself or report it upstream.

In order to report it upstream, you should identify the mailing list
used for the development of the affected code. This can be done by using
the get_maintainer.pl script.

For example, if you find a bug at the gspca’s sonixj.c file, you can get
their maintainers with:

$./scripts/get_maintainer.pl -f drivers/media/usb/gspca/sonixj.c
Hans Verkuil <hverkuil@xs4all.nl> (odd fixer:GSPCA USB WEBCAM DRIVER,commit_signer:1/1=100%)
Mauro Carvalho Chehab <mchehab@kernel.org> (maintainer:MEDIA INPUT INFRASTRUCTURE (V4L/DVB),commit_signer:1/1=100%)
Tejun Heo <tj@kernel.org> (commit_signer:1/1=100%)
Bhaktipriya Shridhar <bhaktipriya96@gmail.com> (commit_signer:1/1=100%,authored:1/1=100%,added_lines:4/4=100%,removed_lines:9/9=100%)
linux-media@vger.kernel.org (open list:GSPCA USB WEBCAM DRIVER)
linux-kernel@vger.kernel.org (open list)

Please notice that it will point to:

	The last developers that touched on the source code. On the above example,
Tejun and Bhaktipriya (in this specific case, none really envolved on the
development of this file);

	The driver maintainer (Hans Verkuil);

	The subsystem maintainer (Mauro Carvalho Chehab);

	The driver and/or subsystem mailing list (linux-media@vger.kernel.org);

	the Linux Kernel mailing list (linux-kernel@vger.kernel.org).

Usually, the fastest way to have your bug fixed is to report it to mailing
list used for the development of the code (linux-media ML) copying the driver maintainer (Hans).

If you are totally stumped as to whom to send the report, and
get_maintainer.pl didn’t provide you anything useful, send it to
linux-kernel@vger.kernel.org.

Thanks for your help in making Linux as stable as humanly possible.

Fixing the bug

If you know programming, you could help us by not only reporting the bug,
but also providing us with a solution. After all, open source is about
sharing what you do and don’t you want to be recognised for your genius?

If you decide to take this way, once you have worked out a fix please submit
it upstream.

Please do read
Documentation/process/submitting-patches.rst though
to help your code get accepted.

Notes on Oops tracing with klogd

In order to help Linus and the other kernel developers there has been
substantial support incorporated into klogd for processing protection
faults. In order to have full support for address resolution at least
version 1.3-pl3 of the sysklogd package should be used.

When a protection fault occurs the klogd daemon automatically
translates important addresses in the kernel log messages to their
symbolic equivalents. This translated kernel message is then
forwarded through whatever reporting mechanism klogd is using. The
protection fault message can be simply cut out of the message files
and forwarded to the kernel developers.

Two types of address resolution are performed by klogd. The first is
static translation and the second is dynamic translation. Static
translation uses the System.map file in much the same manner that
ksymoops does. In order to do static translation the klogd daemon
must be able to find a system map file at daemon initialization time.
See the klogd man page for information on how klogd searches for map
files.

Dynamic address translation is important when kernel loadable modules
are being used. Since memory for kernel modules is allocated from the
kernel’s dynamic memory pools there are no fixed locations for either
the start of the module or for functions and symbols in the module.

The kernel supports system calls which allow a program to determine
which modules are loaded and their location in memory. Using these
system calls the klogd daemon builds a symbol table which can be used
to debug a protection fault which occurs in a loadable kernel module.

At the very minimum klogd will provide the name of the module which
generated the protection fault. There may be additional symbolic
information available if the developer of the loadable module chose to
export symbol information from the module.

Since the kernel module environment can be dynamic there must be a
mechanism for notifying the klogd daemon when a change in module
environment occurs. There are command line options available which
allow klogd to signal the currently executing daemon that symbol
information should be refreshed. See the klogd manual page for more
information.

A patch is included with the sysklogd distribution which modifies the
modules-2.0.0 package to automatically signal klogd whenever a module
is loaded or unloaded. Applying this patch provides essentially
seamless support for debugging protection faults which occur with
kernel loadable modules.

The following is an example of a protection fault in a loadable module
processed by klogd:

Aug 29 09:51:01 blizard kernel: Unable to handle kernel paging request at virtual address f15e97cc
Aug 29 09:51:01 blizard kernel: current->tss.cr3 = 0062d000, %cr3 = 0062d000
Aug 29 09:51:01 blizard kernel: *pde = 00000000
Aug 29 09:51:01 blizard kernel: Oops: 0002
Aug 29 09:51:01 blizard kernel: CPU: 0
Aug 29 09:51:01 blizard kernel: EIP: 0010:[oops:_oops+16/3868]
Aug 29 09:51:01 blizard kernel: EFLAGS: 00010212
Aug 29 09:51:01 blizard kernel: eax: 315e97cc ebx: 003a6f80 ecx: 001be77b edx: 00237c0c
Aug 29 09:51:01 blizard kernel: esi: 00000000 edi: bffffdb3 ebp: 00589f90 esp: 00589f8c
Aug 29 09:51:01 blizard kernel: ds: 0018 es: 0018 fs: 002b gs: 002b ss: 0018
Aug 29 09:51:01 blizard kernel: Process oops_test (pid: 3374, process nr: 21, stackpage=00589000)
Aug 29 09:51:01 blizard kernel: Stack: 315e97cc 00589f98 0100b0b4 bffffed4 0012e38e 00240c64 003a6f80 00000001
Aug 29 09:51:01 blizard kernel: 00000000 00237810 bfffff00 0010a7fa 00000003 00000001 00000000 bfffff00
Aug 29 09:51:01 blizard kernel: bffffdb3 bffffed4 ffffffda 0000002b 0007002b 0000002b 0000002b 00000036
Aug 29 09:51:01 blizard kernel: Call Trace: [oops:_oops_ioctl+48/80] [_sys_ioctl+254/272] [_system_call+82/128]
Aug 29 09:51:01 blizard kernel: Code: c7 00 05 00 00 00 eb 08 90 90 90 90 90 90 90 90 89 ec 5d c3

Dr. G.W. Wettstein Oncology Research Div. Computing Facility
Roger Maris Cancer Center INTERNET: greg@wind.rmcc.com
820 4th St. N.
Fargo, ND 58122
Phone: 701-234-7556

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Bisecting a bug

Last updated: 28 October 2016

Introduction

Always try the latest kernel from kernel.org and build from source. If you are
not confident in doing that please report the bug to your distribution vendor
instead of to a kernel developer.

Finding bugs is not always easy. Have a go though. If you can’t find it don’t
give up. Report as much as you have found to the relevant maintainer. See
MAINTAINERS for who that is for the subsystem you have worked on.

Before you submit a bug report read
Documentation/admin-guide/reporting-bugs.rst.

Devices not appearing

Often this is caused by udev/systemd. Check that first before blaming it
on the kernel.

Finding patch that caused a bug

Using the provided tools with git makes finding bugs easy provided the bug
is reproducible.

Steps to do it:

	build the Kernel from its git source

	start bisect with [1]:

$ git bisect start

	mark the broken changeset with:

$ git bisect bad [commit]

	mark a changeset where the code is known to work with:

$ git bisect good [commit]

	rebuild the Kernel and test

	interact with git bisect by using either:

$ git bisect good

or:

$ git bisect bad

depending if the bug happened on the changeset you’re testing

	After some interactions, git bisect will give you the changeset that
likely caused the bug.

	For example, if you know that the current version is bad, and version
4.8 is good, you could do:

$ git bisect start
$ git bisect bad # Current version is bad
$ git bisect good v4.8

	[1]	You can, optionally, provide both good and bad arguments at git
start with git bisect start [BAD] [GOOD]

For further references, please read:

	The man page for git-bisect

	Fighting regressions with git bisect [https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html]

	Fully automated bisecting with “git bisect run” [https://lwn.net/Articles/317154]

	Using Git bisect to figure out when brokenness was introduced [http://webchick.net/node/99]

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Tainted kernels

Some oops reports contain the string ‘Tainted: ‘ after the program
counter. This indicates that the kernel has been tainted by some
mechanism. The string is followed by a series of position-sensitive
characters, each representing a particular tainted value.

	G if all modules loaded have a GPL or compatible license, P if
any proprietary module has been loaded. Modules without a
MODULE_LICENSE or with a MODULE_LICENSE that is not recognised by
insmod as GPL compatible are assumed to be proprietary.

	F if any module was force loaded by insmod -f, ' ' if all
modules were loaded normally.

	S if the oops occurred on an SMP kernel running on hardware that
hasn’t been certified as safe to run multiprocessor.
Currently this occurs only on various Athlons that are not
SMP capable.

	R if a module was force unloaded by rmmod -f, ' ' if all
modules were unloaded normally.

	M if any processor has reported a Machine Check Exception,
' ' if no Machine Check Exceptions have occurred.

	B if a page-release function has found a bad page reference or
some unexpected page flags.

	U if a user or user application specifically requested that the
Tainted flag be set, ' ' otherwise.

	D if the kernel has died recently, i.e. there was an OOPS or BUG.

	A if the ACPI table has been overridden.

	W if a warning has previously been issued by the kernel.
(Though some warnings may set more specific taint flags.)

	C if a staging driver has been loaded.

	I if the kernel is working around a severe bug in the platform
firmware (BIOS or similar).

	O if an externally-built (“out-of-tree”) module has been loaded.

	E if an unsigned module has been loaded in a kernel supporting
module signature.

	L if a soft lockup has previously occurred on the system.

	K if the kernel has been live patched.

The primary reason for the ‘Tainted: ‘ string is to tell kernel
debuggers if this is a clean kernel or if anything unusual has
occurred. Tainting is permanent: even if an offending module is
unloaded, the tainted value remains to indicate that the kernel is not
trustworthy.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Ramoops oops/panic logger

Sergiu Iordache <sergiu@chromium.org>

Updated: 17 November 2011

Introduction

Ramoops is an oops/panic logger that writes its logs to RAM before the system
crashes. It works by logging oopses and panics in a circular buffer. Ramoops
needs a system with persistent RAM so that the content of that area can
survive after a restart.

Ramoops concepts

Ramoops uses a predefined memory area to store the dump. The start and size
and type of the memory area are set using three variables:

	mem_address for the start

	mem_size for the size. The memory size will be rounded down to a
power of two.

	mem_type to specifiy if the memory type (default is pgprot_writecombine).

Typically the default value of mem_type=0 should be used as that sets the pstore
mapping to pgprot_writecombine. Setting mem_type=1 attempts to use
pgprot_noncached, which only works on some platforms. This is because pstore
depends on atomic operations. At least on ARM, pgprot_noncached causes the
memory to be mapped strongly ordered, and atomic operations on strongly ordered
memory are implementation defined, and won’t work on many ARMs such as omaps.

The memory area is divided into record_size chunks (also rounded down to
power of two) and each oops/panic writes a record_size chunk of
information.

Dumping both oopses and panics can be done by setting 1 in the dump_oops
variable while setting 0 in that variable dumps only the panics.

The module uses a counter to record multiple dumps but the counter gets reset
on restart (i.e. new dumps after the restart will overwrite old ones).

Ramoops also supports software ECC protection of persistent memory regions.
This might be useful when a hardware reset was used to bring the machine back
to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat
corrupt, but usually it is restorable.

Setting the parameters

Setting the ramoops parameters can be done in several different manners:

A. Use the module parameters (which have the names of the variables described
as before). For quick debugging, you can also reserve parts of memory during
boot and then use the reserved memory for ramoops. For example, assuming a
machine with > 128 MB of memory, the following kernel command line will tell
the kernel to use only the first 128 MB of memory, and place ECC-protected
ramoops region at 128 MB boundary:

mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1

B. Use Device Tree bindings, as described in
Documentation/devicetree/bindings/reserved-memory/ramoops.txt.
For example:

reserved-memory {
 #address-cells = <2>;
 #size-cells = <2>;
 ranges;

 ramoops@8f000000 {
 compatible = "ramoops";
 reg = <0 0x8f000000 0 0x100000>;
 record-size = <0x4000>;
 console-size = <0x4000>;
 };
};

C. Use a platform device and set the platform data. The parameters can then
be set through that platform data. An example of doing that is:

#include <linux/pstore_ram.h>
[...]

static struct ramoops_platform_data ramoops_data = {
 .mem_size = <...>,
 .mem_address = <...>,
 .mem_type = <...>,
 .record_size = <...>,
 .dump_oops = <...>,
 .ecc = <...>,
};

static struct platform_device ramoops_dev = {
 .name = "ramoops",
 .dev = {
 .platform_data = &ramoops_data,
 },
};

[... inside a function ...]
int ret;

ret = platform_device_register(&ramoops_dev);
if (ret) {
 printk(KERN_ERR "unable to register platform device\n");
 return ret;
}

You can specify either RAM memory or peripheral devices’ memory. However, when
specifying RAM, be sure to reserve the memory by issuing memblock_reserve()
very early in the architecture code, e.g.:

#include <linux/memblock.h>

memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size);

Dump format

The data dump begins with a header, currently defined as ==== followed by a
timestamp and a new line. The dump then continues with the actual data.

Reading the data

The dump data can be read from the pstore filesystem. The format for these
files is dmesg-ramoops-N, where N is the record number in memory. To delete
a stored record from RAM, simply unlink the respective pstore file.

Persistent function tracing

Persistent function tracing might be useful for debugging software or hardware
related hangs. The functions call chain log is stored in a ftrace-ramoops
file. Here is an example of usage:

mount -t debugfs debugfs /sys/kernel/debug/
echo 1 > /sys/kernel/debug/pstore/record_ftrace
reboot -f
[...]
mount -t pstore pstore /mnt/
tail /mnt/ftrace-ramoops
0 ffffffff8101ea64 ffffffff8101bcda native_apic_mem_read <- disconnect_bsp_APIC+0x6a/0xc0
0 ffffffff8101ea44 ffffffff8101bcf6 native_apic_mem_write <- disconnect_bsp_APIC+0x86/0xc0
0 ffffffff81020084 ffffffff8101a4b5 hpet_disable <- native_machine_shutdown+0x75/0x90
0 ffffffff81005f94 ffffffff8101a4bb iommu_shutdown_noop <- native_machine_shutdown+0x7b/0x90
0 ffffffff8101a6a1 ffffffff8101a437 native_machine_emergency_restart <- native_machine_restart+0x37/0x40
0 ffffffff811f9876 ffffffff8101a73a acpi_reboot <- native_machine_emergency_restart+0xaa/0x1e0
0 ffffffff8101a514 ffffffff8101a772 mach_reboot_fixups <- native_machine_emergency_restart+0xe2/0x1e0
0 ffffffff811d9c54 ffffffff8101a7a0 __const_udelay <- native_machine_emergency_restart+0x110/0x1e0
0 ffffffff811d9c34 ffffffff811d9c80 __delay <- __const_udelay+0x30/0x40
0 ffffffff811d9d14 ffffffff811d9c3f delay_tsc <- __delay+0xf/0x20

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Dynamic debug

Introduction

This document describes how to use the dynamic debug (dyndbg) feature.

Dynamic debug is designed to allow you to dynamically enable/disable
kernel code to obtain additional kernel information. Currently, if
CONFIG_DYNAMIC_DEBUG is set, then all pr_debug()/dev_dbg() and
print_hex_dump_debug()/print_hex_dump_bytes() calls can be dynamically
enabled per-callsite.

If CONFIG_DYNAMIC_DEBUG is not set, print_hex_dump_debug() is just
shortcut for print_hex_dump(KERN_DEBUG).

For print_hex_dump_debug()/print_hex_dump_bytes(), format string is
its prefix_str argument, if it is constant string; or hexdump
in case prefix_str is built dynamically.

Dynamic debug has even more useful features:

	Simple query language allows turning on and off debugging
statements by matching any combination of 0 or 1 of:
	source filename

	function name

	line number (including ranges of line numbers)

	module name

	format string

	Provides a debugfs control file: <debugfs>/dynamic_debug/control
which can be read to display the complete list of known debug
statements, to help guide you

Controlling dynamic debug Behaviour

The behaviour of pr_debug()/dev_dbg() are controlled via writing to a
control file in the ‘debugfs’ filesystem. Thus, you must first mount
the debugfs filesystem, in order to make use of this feature.
Subsequently, we refer to the control file as:
<debugfs>/dynamic_debug/control. For example, if you want to enable
printing from source file svcsock.c, line 1603 you simply do:

nullarbor:~ # echo 'file svcsock.c line 1603 +p' >
 <debugfs>/dynamic_debug/control

If you make a mistake with the syntax, the write will fail thus:

nullarbor:~ # echo 'file svcsock.c wtf 1 +p' >
 <debugfs>/dynamic_debug/control
-bash: echo: write error: Invalid argument

Viewing Dynamic Debug Behaviour

You can view the currently configured behaviour of all the debug
statements via:

nullarbor:~ # cat <debugfs>/dynamic_debug/control
filename:lineno [module]function flags format
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:323 [svcxprt_rdma]svc_rdma_cleanup =_ "SVCRDMA Module Removed, deregister RPC RDMA transport\012"
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:341 [svcxprt_rdma]svc_rdma_init =_ "\011max_inline : %d\012"
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:340 [svcxprt_rdma]svc_rdma_init =_ "\011sq_depth : %d\012"
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:338 [svcxprt_rdma]svc_rdma_init =_ "\011max_requests : %d\012"
...

You can also apply standard Unix text manipulation filters to this
data, e.g.:

nullarbor:~ # grep -i rdma <debugfs>/dynamic_debug/control | wc -l
62

nullarbor:~ # grep -i tcp <debugfs>/dynamic_debug/control | wc -l
42

The third column shows the currently enabled flags for each debug
statement callsite (see below for definitions of the flags). The
default value, with no flags enabled, is =_. So you can view all
the debug statement callsites with any non-default flags:

nullarbor:~ # awk '$3 != "=_"' <debugfs>/dynamic_debug/control
filename:lineno [module]function flags format
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c:1603 [sunrpc]svc_send p "svc_process: st_sendto returned %d\012"

Command Language Reference

At the lexical level, a command comprises a sequence of words separated
by spaces or tabs. So these are all equivalent:

nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
 <debugfs>/dynamic_debug/control
nullarbor:~ # echo -n ' file svcsock.c line 1603 +p ' >
 <debugfs>/dynamic_debug/control
nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
 <debugfs>/dynamic_debug/control

Command submissions are bounded by a write() system call.
Multiple commands can be written together, separated by ; or \n:

~# echo "func pnpacpi_get_resources +p; func pnp_assign_mem +p" \
 > <debugfs>/dynamic_debug/control

If your query set is big, you can batch them too:

~# cat query-batch-file > <debugfs>/dynamic_debug/control

A another way is to use wildcard. The match rule support * (matches
zero or more characters) and ? (matches exactly one character).For
example, you can match all usb drivers:

~# echo "file drivers/usb/* +p" > <debugfs>/dynamic_debug/control

At the syntactical level, a command comprises a sequence of match
specifications, followed by a flags change specification:

command ::= match-spec* flags-spec

The match-spec’s are used to choose a subset of the known pr_debug()
callsites to which to apply the flags-spec. Think of them as a query
with implicit ANDs between each pair. Note that an empty list of
match-specs will select all debug statement callsites.

A match specification comprises a keyword, which controls the
attribute of the callsite to be compared, and a value to compare
against. Possible keywords are::

match-spec ::= 'func' string |
 'file' string |
 'module' string |
 'format' string |
 'line' line-range

line-range ::= lineno |
 '-'lineno |
 lineno'-' |
 lineno'-'lineno

lineno ::= unsigned-int

注解

line-range cannot contain space, e.g.
“1-30” is valid range but “1 - 30” is not.

The meanings of each keyword are:

	func

	The given string is compared against the function name
of each callsite. Example:

func svc_tcp_accept

	file

	The given string is compared against either the full pathname, the
src-root relative pathname, or the basename of the source file of
each callsite. Examples:

file svcsock.c
file kernel/freezer.c
file /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c

	module

	The given string is compared against the module name
of each callsite. The module name is the string as
seen in lsmod, i.e. without the directory or the .ko
suffix and with - changed to _. Examples:

module sunrpc
module nfsd

	format

	The given string is searched for in the dynamic debug format
string. Note that the string does not need to match the
entire format, only some part. Whitespace and other
special characters can be escaped using C octal character
escape \ooo notation, e.g. the space character is \040.
Alternatively, the string can be enclosed in double quote
characters (") or single quote characters (').
Examples:

format svcrdma: // many of the NFS/RDMA server pr_debugs
format readahead // some pr_debugs in the readahead cache
format nfsd:\040SETATTR // one way to match a format with whitespace
format "nfsd: SETATTR" // a neater way to match a format with whitespace
format 'nfsd: SETATTR' // yet another way to match a format with whitespace

	line

	The given line number or range of line numbers is compared
against the line number of each pr_debug() callsite. A single
line number matches the callsite line number exactly. A
range of line numbers matches any callsite between the first
and last line number inclusive. An empty first number means
the first line in the file, an empty last line number means the
last line number in the file. Examples:

line 1603 // exactly line 1603
line 1600-1605 // the six lines from line 1600 to line 1605
line -1605 // the 1605 lines from line 1 to line 1605
line 1600- // all lines from line 1600 to the end of the file

The flags specification comprises a change operation followed
by one or more flag characters. The change operation is one
of the characters:

- remove the given flags
+ add the given flags
= set the flags to the given flags

The flags are:

p enables the pr_debug() callsite.
f Include the function name in the printed message
l Include line number in the printed message
m Include module name in the printed message
t Include thread ID in messages not generated from interrupt context
_ No flags are set. (Or'd with others on input)

For print_hex_dump_debug() and print_hex_dump_bytes(), only p flag
have meaning, other flags ignored.

For display, the flags are preceded by =
(mnemonic: what the flags are currently equal to).

Note the regexp ^[-+=][flmpt_]+$ matches a flags specification.
To clear all flags at once, use =_ or -flmpt.

Debug messages during Boot Process

To activate debug messages for core code and built-in modules during
the boot process, even before userspace and debugfs exists, use
dyndbg="QUERY", module.dyndbg="QUERY", or ddebug_query="QUERY"
(ddebug_query is obsoleted by dyndbg, and deprecated). QUERY follows
the syntax described above, but must not exceed 1023 characters. Your
bootloader may impose lower limits.

These dyndbg params are processed just after the ddebug tables are
processed, as part of the arch_initcall. Thus you can enable debug
messages in all code run after this arch_initcall via this boot
parameter.

On an x86 system for example ACPI enablement is a subsys_initcall and:

dyndbg="file ec.c +p"

will show early Embedded Controller transactions during ACPI setup if
your machine (typically a laptop) has an Embedded Controller.
PCI (or other devices) initialization also is a hot candidate for using
this boot parameter for debugging purposes.

If foo module is not built-in, foo.dyndbg will still be processed at
boot time, without effect, but will be reprocessed when module is
loaded later. dyndbg_query= and bare dyndbg= are only processed at
boot.

Debug Messages at Module Initialization Time

When modprobe foo is called, modprobe scans /proc/cmdline for
foo.params, strips foo., and passes them to the kernel along with
params given in modprobe args or /etc/modprob.d/*.conf files,
in the following order:

	parameters given via /etc/modprobe.d/*.conf:

options foo dyndbg=+pt
options foo dyndbg # defaults to +p

	foo.dyndbg as given in boot args, foo. is stripped and passed:

foo.dyndbg=" func bar +p; func buz +mp"

	args to modprobe:

modprobe foo dyndbg==pmf # override previous settings

These dyndbg queries are applied in order, with last having final say.
This allows boot args to override or modify those from /etc/modprobe.d
(sensible, since 1 is system wide, 2 is kernel or boot specific), and
modprobe args to override both.

In the foo.dyndbg="QUERY" form, the query must exclude module foo.
foo is extracted from the param-name, and applied to each query in
QUERY, and only 1 match-spec of each type is allowed.

The dyndbg option is a “fake” module parameter, which means:

	modules do not need to define it explicitly

	every module gets it tacitly, whether they use pr_debug or not

	it doesn’t appear in /sys/module/$module/parameters/
To see it, grep the control file, or inspect /proc/cmdline.

For CONFIG_DYNAMIC_DEBUG kernels, any settings given at boot-time (or
enabled by -DDEBUG flag during compilation) can be disabled later via
the sysfs interface if the debug messages are no longer needed:

echo "module module_name -p" > <debugfs>/dynamic_debug/control

Examples

// enable the message at line 1603 of file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
 <debugfs>/dynamic_debug/control

// enable all the messages in file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c +p' >
 <debugfs>/dynamic_debug/control

// enable all the messages in the NFS server module
nullarbor:~ # echo -n 'module nfsd +p' >
 <debugfs>/dynamic_debug/control

// enable all 12 messages in the function svc_process()
nullarbor:~ # echo -n 'func svc_process +p' >
 <debugfs>/dynamic_debug/control

// disable all 12 messages in the function svc_process()
nullarbor:~ # echo -n 'func svc_process -p' >
 <debugfs>/dynamic_debug/control

// enable messages for NFS calls READ, READLINK, READDIR and READDIR+.
nullarbor:~ # echo -n 'format "nfsd: READ" +p' >
 <debugfs>/dynamic_debug/control

// enable messages in files of which the paths include string "usb"
nullarbor:~ # echo -n '*usb* +p' > <debugfs>/dynamic_debug/control

// enable all messages
nullarbor:~ # echo -n '+p' > <debugfs>/dynamic_debug/control

// add module, function to all enabled messages
nullarbor:~ # echo -n '+mf' > <debugfs>/dynamic_debug/control

// boot-args example, with newlines and comments for readability
Kernel command line: ...
 // see whats going on in dyndbg=value processing
 dynamic_debug.verbose=1
 // enable pr_debugs in 2 builtins, #cmt is stripped
 dyndbg="module params +p #cmt ; module sys +p"
 // enable pr_debugs in 2 functions in a module loaded later
 pc87360.dyndbg="func pc87360_init_device +p; func pc87360_find +p"

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Explaining the dreaded “No init found.” boot hang message

OK, so you’ve got this pretty unintuitive message (currently located
in init/main.c) and are wondering what the H*** went wrong.
Some high-level reasons for failure (listed roughly in order of execution)
to load the init binary are:

	Unable to mount root FS

	init binary doesn’t exist on rootfs

	broken console device

	binary exists but dependencies not available

	binary cannot be loaded

Detailed explanations:

	Set “debug” kernel parameter (in bootloader config file or CONFIG_CMDLINE)
to get more detailed kernel messages.

	make sure you have the correct root FS type
(and root= kernel parameter points to the correct partition),
required drivers such as storage hardware (such as SCSI or USB!)
and filesystem (ext3, jffs2 etc.) are builtin (alternatively as modules,
to be pre-loaded by an initrd)

	Possibly a conflict in console= setup –> initial console unavailable.
E.g. some serial consoles are unreliable due to serial IRQ issues (e.g.
missing interrupt-based configuration).
Try using a different console= device or e.g. netconsole=.

	e.g. required library dependencies of the init binary such as
/lib/ld-linux.so.2 missing or broken. Use
readelf -d <INIT>|grep NEEDED to find out which libraries are required.

	make sure the binary’s architecture matches your hardware.
E.g. i386 vs. x86_64 mismatch, or trying to load x86 on ARM hardware.
In case you tried loading a non-binary file here (shell script?),
you should make sure that the script specifies an interpreter in its shebang
header line (#!/...) that is fully working (including its library
dependencies). And before tackling scripts, better first test a simple
non-script binary such as /bin/sh and confirm its successful execution.
To find out more, add code to init/main.c to display kernel_execve()s
return values.

Please extend this explanation whenever you find new failure causes
(after all loading the init binary is a CRITICAL and hard transition step
which needs to be made as painless as possible), then submit patch to LKML.
Further TODOs:

	Implement the various run_init_process() invocations via a struct array
which can then store the kernel_execve() result value and on failure
log it all by iterating over all results (very important usability fix).

	try to make the implementation itself more helpful in general,
e.g. by providing additional error messages at affected places.

Andreas Mohr <andi at lisas period de>

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Rules on how to access information in sysfs

The kernel-exported sysfs exports internal kernel implementation details
and depends on internal kernel structures and layout. It is agreed upon
by the kernel developers that the Linux kernel does not provide a stable
internal API. Therefore, there are aspects of the sysfs interface that
may not be stable across kernel releases.

To minimize the risk of breaking users of sysfs, which are in most cases
low-level userspace applications, with a new kernel release, the users
of sysfs must follow some rules to use an as-abstract-as-possible way to
access this filesystem. The current udev and HAL programs already
implement this and users are encouraged to plug, if possible, into the
abstractions these programs provide instead of accessing sysfs directly.

But if you really do want or need to access sysfs directly, please follow
the following rules and then your programs should work with future
versions of the sysfs interface.

	
	Do not use libsysfs

	It makes assumptions about sysfs which are not true. Its API does not
offer any abstraction, it exposes all the kernel driver-core
implementation details in its own API. Therefore it is not better than
reading directories and opening the files yourself.
Also, it is not actively maintained, in the sense of reflecting the
current kernel development. The goal of providing a stable interface
to sysfs has failed; it causes more problems than it solves. It
violates many of the rules in this document.

	
	sysfs is always at /sys

	Parsing /proc/mounts is a waste of time. Other mount points are a
system configuration bug you should not try to solve. For test cases,
possibly support a SYSFS_PATH environment variable to overwrite the
application’s behavior, but never try to search for sysfs. Never try
to mount it, if you are not an early boot script.

	
	devices are only “devices”

	There is no such thing like class-, bus-, physical devices,
interfaces, and such that you can rely on in userspace. Everything is
just simply a “device”. Class-, bus-, physical, ... types are just
kernel implementation details which should not be expected by
applications that look for devices in sysfs.

The properties of a device are:

	devpath (/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0)
	identical to the DEVPATH value in the event sent from the kernel
at device creation and removal

	the unique key to the device at that point in time

	the kernel’s path to the device directory without the leading
/sys, and always starting with a slash

	all elements of a devpath must be real directories. Symlinks
pointing to /sys/devices must always be resolved to their real
target and the target path must be used to access the device.
That way the devpath to the device matches the devpath of the
kernel used at event time.

	using or exposing symlink values as elements in a devpath string
is a bug in the application

	kernel name (sda, tty, 0000:00:1f.2, ...)
	a directory name, identical to the last element of the devpath

	applications need to handle spaces and characters like ! in
the name

	subsystem (block, tty, pci, ...)
	simple string, never a path or a link

	retrieved by reading the “subsystem”-link and using only the
last element of the target path

	driver (tg3, ata_piix, uhci_hcd)
	a simple string, which may contain spaces, never a path or a
link

	it is retrieved by reading the “driver”-link and using only the
last element of the target path

	devices which do not have “driver”-link just do not have a
driver; copying the driver value in a child device context is a
bug in the application

	attributes
	the files in the device directory or files below subdirectories
of the same device directory

	accessing attributes reached by a symlink pointing to another device,
like the “device”-link, is a bug in the application

Everything else is just a kernel driver-core implementation detail
that should not be assumed to be stable across kernel releases.

	
	Properties of parent devices never belong into a child device.

	Always look at the parent devices themselves for determining device
context properties. If the device eth0 or sda does not have a
“driver”-link, then this device does not have a driver. Its value is empty.
Never copy any property of the parent-device into a child-device. Parent
device properties may change dynamically without any notice to the
child device.

	
	Hierarchy in a single device tree

	There is only one valid place in sysfs where hierarchy can be examined
and this is below: /sys/devices.
It is planned that all device directories will end up in the tree
below this directory.

	
	Classification by subsystem

	There are currently three places for classification of devices:
/sys/block, /sys/class and /sys/bus. It is planned that these will
not contain any device directories themselves, but only flat lists of
symlinks pointing to the unified /sys/devices tree.
All three places have completely different rules on how to access
device information. It is planned to merge all three
classification directories into one place at /sys/subsystem,
following the layout of the bus directories. All buses and
classes, including the converted block subsystem, will show up
there.
The devices belonging to a subsystem will create a symlink in the
“devices” directory at /sys/subsystem/<name>/devices,

If /sys/subsystem exists, /sys/bus, /sys/class and /sys/block
can be ignored. If it does not exist, you always have to scan all three
places, as the kernel is free to move a subsystem from one place to
the other, as long as the devices are still reachable by the same
subsystem name.

Assuming /sys/class/<subsystem> and /sys/bus/<subsystem>, or
/sys/block and /sys/class/block are not interchangeable is a bug in
the application.

	
	Block

	The converted block subsystem at /sys/class/block or
/sys/subsystem/block will contain the links for disks and partitions
at the same level, never in a hierarchy. Assuming the block subsystem to
contain only disks and not partition devices in the same flat list is
a bug in the application.

	
	“device”-link and <subsystem>:<kernel name>-links

	Never depend on the “device”-link. The “device”-link is a workaround
for the old layout, where class devices are not created in
/sys/devices/ like the bus devices. If the link-resolving of a
device directory does not end in /sys/devices/, you can use the
“device”-link to find the parent devices in /sys/devices/, That is the
single valid use of the “device”-link; it must never appear in any
path as an element. Assuming the existence of the “device”-link for
a device in /sys/devices/ is a bug in the application.
Accessing /sys/class/net/eth0/device is a bug in the application.

Never depend on the class-specific links back to the /sys/class
directory. These links are also a workaround for the design mistake
that class devices are not created in /sys/devices. If a device
directory does not contain directories for child devices, these links
may be used to find the child devices in /sys/class. That is the single
valid use of these links; they must never appear in any path as an
element. Assuming the existence of these links for devices which are
real child device directories in the /sys/devices tree is a bug in
the application.

It is planned to remove all these links when all class device
directories live in /sys/devices.

	
	Position of devices along device chain can change.

	Never depend on a specific parent device position in the devpath,
or the chain of parent devices. The kernel is free to insert devices into
the chain. You must always request the parent device you are looking for
by its subsystem value. You need to walk up the chain until you find
the device that matches the expected subsystem. Depending on a specific
position of a parent device or exposing relative paths using ../ to
access the chain of parents is a bug in the application.

	
	When reading and writing sysfs device attribute files, avoid dependency

	on specific error codes wherever possible. This minimizes coupling to
the error handling implementation within the kernel.

In general, failures to read or write sysfs device attributes shall
propagate errors wherever possible. Common errors include, but are not
limited to:

-EIO: The read or store operation is not supported, typically
returned by the sysfs system itself if the read or store pointer
is NULL.

-ENXIO: The read or store operation failed

Error codes will not be changed without good reason, and should a change
to error codes result in user-space breakage, it will be fixed, or the
the offending change will be reverted.

Userspace applications can, however, expect the format and contents of
the attribute files to remain consistent in the absence of a version
attribute change in the context of a given attribute.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Using the initial RAM disk (initrd)

Written 1996,2000 by Werner Almesberger <werner.almesberger@epfl.ch> and
Hans Lermen <lermen@fgan.de>

initrd provides the capability to load a RAM disk by the boot loader.
This RAM disk can then be mounted as the root file system and programs
can be run from it. Afterwards, a new root file system can be mounted
from a different device. The previous root (from initrd) is then moved
to a directory and can be subsequently unmounted.

initrd is mainly designed to allow system startup to occur in two phases,
where the kernel comes up with a minimum set of compiled-in drivers, and
where additional modules are loaded from initrd.

This document gives a brief overview of the use of initrd. A more detailed
discussion of the boot process can be found in [1].

Operation

When using initrd, the system typically boots as follows:

	the boot loader loads the kernel and the initial RAM disk

	the kernel converts initrd into a “normal” RAM disk and
frees the memory used by initrd

	if the root device is not /dev/ram0, the old (deprecated)
change_root procedure is followed. see the “Obsolete root change
mechanism” section below.

	root device is mounted. if it is /dev/ram0, the initrd image is
then mounted as root

	/sbin/init is executed (this can be any valid executable, including
shell scripts; it is run with uid 0 and can do basically everything
init can do).

	init mounts the “real” root file system

	init places the root file system at the root directory using the
pivot_root system call

	init execs the /sbin/init on the new root filesystem, performing
the usual boot sequence

	the initrd file system is removed

Note that changing the root directory does not involve unmounting it.
It is therefore possible to leave processes running on initrd during that
procedure. Also note that file systems mounted under initrd continue to
be accessible.

Boot command-line options

initrd adds the following new options:

initrd=<path> (e.g. LOADLIN)

 Loads the specified file as the initial RAM disk. When using LILO, you
 have to specify the RAM disk image file in /etc/lilo.conf, using the
 INITRD configuration variable.

noinitrd

 initrd data is preserved but it is not converted to a RAM disk and
 the "normal" root file system is mounted. initrd data can be read
 from /dev/initrd. Note that the data in initrd can have any structure
 in this case and doesn't necessarily have to be a file system image.
 This option is used mainly for debugging.

 Note: /dev/initrd is read-only and it can only be used once. As soon
 as the last process has closed it, all data is freed and /dev/initrd
 can't be opened anymore.

root=/dev/ram0

 initrd is mounted as root, and the normal boot procedure is followed,
 with the RAM disk mounted as root.

Compressed cpio images

Recent kernels have support for populating a ramdisk from a compressed cpio
archive. On such systems, the creation of a ramdisk image doesn’t need to
involve special block devices or loopbacks; you merely create a directory on
disk with the desired initrd content, cd to that directory, and run (as an
example):

find . | cpio --quiet -H newc -o | gzip -9 -n > /boot/imagefile.img

Examining the contents of an existing image file is just as simple:

mkdir /tmp/imagefile
cd /tmp/imagefile
gzip -cd /boot/imagefile.img | cpio -imd --quiet

Installation

First, a directory for the initrd file system has to be created on the
“normal” root file system, e.g.:

mkdir /initrd

The name is not relevant. More details can be found on the
pivot_root(2) man page.

If the root file system is created during the boot procedure (i.e. if
you’re building an install floppy), the root file system creation
procedure should create the /initrd directory.

If initrd will not be mounted in some cases, its content is still
accessible if the following device has been created:

mknod /dev/initrd b 1 250
chmod 400 /dev/initrd

Second, the kernel has to be compiled with RAM disk support and with
support for the initial RAM disk enabled. Also, at least all components
needed to execute programs from initrd (e.g. executable format and file
system) must be compiled into the kernel.

Third, you have to create the RAM disk image. This is done by creating a
file system on a block device, copying files to it as needed, and then
copying the content of the block device to the initrd file. With recent
kernels, at least three types of devices are suitable for that:

	a floppy disk (works everywhere but it’s painfully slow)

	a RAM disk (fast, but allocates physical memory)

	a loopback device (the most elegant solution)

We’ll describe the loopback device method:

	make sure loopback block devices are configured into the kernel

	create an empty file system of the appropriate size, e.g.:

dd if=/dev/zero of=initrd bs=300k count=1
mke2fs -F -m0 initrd

(if space is critical, you may want to use the Minix FS instead of Ext2)

	mount the file system, e.g.:

mount -t ext2 -o loop initrd /mnt

	create the console device:

mkdir /mnt/dev
mknod /mnt/dev/console c 5 1

	copy all the files that are needed to properly use the initrd
environment. Don’t forget the most important file, /sbin/init

注解

/sbin/init permissions must include “x” (execute).

	correct operation the initrd environment can frequently be tested
even without rebooting with the command:

chroot /mnt /sbin/init

This is of course limited to initrds that do not interfere with the
general system state (e.g. by reconfiguring network interfaces,
overwriting mounted devices, trying to start already running demons,
etc. Note however that it is usually possible to use pivot_root in
such a chroot’ed initrd environment.)

	unmount the file system:

umount /mnt

	the initrd is now in the file “initrd”. Optionally, it can now be
compressed:

gzip -9 initrd

For experimenting with initrd, you may want to take a rescue floppy and
only add a symbolic link from /sbin/init to /bin/sh. Alternatively, you
can try the experimental newlib environment [2] to create a small
initrd.

Finally, you have to boot the kernel and load initrd. Almost all Linux
boot loaders support initrd. Since the boot process is still compatible
with an older mechanism, the following boot command line parameters
have to be given:

root=/dev/ram0 rw

(rw is only necessary if writing to the initrd file system.)

With LOADLIN, you simply execute:

LOADLIN <kernel> initrd=<disk_image>

e.g.:

LOADLIN C:\LINUX\BZIMAGE initrd=C:\LINUX\INITRD.GZ root=/dev/ram0 rw

With LILO, you add the option INITRD=<path> to either the global section
or to the section of the respective kernel in /etc/lilo.conf, and pass
the options using APPEND, e.g.:

image = /bzImage
 initrd = /boot/initrd.gz
 append = "root=/dev/ram0 rw"

and run /sbin/lilo

For other boot loaders, please refer to the respective documentation.

Now you can boot and enjoy using initrd.

Changing the root device

When finished with its duties, init typically changes the root device
and proceeds with starting the Linux system on the “real” root device.

	The procedure involves the following steps:

	
	mounting the new root file system

	turning it into the root file system

	removing all accesses to the old (initrd) root file system

	unmounting the initrd file system and de-allocating the RAM disk

Mounting the new root file system is easy: it just needs to be mounted on
a directory under the current root. Example:

mkdir /new-root
mount -o ro /dev/hda1 /new-root

The root change is accomplished with the pivot_root system call, which
is also available via the pivot_root utility (see pivot_root(8)
man page; pivot_root is distributed with util-linux version 2.10h or higher
[3]). pivot_root moves the current root to a directory under the new
root, and puts the new root at its place. The directory for the old root
must exist before calling pivot_root. Example:

cd /new-root
mkdir initrd
pivot_root . initrd

Now, the init process may still access the old root via its
executable, shared libraries, standard input/output/error, and its
current root directory. All these references are dropped by the
following command:

exec chroot . what-follows <dev/console >dev/console 2>&1

Where what-follows is a program under the new root, e.g. /sbin/init
If the new root file system will be used with udev and has no valid
/dev directory, udev must be initialized before invoking chroot in order
to provide /dev/console.

Note: implementation details of pivot_root may change with time. In order
to ensure compatibility, the following points should be observed:

	before calling pivot_root, the current directory of the invoking
process should point to the new root directory

	use . as the first argument, and the _relative_ path of the directory
for the old root as the second argument

	a chroot program must be available under the old and the new root

	chroot to the new root afterwards

	use relative paths for dev/console in the exec command

Now, the initrd can be unmounted and the memory allocated by the RAM
disk can be freed:

umount /initrd
blockdev --flushbufs /dev/ram0

It is also possible to use initrd with an NFS-mounted root, see the
pivot_root(8) man page for details.

Usage scenarios

The main motivation for implementing initrd was to allow for modular
kernel configuration at system installation. The procedure would work
as follows:

	system boots from floppy or other media with a minimal kernel
(e.g. support for RAM disks, initrd, a.out, and the Ext2 FS) and
loads initrd

	/sbin/init determines what is needed to (1) mount the “real” root FS
(i.e. device type, device drivers, file system) and (2) the
distribution media (e.g. CD-ROM, network, tape, ...). This can be
done by asking the user, by auto-probing, or by using a hybrid
approach.

	/sbin/init loads the necessary kernel modules

	/sbin/init creates and populates the root file system (this doesn’t
have to be a very usable system yet)

	/sbin/init invokes pivot_root to change the root file system and
execs - via chroot - a program that continues the installation

	the boot loader is installed

	the boot loader is configured to load an initrd with the set of
modules that was used to bring up the system (e.g. /initrd can be
modified, then unmounted, and finally, the image is written from
/dev/ram0 or /dev/rd/0 to a file)

	now the system is bootable and additional installation tasks can be
performed

The key role of initrd here is to re-use the configuration data during
normal system operation without requiring the use of a bloated “generic”
kernel or re-compiling or re-linking the kernel.

A second scenario is for installations where Linux runs on systems with
different hardware configurations in a single administrative domain. In
such cases, it is desirable to generate only a small set of kernels
(ideally only one) and to keep the system-specific part of configuration
information as small as possible. In this case, a common initrd could be
generated with all the necessary modules. Then, only /sbin/init or a file
read by it would have to be different.

A third scenario is more convenient recovery disks, because information
like the location of the root FS partition doesn’t have to be provided at
boot time, but the system loaded from initrd can invoke a user-friendly
dialog and it can also perform some sanity checks (or even some form of
auto-detection).

Last not least, CD-ROM distributors may use it for better installation
from CD, e.g. by using a boot floppy and bootstrapping a bigger RAM disk
via initrd from CD; or by booting via a loader like LOADLIN or directly
from the CD-ROM, and loading the RAM disk from CD without need of
floppies.

Obsolete root change mechanism

The following mechanism was used before the introduction of pivot_root.
Current kernels still support it, but you should _not_ rely on its
continued availability.

It works by mounting the “real” root device (i.e. the one set with rdev
in the kernel image or with root=... at the boot command line) as the
root file system when linuxrc exits. The initrd file system is then
unmounted, or, if it is still busy, moved to a directory /initrd, if
such a directory exists on the new root file system.

In order to use this mechanism, you do not have to specify the boot
command options root, init, or rw. (If specified, they will affect
the real root file system, not the initrd environment.)

If /proc is mounted, the “real” root device can be changed from within
linuxrc by writing the number of the new root FS device to the special
file /proc/sys/kernel/real-root-dev, e.g.:

echo 0x301 >/proc/sys/kernel/real-root-dev

Note that the mechanism is incompatible with NFS and similar file
systems.

This old, deprecated mechanism is commonly called change_root, while
the new, supported mechanism is called pivot_root.

Mixed change_root and pivot_root mechanism

In case you did not want to use root=/dev/ram0 to trigger the pivot_root
mechanism, you may create both /linuxrc and /sbin/init in your initrd
image.

/linuxrc would contain only the following:

#! /bin/sh
mount -n -t proc proc /proc
echo 0x0100 >/proc/sys/kernel/real-root-dev
umount -n /proc

Once linuxrc exited, the kernel would mount again your initrd as root,
this time executing /sbin/init. Again, it would be the duty of this init
to build the right environment (maybe using the root= device passed on
the cmdline) before the final execution of the real /sbin/init.

Resources

	[1]	Almesberger, Werner; “Booting Linux: The History and the Future”
http://www.almesberger.net/cv/papers/ols2k-9.ps.gz

	[2]	newlib package (experimental), with initrd example
https://www.sourceware.org/newlib/

	[3]	util-linux: Miscellaneous utilities for Linux
https://www.kernel.org/pub/linux/utils/util-linux/

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Control Group v2

	Date:	October, 2015

	Author:	Tejun Heo <tj@kernel.org>

This is the authoritative documentation on the design, interface and
conventions of cgroup v2. It describes all userland-visible aspects
of cgroup including core and specific controller behaviors. All
future changes must be reflected in this document. Documentation for
v1 is available under Documentation/cgroup-v1/.

Introduction

Terminology

“cgroup” stands for “control group” and is never capitalized. The
singular form is used to designate the whole feature and also as a
qualifier as in “cgroup controllers”. When explicitly referring to
multiple individual control groups, the plural form “cgroups” is used.

What is cgroup?

cgroup is a mechanism to organize processes hierarchically and
distribute system resources along the hierarchy in a controlled and
configurable manner.

cgroup is largely composed of two parts - the core and controllers.
cgroup core is primarily responsible for hierarchically organizing
processes. A cgroup controller is usually responsible for
distributing a specific type of system resource along the hierarchy
although there are utility controllers which serve purposes other than
resource distribution.

cgroups form a tree structure and every process in the system belongs
to one and only one cgroup. All threads of a process belong to the
same cgroup. On creation, all processes are put in the cgroup that
the parent process belongs to at the time. A process can be migrated
to another cgroup. Migration of a process doesn’t affect already
existing descendant processes.

Following certain structural constraints, controllers may be enabled or
disabled selectively on a cgroup. All controller behaviors are
hierarchical - if a controller is enabled on a cgroup, it affects all
processes which belong to the cgroups consisting the inclusive
sub-hierarchy of the cgroup. When a controller is enabled on a nested
cgroup, it always restricts the resource distribution further. The
restrictions set closer to the root in the hierarchy can not be
overridden from further away.

Basic Operations

Mounting

Unlike v1, cgroup v2 has only single hierarchy. The cgroup v2
hierarchy can be mounted with the following mount command:

mount -t cgroup2 none $MOUNT_POINT

cgroup2 filesystem has the magic number 0x63677270 (“cgrp”). All
controllers which support v2 and are not bound to a v1 hierarchy are
automatically bound to the v2 hierarchy and show up at the root.
Controllers which are not in active use in the v2 hierarchy can be
bound to other hierarchies. This allows mixing v2 hierarchy with the
legacy v1 multiple hierarchies in a fully backward compatible way.

A controller can be moved across hierarchies only after the controller
is no longer referenced in its current hierarchy. Because per-cgroup
controller states are destroyed asynchronously and controllers may
have lingering references, a controller may not show up immediately on
the v2 hierarchy after the final umount of the previous hierarchy.
Similarly, a controller should be fully disabled to be moved out of
the unified hierarchy and it may take some time for the disabled
controller to become available for other hierarchies; furthermore, due
to inter-controller dependencies, other controllers may need to be
disabled too.

While useful for development and manual configurations, moving
controllers dynamically between the v2 and other hierarchies is
strongly discouraged for production use. It is recommended to decide
the hierarchies and controller associations before starting using the
controllers after system boot.

During transition to v2, system management software might still
automount the v1 cgroup filesystem and so hijack all controllers
during boot, before manual intervention is possible. To make testing
and experimenting easier, the kernel parameter cgroup_no_v1= allows
disabling controllers in v1 and make them always available in v2.

cgroup v2 currently supports the following mount options.

nsdelegate

Consider cgroup namespaces as delegation boundaries. This
option is system wide and can only be set on mount or modified
through remount from the init namespace. The mount option is
ignored on non-init namespace mounts. Please refer to the
Delegation section for details.

Organizing Processes and Threads

Processes

Initially, only the root cgroup exists to which all processes belong.
A child cgroup can be created by creating a sub-directory:

mkdir $CGROUP_NAME

A given cgroup may have multiple child cgroups forming a tree
structure. Each cgroup has a read-writable interface file
“cgroup.procs”. When read, it lists the PIDs of all processes which
belong to the cgroup one-per-line. The PIDs are not ordered and the
same PID may show up more than once if the process got moved to
another cgroup and then back or the PID got recycled while reading.

A process can be migrated into a cgroup by writing its PID to the
target cgroup’s “cgroup.procs” file. Only one process can be migrated
on a single write(2) call. If a process is composed of multiple
threads, writing the PID of any thread migrates all threads of the
process.

When a process forks a child process, the new process is born into the
cgroup that the forking process belongs to at the time of the
operation. After exit, a process stays associated with the cgroup
that it belonged to at the time of exit until it’s reaped; however, a
zombie process does not appear in “cgroup.procs” and thus can’t be
moved to another cgroup.

A cgroup which doesn’t have any children or live processes can be
destroyed by removing the directory. Note that a cgroup which doesn’t
have any children and is associated only with zombie processes is
considered empty and can be removed:

rmdir $CGROUP_NAME

“/proc/$PID/cgroup” lists a process’s cgroup membership. If legacy
cgroup is in use in the system, this file may contain multiple lines,
one for each hierarchy. The entry for cgroup v2 is always in the
format “0::$PATH”:

cat /proc/842/cgroup
...
0::/test-cgroup/test-cgroup-nested

If the process becomes a zombie and the cgroup it was associated with
is removed subsequently, ” (deleted)” is appended to the path:

cat /proc/842/cgroup
...
0::/test-cgroup/test-cgroup-nested (deleted)

Threads

cgroup v2 supports thread granularity for a subset of controllers to
support use cases requiring hierarchical resource distribution across
the threads of a group of processes. By default, all threads of a
process belong to the same cgroup, which also serves as the resource
domain to host resource consumptions which are not specific to a
process or thread. The thread mode allows threads to be spread across
a subtree while still maintaining the common resource domain for them.

Controllers which support thread mode are called threaded controllers.
The ones which don’t are called domain controllers.

Marking a cgroup threaded makes it join the resource domain of its
parent as a threaded cgroup. The parent may be another threaded
cgroup whose resource domain is further up in the hierarchy. The root
of a threaded subtree, that is, the nearest ancestor which is not
threaded, is called threaded domain or thread root interchangeably and
serves as the resource domain for the entire subtree.

Inside a threaded subtree, threads of a process can be put in
different cgroups and are not subject to the no internal process
constraint - threaded controllers can be enabled on non-leaf cgroups
whether they have threads in them or not.

As the threaded domain cgroup hosts all the domain resource
consumptions of the subtree, it is considered to have internal
resource consumptions whether there are processes in it or not and
can’t have populated child cgroups which aren’t threaded. Because the
root cgroup is not subject to no internal process constraint, it can
serve both as a threaded domain and a parent to domain cgroups.

The current operation mode or type of the cgroup is shown in the
“cgroup.type” file which indicates whether the cgroup is a normal
domain, a domain which is serving as the domain of a threaded subtree,
or a threaded cgroup.

On creation, a cgroup is always a domain cgroup and can be made
threaded by writing “threaded” to the “cgroup.type” file. The
operation is single direction:

echo threaded > cgroup.type

Once threaded, the cgroup can’t be made a domain again. To enable the
thread mode, the following conditions must be met.

	As the cgroup will join the parent’s resource domain. The parent
must either be a valid (threaded) domain or a threaded cgroup.

	When the parent is an unthreaded domain, it must not have any domain
controllers enabled or populated domain children. The root is
exempt from this requirement.

Topology-wise, a cgroup can be in an invalid state. Please consider
the following topology:

A (threaded domain) - B (threaded) - C (domain, just created)

C is created as a domain but isn’t connected to a parent which can
host child domains. C can’t be used until it is turned into a
threaded cgroup. “cgroup.type” file will report “domain (invalid)” in
these cases. Operations which fail due to invalid topology use
EOPNOTSUPP as the errno.

A domain cgroup is turned into a threaded domain when one of its child
cgroup becomes threaded or threaded controllers are enabled in the
“cgroup.subtree_control” file while there are processes in the cgroup.
A threaded domain reverts to a normal domain when the conditions
clear.

When read, “cgroup.threads” contains the list of the thread IDs of all
threads in the cgroup. Except that the operations are per-thread
instead of per-process, “cgroup.threads” has the same format and
behaves the same way as “cgroup.procs”. While “cgroup.threads” can be
written to in any cgroup, as it can only move threads inside the same
threaded domain, its operations are confined inside each threaded
subtree.

The threaded domain cgroup serves as the resource domain for the whole
subtree, and, while the threads can be scattered across the subtree,
all the processes are considered to be in the threaded domain cgroup.
“cgroup.procs” in a threaded domain cgroup contains the PIDs of all
processes in the subtree and is not readable in the subtree proper.
However, “cgroup.procs” can be written to from anywhere in the subtree
to migrate all threads of the matching process to the cgroup.

Only threaded controllers can be enabled in a threaded subtree. When
a threaded controller is enabled inside a threaded subtree, it only
accounts for and controls resource consumptions associated with the
threads in the cgroup and its descendants. All consumptions which
aren’t tied to a specific thread belong to the threaded domain cgroup.

Because a threaded subtree is exempt from no internal process
constraint, a threaded controller must be able to handle competition
between threads in a non-leaf cgroup and its child cgroups. Each
threaded controller defines how such competitions are handled.

[Un]populated Notification

Each non-root cgroup has a “cgroup.events” file which contains
“populated” field indicating whether the cgroup’s sub-hierarchy has
live processes in it. Its value is 0 if there is no live process in
the cgroup and its descendants; otherwise, 1. poll and [id]notify
events are triggered when the value changes. This can be used, for
example, to start a clean-up operation after all processes of a given
sub-hierarchy have exited. The populated state updates and
notifications are recursive. Consider the following sub-hierarchy
where the numbers in the parentheses represent the numbers of processes
in each cgroup:

A(4) - B(0) - C(1)
 \ D(0)

A, B and C’s “populated” fields would be 1 while D’s 0. After the one
process in C exits, B and C’s “populated” fields would flip to “0” and
file modified events will be generated on the “cgroup.events” files of
both cgroups.

Controlling Controllers

Enabling and Disabling

Each cgroup has a “cgroup.controllers” file which lists all
controllers available for the cgroup to enable:

cat cgroup.controllers
cpu io memory

No controller is enabled by default. Controllers can be enabled and
disabled by writing to the “cgroup.subtree_control” file:

echo "+cpu +memory -io" > cgroup.subtree_control

Only controllers which are listed in “cgroup.controllers” can be
enabled. When multiple operations are specified as above, either they
all succeed or fail. If multiple operations on the same controller
are specified, the last one is effective.

Enabling a controller in a cgroup indicates that the distribution of
the target resource across its immediate children will be controlled.
Consider the following sub-hierarchy. The enabled controllers are
listed in parentheses:

A(cpu,memory) - B(memory) - C()
 \ D()

As A has “cpu” and “memory” enabled, A will control the distribution
of CPU cycles and memory to its children, in this case, B. As B has
“memory” enabled but not “CPU”, C and D will compete freely on CPU
cycles but their division of memory available to B will be controlled.

As a controller regulates the distribution of the target resource to
the cgroup’s children, enabling it creates the controller’s interface
files in the child cgroups. In the above example, enabling “cpu” on B
would create the “cpu.” prefixed controller interface files in C and
D. Likewise, disabling “memory” from B would remove the “memory.”
prefixed controller interface files from C and D. This means that the
controller interface files - anything which doesn’t start with
“cgroup.” are owned by the parent rather than the cgroup itself.

Top-down Constraint

Resources are distributed top-down and a cgroup can further distribute
a resource only if the resource has been distributed to it from the
parent. This means that all non-root “cgroup.subtree_control” files
can only contain controllers which are enabled in the parent’s
“cgroup.subtree_control” file. A controller can be enabled only if
the parent has the controller enabled and a controller can’t be
disabled if one or more children have it enabled.

No Internal Process Constraint

Non-root cgroups can distribute domain resources to their children
only when they don’t have any processes of their own. In other words,
only domain cgroups which don’t contain any processes can have domain
controllers enabled in their “cgroup.subtree_control” files.

This guarantees that, when a domain controller is looking at the part
of the hierarchy which has it enabled, processes are always only on
the leaves. This rules out situations where child cgroups compete
against internal processes of the parent.

The root cgroup is exempt from this restriction. Root contains
processes and anonymous resource consumption which can’t be associated
with any other cgroups and requires special treatment from most
controllers. How resource consumption in the root cgroup is governed
is up to each controller (for more information on this topic please
refer to the Non-normative information section in the Controllers
chapter).

Note that the restriction doesn’t get in the way if there is no
enabled controller in the cgroup’s “cgroup.subtree_control”. This is
important as otherwise it wouldn’t be possible to create children of a
populated cgroup. To control resource distribution of a cgroup, the
cgroup must create children and transfer all its processes to the
children before enabling controllers in its “cgroup.subtree_control”
file.

Delegation

Model of Delegation

A cgroup can be delegated in two ways. First, to a less privileged
user by granting write access of the directory and its “cgroup.procs”,
“cgroup.threads” and “cgroup.subtree_control” files to the user.
Second, if the “nsdelegate” mount option is set, automatically to a
cgroup namespace on namespace creation.

Because the resource control interface files in a given directory
control the distribution of the parent’s resources, the delegatee
shouldn’t be allowed to write to them. For the first method, this is
achieved by not granting access to these files. For the second, the
kernel rejects writes to all files other than “cgroup.procs” and
“cgroup.subtree_control” on a namespace root from inside the
namespace.

The end results are equivalent for both delegation types. Once
delegated, the user can build sub-hierarchy under the directory,
organize processes inside it as it sees fit and further distribute the
resources it received from the parent. The limits and other settings
of all resource controllers are hierarchical and regardless of what
happens in the delegated sub-hierarchy, nothing can escape the
resource restrictions imposed by the parent.

Currently, cgroup doesn’t impose any restrictions on the number of
cgroups in or nesting depth of a delegated sub-hierarchy; however,
this may be limited explicitly in the future.

Delegation Containment

A delegated sub-hierarchy is contained in the sense that processes
can’t be moved into or out of the sub-hierarchy by the delegatee.

For delegations to a less privileged user, this is achieved by
requiring the following conditions for a process with a non-root euid
to migrate a target process into a cgroup by writing its PID to the
“cgroup.procs” file.

	The writer must have write access to the “cgroup.procs” file.

	The writer must have write access to the “cgroup.procs” file of the
common ancestor of the source and destination cgroups.

The above two constraints ensure that while a delegatee may migrate
processes around freely in the delegated sub-hierarchy it can’t pull
in from or push out to outside the sub-hierarchy.

For an example, let’s assume cgroups C0 and C1 have been delegated to
user U0 who created C00, C01 under C0 and C10 under C1 as follows and
all processes under C0 and C1 belong to U0:

~~~~~~~~~~~~~ - C0 - C00
~ cgroup    ~      \ C01
~ hierarchy ~
~~~~~~~~~~~~~ - C1 - C10


Let’s also say U0 wants to write the PID of a process which is
currently in C10 into “C00/cgroup.procs”. U0 has write access to the
file; however, the common ancestor of the source cgroup C10 and the
destination cgroup C00 is above the points of delegation and U0 would
not have write access to its “cgroup.procs” files and thus the write
will be denied with -EACCES.

For delegations to namespaces, containment is achieved by requiring
that both the source and destination cgroups are reachable from the
namespace of the process which is attempting the migration. If either
is not reachable, the migration is rejected with -ENOENT.

Guidelines

Organize Once and Control

Migrating a process across cgroups is a relatively expensive operation
and stateful resources such as memory are not moved together with the
process. This is an explicit design decision as there often exist
inherent trade-offs between migration and various hot paths in terms
of synchronization cost.

As such, migrating processes across cgroups frequently as a means to
apply different resource restrictions is discouraged. A workload
should be assigned to a cgroup according to the system’s logical and
resource structure once on start-up. Dynamic adjustments to resource
distribution can be made by changing controller configuration through
the interface files.

Avoid Name Collisions

Interface files for a cgroup and its children cgroups occupy the same
directory and it is possible to create children cgroups which collide
with interface files.

All cgroup core interface files are prefixed with “cgroup.” and each
controller’s interface files are prefixed with the controller name and
a dot. A controller’s name is composed of lower case alphabets and
‘_’s but never begins with an ‘_’ so it can be used as the prefix
character for collision avoidance. Also, interface file names won’t
start or end with terms which are often used in categorizing workloads
such as job, service, slice, unit or workload.

cgroup doesn’t do anything to prevent name collisions and it’s the
user’s responsibility to avoid them.

Resource Distribution Models

cgroup controllers implement several resource distribution schemes
depending on the resource type and expected use cases. This section
describes major schemes in use along with their expected behaviors.

Weights

A parent’s resource is distributed by adding up the weights of all
active children and giving each the fraction matching the ratio of its
weight against the sum. As only children which can make use of the
resource at the moment participate in the distribution, this is
work-conserving. Due to the dynamic nature, this model is usually
used for stateless resources.

All weights are in the range [1, 10000] with the default at 100. This
allows symmetric multiplicative biases in both directions at fine
enough granularity while staying in the intuitive range.

As long as the weight is in range, all configuration combinations are
valid and there is no reason to reject configuration changes or
process migrations.

“cpu.weight” proportionally distributes CPU cycles to active children
and is an example of this type.

Limits

A child can only consume upto the configured amount of the resource.
Limits can be over-committed - the sum of the limits of children can
exceed the amount of resource available to the parent.

Limits are in the range [0, max] and defaults to “max”, which is noop.

As limits can be over-committed, all configuration combinations are
valid and there is no reason to reject configuration changes or
process migrations.

“io.max” limits the maximum BPS and/or IOPS that a cgroup can consume
on an IO device and is an example of this type.

Protections

A cgroup is protected to be allocated upto the configured amount of
the resource if the usages of all its ancestors are under their
protected levels. Protections can be hard guarantees or best effort
soft boundaries. Protections can also be over-committed in which case
only upto the amount available to the parent is protected among
children.

Protections are in the range [0, max] and defaults to 0, which is
noop.

As protections can be over-committed, all configuration combinations
are valid and there is no reason to reject configuration changes or
process migrations.

“memory.low” implements best-effort memory protection and is an
example of this type.

Allocations

A cgroup is exclusively allocated a certain amount of a finite
resource. Allocations can’t be over-committed - the sum of the
allocations of children can not exceed the amount of resource
available to the parent.

Allocations are in the range [0, max] and defaults to 0, which is no
resource.

As allocations can’t be over-committed, some configuration
combinations are invalid and should be rejected. Also, if the
resource is mandatory for execution of processes, process migrations
may be rejected.

“cpu.rt.max” hard-allocates realtime slices and is an example of this
type.

Interface Files

Format

All interface files should be in one of the following formats whenever
possible:

New-line separated values
(when only one value can be written at once)

 VAL0\n
 VAL1\n
 ...

Space separated values
(when read-only or multiple values can be written at once)

 VAL0 VAL1 ...\n

Flat keyed

 KEY0 VAL0\n
 KEY1 VAL1\n
 ...

Nested keyed

 KEY0 SUB_KEY0=VAL00 SUB_KEY1=VAL01...
 KEY1 SUB_KEY0=VAL10 SUB_KEY1=VAL11...
 ...

For a writable file, the format for writing should generally match
reading; however, controllers may allow omitting later fields or
implement restricted shortcuts for most common use cases.

For both flat and nested keyed files, only the values for a single key
can be written at a time. For nested keyed files, the sub key pairs
may be specified in any order and not all pairs have to be specified.

Conventions

	Settings for a single feature should be contained in a single file.

	The root cgroup should be exempt from resource control and thus
shouldn’t have resource control interface files. Also,
informational files on the root cgroup which end up showing global
information available elsewhere shouldn’t exist.

	If a controller implements weight based resource distribution, its
interface file should be named “weight” and have the range [1,
10000] with 100 as the default. The values are chosen to allow
enough and symmetric bias in both directions while keeping it
intuitive (the default is 100%).

	If a controller implements an absolute resource guarantee and/or
limit, the interface files should be named “min” and “max”
respectively. If a controller implements best effort resource
guarantee and/or limit, the interface files should be named “low”
and “high” respectively.

In the above four control files, the special token “max” should be
used to represent upward infinity for both reading and writing.

	If a setting has a configurable default value and keyed specific
overrides, the default entry should be keyed with “default” and
appear as the first entry in the file.

The default value can be updated by writing either “default $VAL” or
“$VAL”.

When writing to update a specific override, “default” can be used as
the value to indicate removal of the override. Override entries
with “default” as the value must not appear when read.

For example, a setting which is keyed by major:minor device numbers
with integer values may look like the following:

cat cgroup-example-interface-file
default 150
8:0 300

The default value can be updated by:

echo 125 > cgroup-example-interface-file

or:

echo "default 125" > cgroup-example-interface-file

An override can be set by:

echo "8:16 170" > cgroup-example-interface-file

and cleared by:

echo "8:0 default" > cgroup-example-interface-file
cat cgroup-example-interface-file
default 125
8:16 170

	For events which are not very high frequency, an interface file
“events” should be created which lists event key value pairs.
Whenever a notifiable event happens, file modified event should be
generated on the file.

Core Interface Files

All cgroup core files are prefixed with “cgroup.”

cgroup.type

A read-write single value file which exists on non-root
cgroups.

When read, it indicates the current type of the cgroup, which
can be one of the following values.

	“domain” : A normal valid domain cgroup.

	“domain threaded” : A threaded domain cgroup which is
serving as the root of a threaded subtree.

	“domain invalid” : A cgroup which is in an invalid state.
It can’t be populated or have controllers enabled. It may
be allowed to become a threaded cgroup.

	“threaded” : A threaded cgroup which is a member of a
threaded subtree.

A cgroup can be turned into a threaded cgroup by writing
“threaded” to this file.

	cgroup.procs

	A read-write new-line separated values file which exists on
all cgroups.

When read, it lists the PIDs of all processes which belong to
the cgroup one-per-line. The PIDs are not ordered and the
same PID may show up more than once if the process got moved
to another cgroup and then back or the PID got recycled while
reading.

A PID can be written to migrate the process associated with
the PID to the cgroup. The writer should match all of the
following conditions.

	It must have write access to the “cgroup.procs” file.

	It must have write access to the “cgroup.procs” file of the
common ancestor of the source and destination cgroups.

When delegating a sub-hierarchy, write access to this file
should be granted along with the containing directory.

In a threaded cgroup, reading this file fails with EOPNOTSUPP
as all the processes belong to the thread root. Writing is
supported and moves every thread of the process to the cgroup.

	cgroup.threads

	A read-write new-line separated values file which exists on
all cgroups.

When read, it lists the TIDs of all threads which belong to
the cgroup one-per-line. The TIDs are not ordered and the
same TID may show up more than once if the thread got moved to
another cgroup and then back or the TID got recycled while
reading.

A TID can be written to migrate the thread associated with the
TID to the cgroup. The writer should match all of the
following conditions.

	It must have write access to the “cgroup.threads” file.

	The cgroup that the thread is currently in must be in the
same resource domain as the destination cgroup.

	It must have write access to the “cgroup.procs” file of the
common ancestor of the source and destination cgroups.

When delegating a sub-hierarchy, write access to this file
should be granted along with the containing directory.

	cgroup.controllers

	A read-only space separated values file which exists on all
cgroups.

It shows space separated list of all controllers available to
the cgroup. The controllers are not ordered.

	cgroup.subtree_control

	A read-write space separated values file which exists on all
cgroups. Starts out empty.

When read, it shows space separated list of the controllers
which are enabled to control resource distribution from the
cgroup to its children.

Space separated list of controllers prefixed with ‘+’ or ‘-‘
can be written to enable or disable controllers. A controller
name prefixed with ‘+’ enables the controller and ‘-‘
disables. If a controller appears more than once on the list,
the last one is effective. When multiple enable and disable
operations are specified, either all succeed or all fail.

	cgroup.events

	A read-only flat-keyed file which exists on non-root cgroups.
The following entries are defined. Unless specified
otherwise, a value change in this file generates a file
modified event.

	populated

	1 if the cgroup or its descendants contains any live
processes; otherwise, 0.

	cgroup.max.descendants

	A read-write single value files. The default is “max”.

Maximum allowed number of descent cgroups.
If the actual number of descendants is equal or larger,
an attempt to create a new cgroup in the hierarchy will fail.

	cgroup.max.depth

	A read-write single value files. The default is “max”.

Maximum allowed descent depth below the current cgroup.
If the actual descent depth is equal or larger,
an attempt to create a new child cgroup will fail.

	cgroup.stat

	A read-only flat-keyed file with the following entries:

	nr_descendants

	Total number of visible descendant cgroups.

	nr_dying_descendants

	Total number of dying descendant cgroups. A cgroup becomes
dying after being deleted by a user. The cgroup will remain
in dying state for some time undefined time (which can depend
on system load) before being completely destroyed.

A process can’t enter a dying cgroup under any circumstances,
a dying cgroup can’t revive.

A dying cgroup can consume system resources not exceeding
limits, which were active at the moment of cgroup deletion.

Controllers

CPU

The “cpu” controllers regulates distribution of CPU cycles. This
controller implements weight and absolute bandwidth limit models for
normal scheduling policy and absolute bandwidth allocation model for
realtime scheduling policy.

WARNING: cgroup2 doesn’t yet support control of realtime processes and
the cpu controller can only be enabled when all RT processes are in
the root cgroup. Be aware that system management software may already
have placed RT processes into nonroot cgroups during the system boot
process, and these processes may need to be moved to the root cgroup
before the cpu controller can be enabled.

CPU Interface Files

All time durations are in microseconds.

	cpu.stat

	A read-only flat-keyed file which exists on non-root cgroups.
This file exists whether the controller is enabled or not.

It always reports the following three stats:

	usage_usec

	user_usec

	system_usec

and the following three when the controller is enabled:

	nr_periods

	nr_throttled

	throttled_usec

	cpu.weight

	A read-write single value file which exists on non-root
cgroups. The default is “100”.

The weight in the range [1, 10000].

	cpu.weight.nice

	A read-write single value file which exists on non-root
cgroups. The default is “0”.

The nice value is in the range [-20, 19].

This interface file is an alternative interface for
“cpu.weight” and allows reading and setting weight using the
same values used by nice(2). Because the range is smaller and
granularity is coarser for the nice values, the read value is
the closest approximation of the current weight.

	cpu.max

	A read-write two value file which exists on non-root cgroups.
The default is “max 100000”.

The maximum bandwidth limit. It’s in the following format:

$MAX $PERIOD

which indicates that the group may consume upto $MAX in each
$PERIOD duration. “max” for $MAX indicates no limit. If only
one number is written, $MAX is updated.

	cpu.pressure

	A read-only nested-key file which exists on non-root cgroups.

Shows pressure stall information for CPU. See
Documentation/accounting/psi.txt for details.

Memory

The “memory” controller regulates distribution of memory. Memory is
stateful and implements both limit and protection models. Due to the
intertwining between memory usage and reclaim pressure and the
stateful nature of memory, the distribution model is relatively
complex.

While not completely water-tight, all major memory usages by a given
cgroup are tracked so that the total memory consumption can be
accounted and controlled to a reasonable extent. Currently, the
following types of memory usages are tracked.

	Userland memory - page cache and anonymous memory.

	Kernel data structures such as dentries and inodes.

	TCP socket buffers.

The above list may expand in the future for better coverage.

Memory Interface Files

All memory amounts are in bytes. If a value which is not aligned to
PAGE_SIZE is written, the value may be rounded up to the closest
PAGE_SIZE multiple when read back.

	memory.current

	A read-only single value file which exists on non-root
cgroups.

The total amount of memory currently being used by the cgroup
and its descendants.

	memory.min

	
A read-write single value file which exists on non-root
cgroups. The default is “0”.

Hard memory protection. If the memory usage of a cgroup
is within its effective min boundary, the cgroup’s memory
won’t be reclaimed under any conditions. If there is no
unprotected reclaimable memory available, OOM killer
is invoked.

	Effective min boundary is limited by memory.min values of

	all ancestor cgroups. If there is memory.min overcommitment
(child cgroup or cgroups are requiring more protected memory
than parent will allow), then each child cgroup will get
the part of parent’s protection proportional to its
actual memory usage below memory.min.

Putting more memory than generally available under this
protection is discouraged and may lead to constant OOMs.

If a memory cgroup is not populated with processes,
its memory.min is ignored.

	memory.low

	A read-write single value file which exists on non-root
cgroups. The default is “0”.

Best-effort memory protection. If the memory usage of a
cgroup is within its effective low boundary, the cgroup’s
memory won’t be reclaimed unless memory can be reclaimed
from unprotected cgroups.

Effective low boundary is limited by memory.low values of
all ancestor cgroups. If there is memory.low overcommitment
(child cgroup or cgroups are requiring more protected memory
than parent will allow), then each child cgroup will get
the part of parent’s protection proportional to its
actual memory usage below memory.low.

Putting more memory than generally available under this
protection is discouraged.

	memory.high

	A read-write single value file which exists on non-root
cgroups. The default is “max”.

Memory usage throttle limit. This is the main mechanism to
control memory usage of a cgroup. If a cgroup’s usage goes
over the high boundary, the processes of the cgroup are
throttled and put under heavy reclaim pressure.

Going over the high limit never invokes the OOM killer and
under extreme conditions the limit may be breached.

	memory.max

	A read-write single value file which exists on non-root
cgroups. The default is “max”.

Memory usage hard limit. This is the final protection
mechanism. If a cgroup’s memory usage reaches this limit and
can’t be reduced, the OOM killer is invoked in the cgroup.
Under certain circumstances, the usage may go over the limit
temporarily.

This is the ultimate protection mechanism. As long as the
high limit is used and monitored properly, this limit’s
utility is limited to providing the final safety net.

	memory.oom.group

	A read-write single value file which exists on non-root
cgroups. The default value is “0”.

Determines whether the cgroup should be treated as
an indivisible workload by the OOM killer. If set,
all tasks belonging to the cgroup or to its descendants
(if the memory cgroup is not a leaf cgroup) are killed
together or not at all. This can be used to avoid
partial kills to guarantee workload integrity.

Tasks with the OOM protection (oom_score_adj set to -1000)
are treated as an exception and are never killed.

If the OOM killer is invoked in a cgroup, it’s not going
to kill any tasks outside of this cgroup, regardless
memory.oom.group values of ancestor cgroups.

	memory.events

	A read-only flat-keyed file which exists on non-root cgroups.
The following entries are defined. Unless specified
otherwise, a value change in this file generates a file
modified event.

	low

	The number of times the cgroup is reclaimed due to
high memory pressure even though its usage is under
the low boundary. This usually indicates that the low
boundary is over-committed.

	high

	The number of times processes of the cgroup are
throttled and routed to perform direct memory reclaim
because the high memory boundary was exceeded. For a
cgroup whose memory usage is capped by the high limit
rather than global memory pressure, this event’s
occurrences are expected.

	max

	The number of times the cgroup’s memory usage was
about to go over the max boundary. If direct reclaim
fails to bring it down, the cgroup goes to OOM state.

	oom

	The number of time the cgroup’s memory usage was
reached the limit and allocation was about to fail.

Depending on context result could be invocation of OOM
killer and retrying allocation or failing allocation.

Failed allocation in its turn could be returned into
userspace as -ENOMEM or silently ignored in cases like
disk readahead. For now OOM in memory cgroup kills
tasks iff shortage has happened inside page fault.

This event is not raised if the OOM killer is not
considered as an option, e.g. for failed high-order
allocations.

	oom_kill

	The number of processes belonging to this cgroup
killed by any kind of OOM killer.

	memory.stat

	A read-only flat-keyed file which exists on non-root cgroups.

This breaks down the cgroup’s memory footprint into different
types of memory, type-specific details, and other information
on the state and past events of the memory management system.

All memory amounts are in bytes.

The entries are ordered to be human readable, and new entries
can show up in the middle. Don’t rely on items remaining in a
fixed position; use the keys to look up specific values!

	anon

	Amount of memory used in anonymous mappings such as
brk(), sbrk(), and mmap(MAP_ANONYMOUS)

	file

	Amount of memory used to cache filesystem data,
including tmpfs and shared memory.

	kernel_stack

	Amount of memory allocated to kernel stacks.

	slab

	Amount of memory used for storing in-kernel data
structures.

	sock

	Amount of memory used in network transmission buffers

	shmem

	Amount of cached filesystem data that is swap-backed,
such as tmpfs, shm segments, shared anonymous mmap()s

	file_mapped

	Amount of cached filesystem data mapped with mmap()

	file_dirty

	Amount of cached filesystem data that was modified but
not yet written back to disk

	file_writeback

	Amount of cached filesystem data that was modified and
is currently being written back to disk

	inactive_anon, active_anon, inactive_file, active_file, unevictable

	Amount of memory, swap-backed and filesystem-backed,
on the internal memory management lists used by the
page reclaim algorithm

	slab_reclaimable

	Part of “slab” that might be reclaimed, such as
dentries and inodes.

	slab_unreclaimable

	Part of “slab” that cannot be reclaimed on memory
pressure.

	pgfault

	Total number of page faults incurred

	pgmajfault

	Number of major page faults incurred

workingset_refault

Number of refaults of previously evicted pages

workingset_activate

Number of refaulted pages that were immediately activated

workingset_nodereclaim

Number of times a shadow node has been reclaimed

pgrefill

Amount of scanned pages (in an active LRU list)

pgscan

Amount of scanned pages (in an inactive LRU list)

pgsteal

Amount of reclaimed pages

pgactivate

Amount of pages moved to the active LRU list

pgdeactivate

Amount of pages moved to the inactive LRU lis

pglazyfree

Amount of pages postponed to be freed under memory pressure

pglazyfreed

Amount of reclaimed lazyfree pages

	memory.swap.current

	A read-only single value file which exists on non-root
cgroups.

The total amount of swap currently being used by the cgroup
and its descendants.

	memory.swap.max

	A read-write single value file which exists on non-root
cgroups. The default is “max”.

Swap usage hard limit. If a cgroup’s swap usage reaches this
limit, anonymous memory of the cgroup will not be swapped out.

	memory.swap.events

	A read-only flat-keyed file which exists on non-root cgroups.
The following entries are defined. Unless specified
otherwise, a value change in this file generates a file
modified event.

	max

	The number of times the cgroup’s swap usage was about
to go over the max boundary and swap allocation
failed.

	fail

	The number of times swap allocation failed either
because of running out of swap system-wide or max
limit.

When reduced under the current usage, the existing swap
entries are reclaimed gradually and the swap usage may stay
higher than the limit for an extended period of time. This
reduces the impact on the workload and memory management.

	memory.pressure

	A read-only nested-key file which exists on non-root cgroups.

Shows pressure stall information for memory. See
Documentation/accounting/psi.txt for details.

Usage Guidelines

“memory.high” is the main mechanism to control memory usage.
Over-committing on high limit (sum of high limits > available memory)
and letting global memory pressure to distribute memory according to
usage is a viable strategy.

Because breach of the high limit doesn’t trigger the OOM killer but
throttles the offending cgroup, a management agent has ample
opportunities to monitor and take appropriate actions such as granting
more memory or terminating the workload.

Determining whether a cgroup has enough memory is not trivial as
memory usage doesn’t indicate whether the workload can benefit from
more memory. For example, a workload which writes data received from
network to a file can use all available memory but can also operate as
performant with a small amount of memory. A measure of memory
pressure - how much the workload is being impacted due to lack of
memory - is necessary to determine whether a workload needs more
memory; unfortunately, memory pressure monitoring mechanism isn’t
implemented yet.

Memory Ownership

A memory area is charged to the cgroup which instantiated it and stays
charged to the cgroup until the area is released. Migrating a process
to a different cgroup doesn’t move the memory usages that it
instantiated while in the previous cgroup to the new cgroup.

A memory area may be used by processes belonging to different cgroups.
To which cgroup the area will be charged is in-deterministic; however,
over time, the memory area is likely to end up in a cgroup which has
enough memory allowance to avoid high reclaim pressure.

If a cgroup sweeps a considerable amount of memory which is expected
to be accessed repeatedly by other cgroups, it may make sense to use
POSIX_FADV_DONTNEED to relinquish the ownership of memory areas
belonging to the affected files to ensure correct memory ownership.

IO

The “io” controller regulates the distribution of IO resources. This
controller implements both weight based and absolute bandwidth or IOPS
limit distribution; however, weight based distribution is available
only if cfq-iosched is in use and neither scheme is available for
blk-mq devices.

IO Interface Files

	io.stat

	A read-only nested-keyed file which exists on non-root
cgroups.

Lines are keyed by $MAJ:$MIN device numbers and not ordered.
The following nested keys are defined.

	rbytes
	Bytes read

	wbytes
	Bytes written

	rios
	Number of read IOs

	wios
	Number of write IOs

	dbytes
	Bytes discarded

	dios
	Number of discard IOs

An example read output follows:

8:16 rbytes=1459200 wbytes=314773504 rios=192 wios=353 dbytes=0 dios=0
8:0 rbytes=90430464 wbytes=299008000 rios=8950 wios=1252 dbytes=50331648 dios=3021

	io.weight

	A read-write flat-keyed file which exists on non-root cgroups.
The default is “default 100”.

The first line is the default weight applied to devices
without specific override. The rest are overrides keyed by
$MAJ:$MIN device numbers and not ordered. The weights are in
the range [1, 10000] and specifies the relative amount IO time
the cgroup can use in relation to its siblings.

The default weight can be updated by writing either “default
$WEIGHT” or simply “$WEIGHT”. Overrides can be set by writing
“$MAJ:$MIN $WEIGHT” and unset by writing “$MAJ:$MIN default”.

An example read output follows:

default 100
8:16 200
8:0 50

	io.max

	A read-write nested-keyed file which exists on non-root
cgroups.

BPS and IOPS based IO limit. Lines are keyed by $MAJ:$MIN
device numbers and not ordered. The following nested keys are
defined.

	rbps
	Max read bytes per second

	wbps
	Max write bytes per second

	riops
	Max read IO operations per second

	wiops
	Max write IO operations per second

When writing, any number of nested key-value pairs can be
specified in any order. “max” can be specified as the value
to remove a specific limit. If the same key is specified
multiple times, the outcome is undefined.

BPS and IOPS are measured in each IO direction and IOs are
delayed if limit is reached. Temporary bursts are allowed.

Setting read limit at 2M BPS and write at 120 IOPS for 8:16:

echo "8:16 rbps=2097152 wiops=120" > io.max

Reading returns the following:

8:16 rbps=2097152 wbps=max riops=max wiops=120

Write IOPS limit can be removed by writing the following:

echo "8:16 wiops=max" > io.max

Reading now returns the following:

8:16 rbps=2097152 wbps=max riops=max wiops=max

	io.pressure

	A read-only nested-key file which exists on non-root cgroups.

Shows pressure stall information for IO. See
Documentation/accounting/psi.txt for details.

Writeback

Page cache is dirtied through buffered writes and shared mmaps and
written asynchronously to the backing filesystem by the writeback
mechanism. Writeback sits between the memory and IO domains and
regulates the proportion of dirty memory by balancing dirtying and
write IOs.

The io controller, in conjunction with the memory controller,
implements control of page cache writeback IOs. The memory controller
defines the memory domain that dirty memory ratio is calculated and
maintained for and the io controller defines the io domain which
writes out dirty pages for the memory domain. Both system-wide and
per-cgroup dirty memory states are examined and the more restrictive
of the two is enforced.

cgroup writeback requires explicit support from the underlying
filesystem. Currently, cgroup writeback is implemented on ext2, ext4
and btrfs. On other filesystems, all writeback IOs are attributed to
the root cgroup.

There are inherent differences in memory and writeback management
which affects how cgroup ownership is tracked. Memory is tracked per
page while writeback per inode. For the purpose of writeback, an
inode is assigned to a cgroup and all IO requests to write dirty pages
from the inode are attributed to that cgroup.

As cgroup ownership for memory is tracked per page, there can be pages
which are associated with different cgroups than the one the inode is
associated with. These are called foreign pages. The writeback
constantly keeps track of foreign pages and, if a particular foreign
cgroup becomes the majority over a certain period of time, switches
the ownership of the inode to that cgroup.

While this model is enough for most use cases where a given inode is
mostly dirtied by a single cgroup even when the main writing cgroup
changes over time, use cases where multiple cgroups write to a single
inode simultaneously are not supported well. In such circumstances, a
significant portion of IOs are likely to be attributed incorrectly.
As memory controller assigns page ownership on the first use and
doesn’t update it until the page is released, even if writeback
strictly follows page ownership, multiple cgroups dirtying overlapping
areas wouldn’t work as expected. It’s recommended to avoid such usage
patterns.

The sysctl knobs which affect writeback behavior are applied to cgroup
writeback as follows.

	vm.dirty_background_ratio, vm.dirty_ratio

	These ratios apply the same to cgroup writeback with the
amount of available memory capped by limits imposed by the
memory controller and system-wide clean memory.

	vm.dirty_background_bytes, vm.dirty_bytes

	For cgroup writeback, this is calculated into ratio against
total available memory and applied the same way as
vm.dirty[_background]_ratio.

IO Latency

This is a cgroup v2 controller for IO workload protection. You provide a group
with a latency target, and if the average latency exceeds that target the
controller will throttle any peers that have a lower latency target than the
protected workload.

The limits are only applied at the peer level in the hierarchy. This means that
in the diagram below, only groups A, B, and C will influence each other, and
groups D and F will influence each other. Group G will influence nobody.

[root]

/ | A B C

/ |

D F G

So the ideal way to configure this is to set io.latency in groups A, B, and C.
Generally you do not want to set a value lower than the latency your device
supports. Experiment to find the value that works best for your workload.
Start at higher than the expected latency for your device and watch the
avg_lat value in io.stat for your workload group to get an idea of the
latency you see during normal operation. Use the avg_lat value as a basis for
your real setting, setting at 10-15% higher than the value in io.stat.

How IO Latency Throttling Works

io.latency is work conserving; so as long as everybody is meeting their latency
target the controller doesn’t do anything. Once a group starts missing its
target it begins throttling any peer group that has a higher target than itself.
This throttling takes 2 forms:

	Queue depth throttling. This is the number of outstanding IO’s a group is
allowed to have. We will clamp down relatively quickly, starting at no limit
and going all the way down to 1 IO at a time.

	Artificial delay induction. There are certain types of IO that cannot be
throttled without possibly adversely affecting higher priority groups. This
includes swapping and metadata IO. These types of IO are allowed to occur
normally, however they are “charged” to the originating group. If the
originating group is being throttled you will see the use_delay and delay
fields in io.stat increase. The delay value is how many microseconds that are
being added to any process that runs in this group. Because this number can
grow quite large if there is a lot of swapping or metadata IO occurring we
limit the individual delay events to 1 second at a time.

Once the victimized group starts meeting its latency target again it will start
unthrottling any peer groups that were throttled previously. If the victimized
group simply stops doing IO the global counter will unthrottle appropriately.

IO Latency Interface Files

	io.latency

	This takes a similar format as the other controllers.

“MAJOR:MINOR target=<target time in microseconds”

	io.stat

	If the controller is enabled you will see extra stats in io.stat in
addition to the normal ones.

	depth

	This is the current queue depth for the group.

	avg_lat

	This is an exponential moving average with a decay rate of 1/exp
bound by the sampling interval. The decay rate interval can be
calculated by multiplying the win value in io.stat by the
corresponding number of samples based on the win value.

	win

	The sampling window size in milliseconds. This is the minimum
duration of time between evaluation events. Windows only elapse
with IO activity. Idle periods extend the most recent window.

PID

The process number controller is used to allow a cgroup to stop any
new tasks from being fork()’d or clone()’d after a specified limit is
reached.

The number of tasks in a cgroup can be exhausted in ways which other
controllers cannot prevent, thus warranting its own controller. For
example, a fork bomb is likely to exhaust the number of tasks before
hitting memory restrictions.

Note that PIDs used in this controller refer to TIDs, process IDs as
used by the kernel.

PID Interface Files

	pids.max

	A read-write single value file which exists on non-root
cgroups. The default is “max”.

Hard limit of number of processes.

	pids.current

	A read-only single value file which exists on all cgroups.

The number of processes currently in the cgroup and its
descendants.

Organisational operations are not blocked by cgroup policies, so it is
possible to have pids.current > pids.max. This can be done by either
setting the limit to be smaller than pids.current, or attaching enough
processes to the cgroup such that pids.current is larger than
pids.max. However, it is not possible to violate a cgroup PID policy
through fork() or clone(). These will return -EAGAIN if the creation
of a new process would cause a cgroup policy to be violated.

Device controller

Device controller manages access to device files. It includes both
creation of new device files (using mknod), and access to the
existing device files.

Cgroup v2 device controller has no interface files and is implemented
on top of cgroup BPF. To control access to device files, a user may
create bpf programs of the BPF_CGROUP_DEVICE type and attach them
to cgroups. On an attempt to access a device file, corresponding
BPF programs will be executed, and depending on the return value
the attempt will succeed or fail with -EPERM.

A BPF_CGROUP_DEVICE program takes a pointer to the bpf_cgroup_dev_ctx
structure, which describes the device access attempt: access type
(mknod/read/write) and device (type, major and minor numbers).
If the program returns 0, the attempt fails with -EPERM, otherwise
it succeeds.

An example of BPF_CGROUP_DEVICE program may be found in the kernel
source tree in the tools/testing/selftests/bpf/dev_cgroup.c file.

RDMA

The “rdma” controller regulates the distribution and accounting of
of RDMA resources.

RDMA Interface Files

	rdma.max

	A readwrite nested-keyed file that exists for all the cgroups
except root that describes current configured resource limit
for a RDMA/IB device.

Lines are keyed by device name and are not ordered.
Each line contains space separated resource name and its configured
limit that can be distributed.

The following nested keys are defined.

	hca_handle
	Maximum number of HCA Handles

	hca_object
	Maximum number of HCA Objects

An example for mlx4 and ocrdma device follows:

mlx4_0 hca_handle=2 hca_object=2000
ocrdma1 hca_handle=3 hca_object=max

	rdma.current

	A read-only file that describes current resource usage.
It exists for all the cgroup except root.

An example for mlx4 and ocrdma device follows:

mlx4_0 hca_handle=1 hca_object=20
ocrdma1 hca_handle=1 hca_object=23

Misc

perf_event

perf_event controller, if not mounted on a legacy hierarchy, is
automatically enabled on the v2 hierarchy so that perf events can
always be filtered by cgroup v2 path. The controller can still be
moved to a legacy hierarchy after v2 hierarchy is populated.

Non-normative information

This section contains information that isn’t considered to be a part of
the stable kernel API and so is subject to change.

CPU controller root cgroup process behaviour

When distributing CPU cycles in the root cgroup each thread in this
cgroup is treated as if it was hosted in a separate child cgroup of the
root cgroup. This child cgroup weight is dependent on its thread nice
level.

For details of this mapping see sched_prio_to_weight array in
kernel/sched/core.c file (values from this array should be scaled
appropriately so the neutral - nice 0 - value is 100 instead of 1024).

IO controller root cgroup process behaviour

Root cgroup processes are hosted in an implicit leaf child node.
When distributing IO resources this implicit child node is taken into
account as if it was a normal child cgroup of the root cgroup with a
weight value of 200.

Namespace

Basics

cgroup namespace provides a mechanism to virtualize the view of the
“/proc/$PID/cgroup” file and cgroup mounts. The CLONE_NEWCGROUP clone
flag can be used with clone(2) and unshare(2) to create a new cgroup
namespace. The process running inside the cgroup namespace will have
its “/proc/$PID/cgroup” output restricted to cgroupns root. The
cgroupns root is the cgroup of the process at the time of creation of
the cgroup namespace.

Without cgroup namespace, the “/proc/$PID/cgroup” file shows the
complete path of the cgroup of a process. In a container setup where
a set of cgroups and namespaces are intended to isolate processes the
“/proc/$PID/cgroup” file may leak potential system level information
to the isolated processes. For Example:

cat /proc/self/cgroup
0::/batchjobs/container_id1

The path ‘/batchjobs/container_id1’ can be considered as system-data
and undesirable to expose to the isolated processes. cgroup namespace
can be used to restrict visibility of this path. For example, before
creating a cgroup namespace, one would see:

ls -l /proc/self/ns/cgroup
lrwxrwxrwx 1 root root 0 2014-07-15 10:37 /proc/self/ns/cgroup -> cgroup:[4026531835]
cat /proc/self/cgroup
0::/batchjobs/container_id1

After unsharing a new namespace, the view changes:

ls -l /proc/self/ns/cgroup
lrwxrwxrwx 1 root root 0 2014-07-15 10:35 /proc/self/ns/cgroup -> cgroup:[4026532183]
cat /proc/self/cgroup
0::/

When some thread from a multi-threaded process unshares its cgroup
namespace, the new cgroupns gets applied to the entire process (all
the threads). This is natural for the v2 hierarchy; however, for the
legacy hierarchies, this may be unexpected.

A cgroup namespace is alive as long as there are processes inside or
mounts pinning it. When the last usage goes away, the cgroup
namespace is destroyed. The cgroupns root and the actual cgroups
remain.

The Root and Views

The ‘cgroupns root’ for a cgroup namespace is the cgroup in which the
process calling unshare(2) is running. For example, if a process in
/batchjobs/container_id1 cgroup calls unshare, cgroup
/batchjobs/container_id1 becomes the cgroupns root. For the
init_cgroup_ns, this is the real root (‘/’) cgroup.

The cgroupns root cgroup does not change even if the namespace creator
process later moves to a different cgroup:

~/unshare -c # unshare cgroupns in some cgroup
cat /proc/self/cgroup
0::/
mkdir sub_cgrp_1
echo 0 > sub_cgrp_1/cgroup.procs
cat /proc/self/cgroup
0::/sub_cgrp_1

Each process gets its namespace-specific view of “/proc/$PID/cgroup”

Processes running inside the cgroup namespace will be able to see
cgroup paths (in /proc/self/cgroup) only inside their root cgroup.
From within an unshared cgroupns:

sleep 100000 &
[1] 7353
echo 7353 > sub_cgrp_1/cgroup.procs
cat /proc/7353/cgroup
0::/sub_cgrp_1

From the initial cgroup namespace, the real cgroup path will be
visible:

$ cat /proc/7353/cgroup
0::/batchjobs/container_id1/sub_cgrp_1

From a sibling cgroup namespace (that is, a namespace rooted at a
different cgroup), the cgroup path relative to its own cgroup
namespace root will be shown. For instance, if PID 7353’s cgroup
namespace root is at ‘/batchjobs/container_id2’, then it will see:

cat /proc/7353/cgroup
0::/../container_id2/sub_cgrp_1

Note that the relative path always starts with ‘/’ to indicate that
its relative to the cgroup namespace root of the caller.

Migration and setns(2)

Processes inside a cgroup namespace can move into and out of the
namespace root if they have proper access to external cgroups. For
example, from inside a namespace with cgroupns root at
/batchjobs/container_id1, and assuming that the global hierarchy is
still accessible inside cgroupns:

cat /proc/7353/cgroup
0::/sub_cgrp_1
echo 7353 > batchjobs/container_id2/cgroup.procs
cat /proc/7353/cgroup
0::/../container_id2

Note that this kind of setup is not encouraged. A task inside cgroup
namespace should only be exposed to its own cgroupns hierarchy.

setns(2) to another cgroup namespace is allowed when:

	the process has CAP_SYS_ADMIN against its current user namespace

	the process has CAP_SYS_ADMIN against the target cgroup
namespace’s userns

No implicit cgroup changes happen with attaching to another cgroup
namespace. It is expected that the someone moves the attaching
process under the target cgroup namespace root.

Interaction with Other Namespaces

Namespace specific cgroup hierarchy can be mounted by a process
running inside a non-init cgroup namespace:

mount -t cgroup2 none $MOUNT_POINT

This will mount the unified cgroup hierarchy with cgroupns root as the
filesystem root. The process needs CAP_SYS_ADMIN against its user and
mount namespaces.

The virtualization of /proc/self/cgroup file combined with restricting
the view of cgroup hierarchy by namespace-private cgroupfs mount
provides a properly isolated cgroup view inside the container.

Information on Kernel Programming

This section contains kernel programming information in the areas
where interacting with cgroup is necessary. cgroup core and
controllers are not covered.

Filesystem Support for Writeback

A filesystem can support cgroup writeback by updating
address_space_operations->writepage[s]() to annotate bio’s using the
following two functions.

	wbc_init_bio(@wbc, @bio)

	Should be called for each bio carrying writeback data and
associates the bio with the inode’s owner cgroup. Can be
called anytime between bio allocation and submission.

	wbc_account_io(@wbc, @page, @bytes)

	Should be called for each data segment being written out.
While this function doesn’t care exactly when it’s called
during the writeback session, it’s the easiest and most
natural to call it as data segments are added to a bio.

With writeback bio’s annotated, cgroup support can be enabled per
super_block by setting SB_I_CGROUPWB in ->s_iflags. This allows for
selective disabling of cgroup writeback support which is helpful when
certain filesystem features, e.g. journaled data mode, are
incompatible.

wbc_init_bio() binds the specified bio to its cgroup. Depending on
the configuration, the bio may be executed at a lower priority and if
the writeback session is holding shared resources, e.g. a journal
entry, may lead to priority inversion. There is no one easy solution
for the problem. Filesystems can try to work around specific problem
cases by skipping wbc_init_bio() or using bio_associate_blkcg()
directly.

Deprecated v1 Core Features

	Multiple hierarchies including named ones are not supported.

	All v1 mount options are not supported.

	The “tasks” file is removed and “cgroup.procs” is not sorted.

	“cgroup.clone_children” is removed.

	/proc/cgroups is meaningless for v2. Use “cgroup.controllers” file
at the root instead.

Issues with v1 and Rationales for v2

Multiple Hierarchies

cgroup v1 allowed an arbitrary number of hierarchies and each
hierarchy could host any number of controllers. While this seemed to
provide a high level of flexibility, it wasn’t useful in practice.

For example, as there is only one instance of each controller, utility
type controllers such as freezer which can be useful in all
hierarchies could only be used in one. The issue is exacerbated by
the fact that controllers couldn’t be moved to another hierarchy once
hierarchies were populated. Another issue was that all controllers
bound to a hierarchy were forced to have exactly the same view of the
hierarchy. It wasn’t possible to vary the granularity depending on
the specific controller.

In practice, these issues heavily limited which controllers could be
put on the same hierarchy and most configurations resorted to putting
each controller on its own hierarchy. Only closely related ones, such
as the cpu and cpuacct controllers, made sense to be put on the same
hierarchy. This often meant that userland ended up managing multiple
similar hierarchies repeating the same steps on each hierarchy
whenever a hierarchy management operation was necessary.

Furthermore, support for multiple hierarchies came at a steep cost.
It greatly complicated cgroup core implementation but more importantly
the support for multiple hierarchies restricted how cgroup could be
used in general and what controllers was able to do.

There was no limit on how many hierarchies there might be, which meant
that a thread’s cgroup membership couldn’t be described in finite
length. The key might contain any number of entries and was unlimited
in length, which made it highly awkward to manipulate and led to
addition of controllers which existed only to identify membership,
which in turn exacerbated the original problem of proliferating number
of hierarchies.

Also, as a controller couldn’t have any expectation regarding the
topologies of hierarchies other controllers might be on, each
controller had to assume that all other controllers were attached to
completely orthogonal hierarchies. This made it impossible, or at
least very cumbersome, for controllers to cooperate with each other.

In most use cases, putting controllers on hierarchies which are
completely orthogonal to each other isn’t necessary. What usually is
called for is the ability to have differing levels of granularity
depending on the specific controller. In other words, hierarchy may
be collapsed from leaf towards root when viewed from specific
controllers. For example, a given configuration might not care about
how memory is distributed beyond a certain level while still wanting
to control how CPU cycles are distributed.

Thread Granularity

cgroup v1 allowed threads of a process to belong to different cgroups.
This didn’t make sense for some controllers and those controllers
ended up implementing different ways to ignore such situations but
much more importantly it blurred the line between API exposed to
individual applications and system management interface.

Generally, in-process knowledge is available only to the process
itself; thus, unlike service-level organization of processes,
categorizing threads of a process requires active participation from
the application which owns the target process.

cgroup v1 had an ambiguously defined delegation model which got abused
in combination with thread granularity. cgroups were delegated to
individual applications so that they can create and manage their own
sub-hierarchies and control resource distributions along them. This
effectively raised cgroup to the status of a syscall-like API exposed
to lay programs.

First of all, cgroup has a fundamentally inadequate interface to be
exposed this way. For a process to access its own knobs, it has to
extract the path on the target hierarchy from /proc/self/cgroup,
construct the path by appending the name of the knob to the path, open
and then read and/or write to it. This is not only extremely clunky
and unusual but also inherently racy. There is no conventional way to
define transaction across the required steps and nothing can guarantee
that the process would actually be operating on its own sub-hierarchy.

cgroup controllers implemented a number of knobs which would never be
accepted as public APIs because they were just adding control knobs to
system-management pseudo filesystem. cgroup ended up with interface
knobs which were not properly abstracted or refined and directly
revealed kernel internal details. These knobs got exposed to
individual applications through the ill-defined delegation mechanism
effectively abusing cgroup as a shortcut to implementing public APIs
without going through the required scrutiny.

This was painful for both userland and kernel. Userland ended up with
misbehaving and poorly abstracted interfaces and kernel exposing and
locked into constructs inadvertently.

Competition Between Inner Nodes and Threads

cgroup v1 allowed threads to be in any cgroups which created an
interesting problem where threads belonging to a parent cgroup and its
children cgroups competed for resources. This was nasty as two
different types of entities competed and there was no obvious way to
settle it. Different controllers did different things.

The cpu controller considered threads and cgroups as equivalents and
mapped nice levels to cgroup weights. This worked for some cases but
fell flat when children wanted to be allocated specific ratios of CPU
cycles and the number of internal threads fluctuated - the ratios
constantly changed as the number of competing entities fluctuated.
There also were other issues. The mapping from nice level to weight
wasn’t obvious or universal, and there were various other knobs which
simply weren’t available for threads.

The io controller implicitly created a hidden leaf node for each
cgroup to host the threads. The hidden leaf had its own copies of all
the knobs with leaf_ prefixed. While this allowed equivalent
control over internal threads, it was with serious drawbacks. It
always added an extra layer of nesting which wouldn’t be necessary
otherwise, made the interface messy and significantly complicated the
implementation.

The memory controller didn’t have a way to control what happened
between internal tasks and child cgroups and the behavior was not
clearly defined. There were attempts to add ad-hoc behaviors and
knobs to tailor the behavior to specific workloads which would have
led to problems extremely difficult to resolve in the long term.

Multiple controllers struggled with internal tasks and came up with
different ways to deal with it; unfortunately, all the approaches were
severely flawed and, furthermore, the widely different behaviors
made cgroup as a whole highly inconsistent.

This clearly is a problem which needs to be addressed from cgroup core
in a uniform way.

Other Interface Issues

cgroup v1 grew without oversight and developed a large number of
idiosyncrasies and inconsistencies. One issue on the cgroup core side
was how an empty cgroup was notified - a userland helper binary was
forked and executed for each event. The event delivery wasn’t
recursive or delegatable. The limitations of the mechanism also led
to in-kernel event delivery filtering mechanism further complicating
the interface.

Controller interfaces were problematic too. An extreme example is
controllers completely ignoring hierarchical organization and treating
all cgroups as if they were all located directly under the root
cgroup. Some controllers exposed a large amount of inconsistent
implementation details to userland.

There also was no consistency across controllers. When a new cgroup
was created, some controllers defaulted to not imposing extra
restrictions while others disallowed any resource usage until
explicitly configured. Configuration knobs for the same type of
control used widely differing naming schemes and formats. Statistics
and information knobs were named arbitrarily and used different
formats and units even in the same controller.

cgroup v2 establishes common conventions where appropriate and updates
controllers so that they expose minimal and consistent interfaces.

Controller Issues and Remedies

Memory

The original lower boundary, the soft limit, is defined as a limit
that is per default unset. As a result, the set of cgroups that
global reclaim prefers is opt-in, rather than opt-out. The costs for
optimizing these mostly negative lookups are so high that the
implementation, despite its enormous size, does not even provide the
basic desirable behavior. First off, the soft limit has no
hierarchical meaning. All configured groups are organized in a global
rbtree and treated like equal peers, regardless where they are located
in the hierarchy. This makes subtree delegation impossible. Second,
the soft limit reclaim pass is so aggressive that it not just
introduces high allocation latencies into the system, but also impacts
system performance due to overreclaim, to the point where the feature
becomes self-defeating.

The memory.low boundary on the other hand is a top-down allocated
reserve. A cgroup enjoys reclaim protection when it’s within its low,
which makes delegation of subtrees possible.

The original high boundary, the hard limit, is defined as a strict
limit that can not budge, even if the OOM killer has to be called.
But this generally goes against the goal of making the most out of the
available memory. The memory consumption of workloads varies during
runtime, and that requires users to overcommit. But doing that with a
strict upper limit requires either a fairly accurate prediction of the
working set size or adding slack to the limit. Since working set size
estimation is hard and error prone, and getting it wrong results in
OOM kills, most users tend to err on the side of a looser limit and
end up wasting precious resources.

The memory.high boundary on the other hand can be set much more
conservatively. When hit, it throttles allocations by forcing them
into direct reclaim to work off the excess, but it never invokes the
OOM killer. As a result, a high boundary that is chosen too
aggressively will not terminate the processes, but instead it will
lead to gradual performance degradation. The user can monitor this
and make corrections until the minimal memory footprint that still
gives acceptable performance is found.

In extreme cases, with many concurrent allocations and a complete
breakdown of reclaim progress within the group, the high boundary can
be exceeded. But even then it’s mostly better to satisfy the
allocation from the slack available in other groups or the rest of the
system than killing the group. Otherwise, memory.max is there to
limit this type of spillover and ultimately contain buggy or even
malicious applications.

Setting the original memory.limit_in_bytes below the current usage was
subject to a race condition, where concurrent charges could cause the
limit setting to fail. memory.max on the other hand will first set the
limit to prevent new charges, and then reclaim and OOM kill until the
new limit is met - or the task writing to memory.max is killed.

The combined memory+swap accounting and limiting is replaced by real
control over swap space.

The main argument for a combined memory+swap facility in the original
cgroup design was that global or parental pressure would always be
able to swap all anonymous memory of a child group, regardless of the
child’s own (possibly untrusted) configuration. However, untrusted
groups can sabotage swapping by other means - such as referencing its
anonymous memory in a tight loop - and an admin can not assume full
swappability when overcommitting untrusted jobs.

For trusted jobs, on the other hand, a combined counter is not an
intuitive userspace interface, and it flies in the face of the idea
that cgroup controllers should account and limit specific physical
resources. Swap space is a resource like all others in the system,
and that’s why unified hierarchy allows distributing it separately.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Linux Serial Console

To use a serial port as console you need to compile the support into your
kernel - by default it is not compiled in. For PC style serial ports
it’s the config option next to menu option:

Character devices ‣ Serial drivers ‣ 8250/16550 and compatible serial support ‣ Console on 8250/16550 and compatible serial port

You must compile serial support into the kernel and not as a module.

It is possible to specify multiple devices for console output. You can
define a new kernel command line option to select which device(s) to
use for console output.

The format of this option is:

console=device,options

device: tty0 for the foreground virtual console
 ttyX for any other virtual console
 ttySx for a serial port
 lp0 for the first parallel port
 ttyUSB0 for the first USB serial device

options: depend on the driver. For the serial port this
 defines the baudrate/parity/bits/flow control of
 the port, in the format BBBBPNF, where BBBB is the
 speed, P is parity (n/o/e), N is number of bits,
 and F is flow control ('r' for RTS). Default is
 9600n8. The maximum baudrate is 115200.

You can specify multiple console= options on the kernel command line.
Output will appear on all of them. The last device will be used when
you open /dev/console. So, for example:

console=ttyS1,9600 console=tty0

defines that opening /dev/console will get you the current foreground
virtual console, and kernel messages will appear on both the VGA
console and the 2nd serial port (ttyS1 or COM2) at 9600 baud.

Note that you can only define one console per device type (serial, video).

If no console device is specified, the first device found capable of
acting as a system console will be used. At this time, the system
first looks for a VGA card and then for a serial port. So if you don’t
have a VGA card in your system the first serial port will automatically
become the console.

You will need to create a new device to use /dev/console. The official
/dev/console is now character device 5,1.

(You can also use a network device as a console. See
Documentation/networking/netconsole.txt for information on that.)

Here’s an example that will use /dev/ttyS1 (COM2) as the console.
Replace the sample values as needed.

	Create /dev/console (real console) and /dev/tty0 (master virtual
console):

cd /dev
rm -f console tty0
mknod -m 622 console c 5 1
mknod -m 622 tty0 c 4 0

	LILO can also take input from a serial device. This is a very
useful option. To tell LILO to use the serial port:
In lilo.conf (global section):

serial = 1,9600n8 (ttyS1, 9600 bd, no parity, 8 bits)

	Adjust to kernel flags for the new kernel,
again in lilo.conf (kernel section):

append = "console=ttyS1,9600"

	Make sure a getty runs on the serial port so that you can login to
it once the system is done booting. This is done by adding a line
like this to /etc/inittab (exact syntax depends on your getty):

S1:23:respawn:/sbin/getty -L ttyS1 9600 vt100

	Init and /etc/ioctl.save

Sysvinit remembers its stty settings in a file in /etc, called
/etc/ioctl.save. REMOVE THIS FILE before using the serial
console for the first time, because otherwise init will probably
set the baudrate to 38400 (baudrate of the virtual console).

	/dev/console and X
Programs that want to do something with the virtual console usually
open /dev/console. If you have created the new /dev/console device,
and your console is NOT the virtual console some programs will fail.
Those are programs that want to access the VT interface, and use
/dev/console instead of /dev/tty0. Some of those programs are:

Xfree86, svgalib, gpm, SVGATextMode

It should be fixed in modern versions of these programs though.

Note that if you boot without a console= option (or with
console=/dev/tty0), /dev/console is the same as /dev/tty0.
In that case everything will still work.

	Thanks

Thanks to Geert Uytterhoeven <geert@linux-m68k.org>
for porting the patches from 2.1.4x to 2.1.6x for taking care of
the integration of these patches into m68k, ppc and alpha.

Miquel van Smoorenburg <miquels@cistron.nl>, 11-Jun-2000

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Linux Braille Console

To get early boot messages on a braille device (before userspace screen
readers can start), you first need to compile the support for the usual serial
console (see Documentation/admin-guide/serial-console.rst), and
for braille device
(in Device Drivers ‣ Accessibility support ‣ Console on braille device).

Then you need to specify a console=brl, option on the kernel command line, the
format is:

console=brl,serial_options...

where serial_options... are the same as described in
Documentation/admin-guide/serial-console.rst.

So for instance you can use console=brl,ttyS0 if the braille device is connected to the first serial port, and console=brl,ttyS0,115200 to
override the baud rate to 115200, etc.

By default, the braille device will just show the last kernel message (console
mode). To review previous messages, press the Insert key to switch to the VT
review mode. In review mode, the arrow keys permit to browse in the VT content,
PAGE-UP/PAGE-DOWN keys go at the top/bottom of the screen, and
the HOME key goes back
to the cursor, hence providing very basic screen reviewing facility.

Sound feedback can be obtained by adding the braille_console.sound=1 kernel
parameter.

For simplicity, only one braille console can be enabled, other uses of
console=brl,... will be discarded. Also note that it does not interfere with
the console selection mechanism described in
Documentation/admin-guide/serial-console.rst.

For now, only the VisioBraille device is supported.

Samuel Thibault <samuel.thibault@ens-lyon.org>

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Parport

The parport code provides parallel-port support under Linux. This
includes the ability to share one port between multiple device
drivers.

You can pass parameters to the parport code to override its automatic
detection of your hardware. This is particularly useful if you want
to use IRQs, since in general these can’t be autoprobed successfully.
By default IRQs are not used even if they can be probed. This is
because there are a lot of people using the same IRQ for their
parallel port and a sound card or network card.

The parport code is split into two parts: generic (which deals with
port-sharing) and architecture-dependent (which deals with actually
using the port).

Parport as modules

If you load the parport` code as a module, say:

insmod parport

to load the generic parport code. You then must load the
architecture-dependent code with (for example):

insmod parport_pc io=0x3bc,0x378,0x278 irq=none,7,auto

to tell the parport code that you want three PC-style ports, one at
0x3bc with no IRQ, one at 0x378 using IRQ 7, and one at 0x278 with an
auto-detected IRQ. Currently, PC-style (parport_pc), Sun bpp,
Amiga, Atari, and MFC3 hardware is supported.

PCI parallel I/O card support comes from parport_pc. Base I/O
addresses should not be specified for supported PCI cards since they
are automatically detected.

modprobe

If you use modprobe , you will find it useful to add lines as below to a
configuration file in /etc/modprobe.d/ directory:

alias parport_lowlevel parport_pc
options parport_pc io=0x378,0x278 irq=7,auto

modprobe will load parport_pc (with the options io=0x378,0x278 irq=7,auto)
whenever a parallel port device driver (such as lp) is loaded.

Note that these are example lines only! You shouldn’t in general need
to specify any options to parport_pc in order to be able to use a
parallel port.

Parport probe [optional]

In 2.2 kernels there was a module called parport_probe, which was used
for collecting IEEE 1284 device ID information. This has now been
enhanced and now lives with the IEEE 1284 support. When a parallel
port is detected, the devices that are connected to it are analysed,
and information is logged like this:

parport0: Printer, BJC-210 (Canon)

The probe information is available from files in /proc/sys/dev/parport/.

Parport linked into the kernel statically

If you compile the parport code into the kernel, then you can use
kernel boot parameters to get the same effect. Add something like the
following to your LILO command line:

parport=0x3bc parport=0x378,7 parport=0x278,auto,nofifo

You can have many parport=... statements, one for each port you want
to add. Adding parport=0 to the kernel command-line will disable
parport support entirely. Adding parport=auto to the kernel
command-line will make parport use any IRQ lines or DMA channels that
it auto-detects.

Files in /proc

If you have configured the /proc filesystem into your kernel, you will
see a new directory entry: /proc/sys/dev/parport. In there will be a
directory entry for each parallel port for which parport is
configured. In each of those directories are a collection of files
describing that parallel port.

The /proc/sys/dev/parport directory tree looks like:

parport
|-- default
| |-- spintime
| `-- timeslice
|-- parport0
| |-- autoprobe
| |-- autoprobe0
| |-- autoprobe1
| |-- autoprobe2
| |-- autoprobe3
| |-- devices
| | |-- active
| | `-- lp
| | `-- timeslice
| |-- base-addr
| |-- irq
| |-- dma
| |-- modes
| `-- spintime
`-- parport1
|-- autoprobe
|-- autoprobe0
|-- autoprobe1
|-- autoprobe2
|-- autoprobe3
|-- devices
| |-- active
| `-- ppa
| `-- timeslice
|-- base-addr
|-- irq
|-- dma
|-- modes
`-- spintime

	File
	Contents

	devices/active
	A list of the device drivers using that port. A “+”
will appear by the name of the device currently using
the port (it might not appear against any). The
string “none” means that there are no device drivers
using that port.

	base-addr
	Parallel port’s base address, or addresses if the port
has more than one in which case they are separated
with tabs. These values might not have any sensible
meaning for some ports.

	irq
	Parallel port’s IRQ, or -1 if none is being used.

	dma
	Parallel port’s DMA channel, or -1 if none is being
used.

	modes
	Parallel port’s hardware modes, comma-separated,
meaning:

	
	PCSPP

	PC-style SPP registers are available.

	
	TRISTATE

	Port is bidirectional.

	
	COMPAT

	Hardware acceleration for printers is
available and will be used.

	
	EPP

	Hardware acceleration for EPP protocol
is available and will be used.

	
	ECP

	Hardware acceleration for ECP protocol
is available and will be used.

	
	DMA

	DMA is available and will be used.

Note that the current implementation will only take
advantage of COMPAT and ECP modes if it has an IRQ
line to use.

	autoprobe
	Any IEEE-1284 device ID information that has been
acquired from the (non-IEEE 1284.3) device.

	autoprobe[0-3]
	IEEE 1284 device ID information retrieved from
daisy-chain devices that conform to IEEE 1284.3.

	spintime
	The number of microseconds to busy-loop while waiting
for the peripheral to respond. You might find that
adjusting this improves performance, depending on your
peripherals. This is a port-wide setting, i.e. it
applies to all devices on a particular port.

	timeslice
	The number of milliseconds that a device driver is
allowed to keep a port claimed for. This is advisory,
and driver can ignore it if it must.

	default/*
	The defaults for spintime and timeslice. When a new
port is registered, it picks up the default spintime.
When a new device is registered, it picks up the
default timeslice.

Device drivers

Once the parport code is initialised, you can attach device drivers to
specific ports. Normally this happens automatically; if the lp driver
is loaded it will create one lp device for each port found. You can
override this, though, by using parameters either when you load the lp
driver:

insmod lp parport=0,2

or on the LILO command line:

lp=parport0 lp=parport2

Both the above examples would inform lp that you want /dev/lp0 to be
the first parallel port, and /dev/lp1 to be the third parallel port,
with no lp device associated with the second port (parport1). Note
that this is different to the way older kernels worked; there used to
be a static association between the I/O port address and the device
name, so /dev/lp0 was always the port at 0x3bc. This is no longer the
case - if you only have one port, it will default to being /dev/lp0,
regardless of base address.

Also:

	If you selected the IEEE 1284 support at compile time, you can say
lp=auto on the kernel command line, and lp will create devices
only for those ports that seem to have printers attached.

	If you give PLIP the timid parameter, either with plip=timid on
the command line, or with insmod plip timid=1 when using modules,
it will avoid any ports that seem to be in use by other devices.

	IRQ autoprobing works only for a few port types at the moment.

Reporting printer problems with parport

If you are having problems printing, please go through these steps to
try to narrow down where the problem area is.

When reporting problems with parport, really you need to give all of
the messages that parport_pc spits out when it initialises. There are
several code paths:

	polling

	interrupt-driven, protocol in software

	interrupt-driven, protocol in hardware using PIO

	interrupt-driven, protocol in hardware using DMA

The kernel messages that parport_pc logs give an indication of which
code path is being used. (They could be a lot better actually..)

For normal printer protocol, having IEEE 1284 modes enabled or not
should not make a difference.

To turn off the ‘protocol in hardware’ code paths, disable
CONFIG_PARPORT_PC_FIFO. Note that when they are enabled they are not
necessarily used; it depends on whether the hardware is available,
enabled by the BIOS, and detected by the driver.

So, to start with, disable CONFIG_PARPORT_PC_FIFO, and load parport_pc
with irq=none. See if printing works then. It really should,
because this is the simplest code path.

If that works fine, try with io=0x378 irq=7 (adjust for your
hardware), to make it use interrupt-driven in-software protocol.

If that works fine, then one of the hardware modes isn’t working
right. Enable CONFIG_FIFO (no, it isn’t a module option,
and yes, it should be), set the port to ECP mode in the BIOS and note
the DMA channel, and try with:

io=0x378 irq=7 dma=none (for PIO)
io=0x378 irq=7 dma=3 (for DMA)

philb@gnu.org
tim@cyberelk.net

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

RAID arrays

Boot time assembly of RAID arrays

	Tools that manage md devices can be found at

	http://www.kernel.org/pub/linux/utils/raid/

You can boot with your md device with the following kernel command
lines:

for old raid arrays without persistent superblocks:

md=<md device no.>,<raid level>,<chunk size factor>,<fault level>,dev0,dev1,...,devn

for raid arrays with persistent superblocks:

md=<md device no.>,dev0,dev1,...,devn

or, to assemble a partitionable array:

md=d<md device no.>,dev0,dev1,...,devn

md device no.

The number of the md device

	md device no.
	device

	0
	md0

	1
	md1

	2
	md2

	3
	md3

	4
	md4

raid level

level of the RAID array

	raid level
	level

	-1
	linear mode

	0
	striped mode

other modes are only supported with persistent super blocks

chunk size factor

(raid-0 and raid-1 only)

Set the chunk size as 4k << n.

fault level

Totally ignored

dev0 to devn

e.g. /dev/hda1, /dev/hdc1, /dev/sda1, /dev/sdb1

A possible loadlin line (Harald Hoyer <HarryH@Royal.Net>) looks like this:

e:\loadlin\loadlin e:\zimage root=/dev/md0 md=0,0,4,0,/dev/hdb2,/dev/hdc3 ro

Boot time autodetection of RAID arrays

When md is compiled into the kernel (not as module), partitions of
type 0xfd are scanned and automatically assembled into RAID arrays.
This autodetection may be suppressed with the kernel parameter
raid=noautodetect. As of kernel 2.6.9, only drives with a type 0
superblock can be autodetected and run at boot time.

The kernel parameter raid=partitionable (or raid=part) means
that all auto-detected arrays are assembled as partitionable.

Boot time assembly of degraded/dirty arrays

If a raid5 or raid6 array is both dirty and degraded, it could have
undetectable data corruption. This is because the fact that it is
dirty means that the parity cannot be trusted, and the fact that it
is degraded means that some datablocks are missing and cannot reliably
be reconstructed (due to no parity).

For this reason, md will normally refuse to start such an array. This
requires the sysadmin to take action to explicitly start the array
despite possible corruption. This is normally done with:

mdadm --assemble --force

This option is not really available if the array has the root
filesystem on it. In order to support this booting from such an
array, md supports a module parameter start_dirty_degraded which,
when set to 1, bypassed the checks and will allows dirty degraded
arrays to be started.

So, to boot with a root filesystem of a dirty degraded raid 5 or 6, use:

md-mod.start_dirty_degraded=1

Superblock formats

The md driver can support a variety of different superblock formats.
Currently, it supports superblock formats 0.90.0 and the md-1 format
introduced in the 2.5 development series.

The kernel will autodetect which format superblock is being used.

Superblock format 0 is treated differently to others for legacy
reasons - it is the original superblock format.

General Rules - apply for all superblock formats

An array is created by writing appropriate superblocks to all
devices.

It is assembled by associating each of these devices with an
particular md virtual device. Once it is completely assembled, it can
be accessed.

An array should be created by a user-space tool. This will write
superblocks to all devices. It will usually mark the array as
unclean, or with some devices missing so that the kernel md driver
can create appropriate redundancy (copying in raid 1, parity
calculation in raid 4/5).

When an array is assembled, it is first initialized with the
SET_ARRAY_INFO ioctl. This contains, in particular, a major and minor
version number. The major version number selects which superblock
format is to be used. The minor number might be used to tune handling
of the format, such as suggesting where on each device to look for the
superblock.

Then each device is added using the ADD_NEW_DISK ioctl. This
provides, in particular, a major and minor number identifying the
device to add.

The array is started with the RUN_ARRAY ioctl.

Once started, new devices can be added. They should have an
appropriate superblock written to them, and then be passed in with
ADD_NEW_DISK.

Devices that have failed or are not yet active can be detached from an
array using HOT_REMOVE_DISK.

Specific Rules that apply to format-0 super block arrays, and arrays with no superblock (non-persistent)

An array can be created by describing the array (level, chunksize
etc) in a SET_ARRAY_INFO ioctl. This must have major_version==0 and
raid_disks != 0.

Then uninitialized devices can be added with ADD_NEW_DISK. The
structure passed to ADD_NEW_DISK must specify the state of the device
and its role in the array.

Once started with RUN_ARRAY, uninitialized spares can be added with
HOT_ADD_DISK.

MD devices in sysfs

md devices appear in sysfs (/sys) as regular block devices,
e.g.:

/sys/block/md0

Each md device will contain a subdirectory called md which
contains further md-specific information about the device.

All md devices contain:

	level

	a text file indicating the raid level. e.g. raid0, raid1,
raid5, linear, multipath, faulty.
If no raid level has been set yet (array is still being
assembled), the value will reflect whatever has been written
to it, which may be a name like the above, or may be a number
such as 0, 5, etc.

	raid_disks

	a text file with a simple number indicating the number of devices
in a fully functional array. If this is not yet known, the file
will be empty. If an array is being resized this will contain
the new number of devices.
Some raid levels allow this value to be set while the array is
active. This will reconfigure the array. Otherwise it can only
be set while assembling an array.
A change to this attribute will not be permitted if it would
reduce the size of the array. To reduce the number of drives
in an e.g. raid5, the array size must first be reduced by
setting the array_size attribute.

	chunk_size

	This is the size in bytes for chunks and is only relevant to
raid levels that involve striping (0,4,5,6,10). The address space
of the array is conceptually divided into chunks and consecutive
chunks are striped onto neighbouring devices.
The size should be at least PAGE_SIZE (4k) and should be a power
of 2. This can only be set while assembling an array

	layout

	The layout for the array for the particular level. This is
simply a number that is interpretted differently by different
levels. It can be written while assembling an array.

	array_size

	This can be used to artificially constrain the available space in
the array to be less than is actually available on the combined
devices. Writing a number (in Kilobytes) which is less than
the available size will set the size. Any reconfiguration of the
array (e.g. adding devices) will not cause the size to change.
Writing the word default will cause the effective size of the
array to be whatever size is actually available based on
level, chunk_size and component_size.

This can be used to reduce the size of the array before reducing
the number of devices in a raid4/5/6, or to support external
metadata formats which mandate such clipping.

	reshape_position

	This is either none or a sector number within the devices of
the array where reshape is up to. If this is set, the three
attributes mentioned above (raid_disks, chunk_size, layout) can
potentially have 2 values, an old and a new value. If these
values differ, reading the attribute returns:

new (old)

and writing will effect the new value, leaving the old
unchanged.

	component_size

	For arrays with data redundancy (i.e. not raid0, linear, faulty,
multipath), all components must be the same size - or at least
there must a size that they all provide space for. This is a key
part or the geometry of the array. It is measured in sectors
and can be read from here. Writing to this value may resize
the array if the personality supports it (raid1, raid5, raid6),
and if the component drives are large enough.

	metadata_version

	This indicates the format that is being used to record metadata
about the array. It can be 0.90 (traditional format), 1.0, 1.1,
1.2 (newer format in varying locations) or none indicating that
the kernel isn’t managing metadata at all.
Alternately it can be external: followed by a string which
is set by user-space. This indicates that metadata is managed
by a user-space program. Any device failure or other event that
requires a metadata update will cause array activity to be
suspended until the event is acknowledged.

	resync_start

	The point at which resync should start. If no resync is needed,
this will be a very large number (or none since 2.6.30-rc1). At
array creation it will default to 0, though starting the array as
clean will set it much larger.

	new_dev

	This file can be written but not read. The value written should
be a block device number as major:minor. e.g. 8:0
This will cause that device to be attached to the array, if it is
available. It will then appear at md/dev-XXX (depending on the
name of the device) and further configuration is then possible.

	safe_mode_delay

	When an md array has seen no write requests for a certain period
of time, it will be marked as clean. When another write
request arrives, the array is marked as dirty before the write
commences. This is known as safe_mode.
The certain period is controlled by this file which stores the
period as a number of seconds. The default is 200msec (0.200).
Writing a value of 0 disables safemode.

	array_state

	This file contains a single word which describes the current
state of the array. In many cases, the state can be set by
writing the word for the desired state, however some states
cannot be explicitly set, and some transitions are not allowed.

Select/poll works on this file. All changes except between
Active_idle and active (which can be frequent and are not
very interesting) are notified. active->active_idle is
reported if the metadata is externally managed.

	clear

	No devices, no size, no level

Writing is equivalent to STOP_ARRAY ioctl

	inactive

	May have some settings, but array is not active
all IO results in error

When written, doesn’t tear down array, but just stops it

	suspended (not supported yet)

	All IO requests will block. The array can be reconfigured.

Writing this, if accepted, will block until array is quiessent

	readonly

	no resync can happen. no superblocks get written.

Write requests fail

	read-auto

	like readonly, but behaves like clean on a write request.

	clean

	no pending writes, but otherwise active.

When written to inactive array, starts without resync

If a write request arrives then
if metadata is known, mark dirty and switch to active.
if not known, block and switch to write-pending

If written to an active array that has pending writes, then fails.

	active

	fully active: IO and resync can be happening.
When written to inactive array, starts with resync

	write-pending

	clean, but writes are blocked waiting for active to be written.

	active-idle

	like active, but no writes have been seen for a while (safe_mode_delay).

	bitmap/location

	This indicates where the write-intent bitmap for the array is
stored.

It can be one of none, file or [+-]N.
file may later be extended to file:/file/name
[+-]N means that many sectors from the start of the metadata.

This is replicated on all devices. For arrays with externally
managed metadata, the offset is from the beginning of the
device.

	bitmap/chunksize

	The size, in bytes, of the chunk which will be represented by a
single bit. For RAID456, it is a portion of an individual
device. For RAID10, it is a portion of the array. For RAID1, it
is both (they come to the same thing).

	bitmap/time_base

	The time, in seconds, between looking for bits in the bitmap to
be cleared. In the current implementation, a bit will be cleared
between 2 and 3 times time_base after all the covered blocks
are known to be in-sync.

	bitmap/backlog

	When write-mostly devices are active in a RAID1, write requests
to those devices proceed in the background - the filesystem (or
other user of the device) does not have to wait for them.
backlog sets a limit on the number of concurrent background
writes. If there are more than this, new writes will by
synchronous.

	bitmap/metadata

	This can be either internal or external.

	internal

	is the default and means the metadata for the bitmap
is stored in the first 256 bytes of the allocated space and is
managed by the md module.

	external

	means that bitmap metadata is managed externally to
the kernel (i.e. by some userspace program)

	bitmap/can_clear

	This is either true or false. If true, then bits in the
bitmap will be cleared when the corresponding blocks are thought
to be in-sync. If false, bits will never be cleared.
This is automatically set to false if a write happens on a
degraded array, or if the array becomes degraded during a write.
When metadata is managed externally, it should be set to true
once the array becomes non-degraded, and this fact has been
recorded in the metadata.

	consistency_policy

	This indicates how the array maintains consistency in case of unexpected
shutdown. It can be:

	none

	Array has no redundancy information, e.g. raid0, linear.

	resync

	Full resync is performed and all redundancy is regenerated when the
array is started after unclean shutdown.

	bitmap

	Resync assisted by a write-intent bitmap.

	journal

	For raid4/5/6, journal device is used to log transactions and replay
after unclean shutdown.

	ppl

	For raid5 only, Partial Parity Log is used to close the write hole and
eliminate resync.

The accepted values when writing to this file are ppl and resync,
used to enable and disable PPL.

As component devices are added to an md array, they appear in the md
directory as new directories named:

dev-XXX

where XXX is a name that the kernel knows for the device, e.g. hdb1.
Each directory contains:

	block

	a symlink to the block device in /sys/block, e.g.:

/sys/block/md0/md/dev-hdb1/block -> ../../../../block/hdb/hdb1

	super

	A file containing an image of the superblock read from, or
written to, that device.

	state

	A file recording the current state of the device in the array
which can be a comma separated list of:

	faulty

	device has been kicked from active use due to
a detected fault, or it has unacknowledged bad
blocks

	in_sync

	device is a fully in-sync member of the array

	writemostly

	device will only be subject to read
requests if there are no other options.

This applies only to raid1 arrays.

	blocked

	device has failed, and the failure hasn’t been
acknowledged yet by the metadata handler.

Writes that would write to this device if
it were not faulty are blocked.

	spare

	device is working, but not a full member.

This includes spares that are in the process
of being recovered to

	write_error

	device has ever seen a write error.

	want_replacement

	device is (mostly) working but probably
should be replaced, either due to errors or
due to user request.

	replacement

	device is a replacement for another active
device with same raid_disk.

This list may grow in future.

This can be written to.

Writing faulty simulates a failure on the device.

Writing remove removes the device from the array.

Writing writemostly sets the writemostly flag.

Writing -writemostly clears the writemostly flag.

Writing blocked sets the blocked flag.

Writing -blocked clears the blocked flags and allows writes
to complete and possibly simulates an error.

Writing in_sync sets the in_sync flag.

Writing write_error sets writeerrorseen flag.

Writing -write_error clears writeerrorseen flag.

Writing want_replacement is allowed at any time except to a
replacement device or a spare. It sets the flag.

Writing -want_replacement is allowed at any time. It clears
the flag.

Writing replacement or -replacement is only allowed before
starting the array. It sets or clears the flag.

This file responds to select/poll. Any change to faulty
or blocked causes an event.

	errors

	An approximate count of read errors that have been detected on
this device but have not caused the device to be evicted from
the array (either because they were corrected or because they
happened while the array was read-only). When using version-1
metadata, this value persists across restarts of the array.

This value can be written while assembling an array thus
providing an ongoing count for arrays with metadata managed by
userspace.

	slot

	This gives the role that the device has in the array. It will
either be none if the device is not active in the array
(i.e. is a spare or has failed) or an integer less than the
raid_disks number for the array indicating which position
it currently fills. This can only be set while assembling an
array. A device for which this is set is assumed to be working.

	offset

	This gives the location in the device (in sectors from the
start) where data from the array will be stored. Any part of
the device before this offset is not touched, unless it is
used for storing metadata (Formats 1.1 and 1.2).

	size

	The amount of the device, after the offset, that can be used
for storage of data. This will normally be the same as the
component_size. This can be written while assembling an
array. If a value less than the current component_size is
written, it will be rejected.

	recovery_start

	When the device is not in_sync, this records the number of
sectors from the start of the device which are known to be
correct. This is normally zero, but during a recovery
operation it will steadily increase, and if the recovery is
interrupted, restoring this value can cause recovery to
avoid repeating the earlier blocks. With v1.x metadata, this
value is saved and restored automatically.

This can be set whenever the device is not an active member of
the array, either before the array is activated, or before
the slot is set.

Setting this to none is equivalent to setting in_sync.
Setting to any other value also clears the in_sync flag.

	bad_blocks

	This gives the list of all known bad blocks in the form of
start address and length (in sectors respectively). If output
is too big to fit in a page, it will be truncated. Writing
sector length to this file adds new acknowledged (i.e.
recorded to disk safely) bad blocks.

	unacknowledged_bad_blocks

	This gives the list of known-but-not-yet-saved-to-disk bad
blocks in the same form of bad_blocks. If output is too big
to fit in a page, it will be truncated. Writing to this file
adds bad blocks without acknowledging them. This is largely
for testing.

	ppl_sector, ppl_size

	Location and size (in sectors) of the space used for Partial Parity Log
on this device.

An active md device will also contain an entry for each active device
in the array. These are named:

rdNN

where NN is the position in the array, starting from 0.
So for a 3 drive array there will be rd0, rd1, rd2.
These are symbolic links to the appropriate dev-XXX entry.
Thus, for example:

cat /sys/block/md*/md/rd*/state

will show in_sync on every line.

Active md devices for levels that support data redundancy (1,4,5,6,10)
also have

	sync_action

	a text file that can be used to monitor and control the rebuild
process. It contains one word which can be one of:

	resync

	redundancy is being recalculated after unclean
shutdown or creation

	recover

	a hot spare is being built to replace a
failed/missing device

	idle

	nothing is happening

	check

	A full check of redundancy was requested and is
happening. This reads all blocks and checks
them. A repair may also happen for some raid
levels.

	repair

	A full check and repair is happening. This is
similar to resync, but was requested by the
user, and the write-intent bitmap is NOT used to
optimise the process.

This file is writable, and each of the strings that could be
read are meaningful for writing.

idle will stop an active resync/recovery etc. There is no
guarantee that another resync/recovery may not be automatically
started again, though some event will be needed to trigger
this.

resync or recovery can be used to restart the
corresponding operation if it was stopped with idle.

check and repair will start the appropriate process
providing the current state is idle.

This file responds to select/poll. Any important change in the value
triggers a poll event. Sometimes the value will briefly be
recover if a recovery seems to be needed, but cannot be
achieved. In that case, the transition to recover isn’t
notified, but the transition away is.

	degraded

	This contains a count of the number of devices by which the
arrays is degraded. So an optimal array will show 0. A
single failed/missing drive will show 1, etc.

This file responds to select/poll, any increase or decrease
in the count of missing devices will trigger an event.

	mismatch_count

	When performing check and repair, and possibly when
performing resync, md will count the number of errors that are
found. The count in mismatch_cnt is the number of sectors
that were re-written, or (for check) would have been
re-written. As most raid levels work in units of pages rather
than sectors, this may be larger than the number of actual errors
by a factor of the number of sectors in a page.

	bitmap_set_bits

	If the array has a write-intent bitmap, then writing to this
attribute can set bits in the bitmap, indicating that a resync
would need to check the corresponding blocks. Either individual
numbers or start-end pairs can be written. Multiple numbers
can be separated by a space.

Note that the numbers are bit numbers, not block numbers.
They should be scaled by the bitmap_chunksize.

	sync_speed_min, sync_speed_max

	This are similar to /proc/sys/dev/raid/speed_limit_{min,max}
however they only apply to the particular array.

If no value has been written to these, or if the word system
is written, then the system-wide value is used. If a value,
in kibibytes-per-second is written, then it is used.

When the files are read, they show the currently active value
followed by (local) or (system) depending on whether it is
a locally set or system-wide value.

	sync_completed

	This shows the number of sectors that have been completed of
whatever the current sync_action is, followed by the number of
sectors in total that could need to be processed. The two
numbers are separated by a / thus effectively showing one
value, a fraction of the process that is complete.

A select on this attribute will return when resync completes,
when it reaches the current sync_max (below) and possibly at
other times.

	sync_speed

	This shows the current actual speed, in K/sec, of the current
sync_action. It is averaged over the last 30 seconds.

	suspend_lo, suspend_hi

	The two values, given as numbers of sectors, indicate a range
within the array where IO will be blocked. This is currently
only supported for raid4/5/6.

	sync_min, sync_max

	The two values, given as numbers of sectors, indicate a range
within the array where check/repair will operate. Must be
a multiple of chunk_size. When it reaches sync_max it will
pause, rather than complete.
You can use select or poll on sync_completed to wait for
that number to reach sync_max. Then you can either increase
sync_max, or can write idle to sync_action.

The value of max for sync_max effectively disables the limit.
When a resync is active, the value can only ever be increased,
never decreased.
The value of 0 is the minimum for sync_min.

Each active md device may also have attributes specific to the
personality module that manages it.
These are specific to the implementation of the module and could
change substantially if the implementation changes.

These currently include:

	stripe_cache_size (currently raid5 only)

	number of entries in the stripe cache. This is writable, but
there are upper and lower limits (32768, 17). Default is 256.

	strip_cache_active (currently raid5 only)

	number of active entries in the stripe cache

	preread_bypass_threshold (currently raid5 only)

	number of times a stripe requiring preread will be bypassed by
a stripe that does not require preread. For fairness defaults
to 1. Setting this to 0 disables bypass accounting and
requires preread stripes to wait until all full-width stripe-
writes are complete. Valid values are 0 to stripe_cache_size.

	journal_mode (currently raid5 only)

	The cache mode for raid5. raid5 could include an extra disk for
caching. The mode can be “write-throuth” and “write-back”. The
default is “write-through”.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Kernel module signing facility

Overview

The kernel module signing facility cryptographically signs modules during
installation and then checks the signature upon loading the module. This
allows increased kernel security by disallowing the loading of unsigned modules
or modules signed with an invalid key. Module signing increases security by
making it harder to load a malicious module into the kernel. The module
signature checking is done by the kernel so that it is not necessary to have
trusted userspace bits.

This facility uses X.509 ITU-T standard certificates to encode the public keys
involved. The signatures are not themselves encoded in any industrial standard
type. The facility currently only supports the RSA public key encryption
standard (though it is pluggable and permits others to be used). The possible
hash algorithms that can be used are SHA-1, SHA-224, SHA-256, SHA-384, and
SHA-512 (the algorithm is selected by data in the signature).

Configuring module signing

The module signing facility is enabled by going to the
Enable Loadable Module Support section of
the kernel configuration and turning on:

CONFIG_MODULE_SIG "Module signature verification"

This has a number of options available:

	Require modules to be validly signed
(CONFIG_MODULE_SIG_FORCE)

This specifies how the kernel should deal with a module that has a
signature for which the key is not known or a module that is unsigned.

If this is off (ie. “permissive”), then modules for which the key is not
available and modules that are unsigned are permitted, but the kernel will
be marked as being tainted, and the concerned modules will be marked as
tainted, shown with the character ‘E’.

If this is on (ie. “restrictive”), only modules that have a valid
signature that can be verified by a public key in the kernel’s possession
will be loaded. All other modules will generate an error.

Irrespective of the setting here, if the module has a signature block that
cannot be parsed, it will be rejected out of hand.

	Automatically sign all modules
(CONFIG_MODULE_SIG_ALL)

If this is on then modules will be automatically signed during the
modules_install phase of a build. If this is off, then the modules must
be signed manually using:

scripts/sign-file

	Which hash algorithm should modules be signed with?

This presents a choice of which hash algorithm the installation phase will
sign the modules with:

	CONFIG_MODULE_SIG_SHA1
	Sign modules with SHA-1

	CONFIG_MODULE_SIG_SHA224
	Sign modules with SHA-224

	CONFIG_MODULE_SIG_SHA256
	Sign modules with SHA-256

	CONFIG_MODULE_SIG_SHA384
	Sign modules with SHA-384

	CONFIG_MODULE_SIG_SHA512
	Sign modules with SHA-512

The algorithm selected here will also be built into the kernel (rather
than being a module) so that modules signed with that algorithm can have
their signatures checked without causing a dependency loop.

	File name or PKCS#11 URI of module signing key
(CONFIG_MODULE_SIG_KEY)

Setting this option to something other than its default of
certs/signing_key.pem will disable the autogeneration of signing keys
and allow the kernel modules to be signed with a key of your choosing.
The string provided should identify a file containing both a private key
and its corresponding X.509 certificate in PEM form, or — on systems where
the OpenSSL ENGINE_pkcs11 is functional — a PKCS#11 URI as defined by
RFC7512. In the latter case, the PKCS#11 URI should reference both a
certificate and a private key.

If the PEM file containing the private key is encrypted, or if the
PKCS#11 token requries a PIN, this can be provided at build time by
means of the KBUILD_SIGN_PIN variable.

	Additional X.509 keys for default system keyring
(CONFIG_SYSTEM_TRUSTED_KEYS)

This option can be set to the filename of a PEM-encoded file containing
additional certificates which will be included in the system keyring by
default.

Note that enabling module signing adds a dependency on the OpenSSL devel
packages to the kernel build processes for the tool that does the signing.

Generating signing keys

Cryptographic keypairs are required to generate and check signatures. A
private key is used to generate a signature and the corresponding public key is
used to check it. The private key is only needed during the build, after which
it can be deleted or stored securely. The public key gets built into the
kernel so that it can be used to check the signatures as the modules are
loaded.

Under normal conditions, when CONFIG_MODULE_SIG_KEY is unchanged from its
default, the kernel build will automatically generate a new keypair using
openssl if one does not exist in the file:

certs/signing_key.pem

during the building of vmlinux (the public part of the key needs to be built
into vmlinux) using parameters in the:

certs/x509.genkey

file (which is also generated if it does not already exist).

It is strongly recommended that you provide your own x509.genkey file.

Most notably, in the x509.genkey file, the req_distinguished_name section
should be altered from the default:

[req_distinguished_name]
#O = Unspecified company
CN = Build time autogenerated kernel key
#emailAddress = unspecified.user@unspecified.company

The generated RSA key size can also be set with:

[req]
default_bits = 4096

It is also possible to manually generate the key private/public files using the
x509.genkey key generation configuration file in the root node of the Linux
kernel sources tree and the openssl command. The following is an example to
generate the public/private key files:

openssl req -new -nodes -utf8 -sha256 -days 36500 -batch -x509 \
 -config x509.genkey -outform PEM -out kernel_key.pem \
 -keyout kernel_key.pem

The full pathname for the resulting kernel_key.pem file can then be specified
in the CONFIG_MODULE_SIG_KEY option, and the certificate and key therein will
be used instead of an autogenerated keypair.

Public keys in the kernel

The kernel contains a ring of public keys that can be viewed by root. They’re
in a keyring called ”.builtin_trusted_keys” that can be seen by:

[root@deneb ~]# cat /proc/keys
...
223c7853 I------ 1 perm 1f030000 0 0 keyring .builtin_trusted_keys: 1
302d2d52 I------ 1 perm 1f010000 0 0 asymmetri Fedora kernel signing key: d69a84e6bce3d216b979e9505b3e3ef9a7118079: X509.RSA a7118079 []
...

Beyond the public key generated specifically for module signing, additional
trusted certificates can be provided in a PEM-encoded file referenced by the
CONFIG_SYSTEM_TRUSTED_KEYS configuration option.

Further, the architecture code may take public keys from a hardware store and
add those in also (e.g. from the UEFI key database).

Finally, it is possible to add additional public keys by doing:

keyctl padd asymmetric "" [.builtin_trusted_keys-ID] <[key-file]

e.g.:

keyctl padd asymmetric "" 0x223c7853 <my_public_key.x509

Note, however, that the kernel will only permit keys to be added to
.builtin_trusted_keys if the new key’s X.509 wrapper is validly signed by a key
that is already resident in the .builtin_trusted_keys at the time the key was added.

Manually signing modules

To manually sign a module, use the scripts/sign-file tool available in
the Linux kernel source tree. The script requires 4 arguments:

	The hash algorithm (e.g., sha256)

	The private key filename or PKCS#11 URI

	The public key filename

	The kernel module to be signed

The following is an example to sign a kernel module:

scripts/sign-file sha512 kernel-signkey.priv \
 kernel-signkey.x509 module.ko

The hash algorithm used does not have to match the one configured, but if it
doesn’t, you should make sure that hash algorithm is either built into the
kernel or can be loaded without requiring itself.

If the private key requires a passphrase or PIN, it can be provided in the
$KBUILD_SIGN_PIN environment variable.

Signed modules and stripping

A signed module has a digital signature simply appended at the end. The string
~Module signature appended~. at the end of the module’s file confirms that a
signature is present but it does not confirm that the signature is valid!

Signed modules are BRITTLE as the signature is outside of the defined ELF
container. Thus they MAY NOT be stripped once the signature is computed and
attached. Note the entire module is the signed payload, including any and all
debug information present at the time of signing.

Loading signed modules

Modules are loaded with insmod, modprobe, init_module() or
finit_module(), exactly as for unsigned modules as no processing is
done in userspace. The signature checking is all done within the kernel.

Non-valid signatures and unsigned modules

If CONFIG_MODULE_SIG_FORCE is enabled or module.sig_enforce=1 is supplied on
the kernel command line, the kernel will only load validly signed modules
for which it has a public key. Otherwise, it will also load modules that are
unsigned. Any module for which the kernel has a key, but which proves to have
a signature mismatch will not be permitted to load.

Any module that has an unparseable signature will be rejected.

Administering/protecting the private key

Since the private key is used to sign modules, viruses and malware could use
the private key to sign modules and compromise the operating system. The
private key must be either destroyed or moved to a secure location and not kept
in the root node of the kernel source tree.

If you use the same private key to sign modules for multiple kernel
configurations, you must ensure that the module version information is
sufficient to prevent loading a module into a different kernel. Either
set CONFIG_MODVERSIONS=y or ensure that each configuration has a different
kernel release string by changing EXTRAVERSION or CONFIG_LOCALVERSION.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Linux Magic System Request Key Hacks

Documentation for sysrq.c

What is the magic SysRq key?

It is a ‘magical’ key combo you can hit which the kernel will respond to
regardless of whatever else it is doing, unless it is completely locked up.

How do I enable the magic SysRq key?

You need to say “yes” to ‘Magic SysRq key (CONFIG_MAGIC_SYSRQ)’ when
configuring the kernel. When running a kernel with SysRq compiled in,
/proc/sys/kernel/sysrq controls the functions allowed to be invoked via
the SysRq key. The default value in this file is set by the
CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE config symbol, which itself defaults
to 1. Here is the list of possible values in /proc/sys/kernel/sysrq:

	0 - disable sysrq completely

	1 - enable all functions of sysrq

	>1 - bitmask of allowed sysrq functions (see below for detailed function
description):

 2 = 0x2 - enable control of console logging level
 4 = 0x4 - enable control of keyboard (SAK, unraw)
 8 = 0x8 - enable debugging dumps of processes etc.
 16 = 0x10 - enable sync command
 32 = 0x20 - enable remount read-only
 64 = 0x40 - enable signalling of processes (term, kill, oom-kill)
128 = 0x80 - allow reboot/poweroff
256 = 0x100 - allow nicing of all RT tasks

You can set the value in the file by the following command:

echo "number" >/proc/sys/kernel/sysrq

The number may be written here either as decimal or as hexadecimal
with the 0x prefix. CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE must always be
written in hexadecimal.

Note that the value of /proc/sys/kernel/sysrq influences only the invocation
via a keyboard. Invocation of any operation via /proc/sysrq-trigger is
always allowed (by a user with admin privileges).

How do I use the magic SysRq key?

On x86 - You press the key combo ALT-SysRq-<command key>.

注解

Some
keyboards may not have a key labeled ‘SysRq’. The ‘SysRq’ key is
also known as the ‘Print Screen’ key. Also some keyboards cannot
handle so many keys being pressed at the same time, so you might
have better luck with press Alt, press SysRq,
release SysRq, press <command key>, release everything.

On SPARC - You press ALT-STOP-<command key>, I believe.

	On the serial console (PC style standard serial ports only)

	You send a BREAK, then within 5 seconds a command key. Sending
BREAK twice is interpreted as a normal BREAK.

	On PowerPC

	Press ALT - Print Screen (or F13) - <command key>,
Print Screen (or F13) - <command key> may suffice.

	On other

	If you know of the key combos for other architectures, please
let me know so I can add them to this section.

	On all

	write a character to /proc/sysrq-trigger. e.g.:

echo t > /proc/sysrq-trigger

What are the ‘command’ keys?

	Command
	Function

	b
	Will immediately reboot the system without syncing or unmounting
your disks.

	c
	Will perform a system crash by a NULL pointer dereference.
A crashdump will be taken if configured.

	d
	Shows all locks that are held.

	e
	Send a SIGTERM to all processes, except for init.

	f
	Will call the oom killer to kill a memory hog process, but do not
panic if nothing can be killed.

	g
	Used by kgdb (kernel debugger)

	h
	Will display help (actually any other key than those listed
here will display help. but h is easy to remember :-)

	i
	Send a SIGKILL to all processes, except for init.

	j
	Forcibly “Just thaw it” - filesystems frozen by the FIFREEZE ioctl.

	k
	Secure Access Key (SAK) Kills all programs on the current virtual
console. NOTE: See important comments below in SAK section.

	l
	Shows a stack backtrace for all active CPUs.

	m
	Will dump current memory info to your console.

	n
	Used to make RT tasks nice-able

	o
	Will shut your system off (if configured and supported).

	p
	Will dump the current registers and flags to your console.

	q
	Will dump per CPU lists of all armed hrtimers (but NOT regular
timer_list timers) and detailed information about all
clockevent devices.

	r
	Turns off keyboard raw mode and sets it to XLATE.

	s
	Will attempt to sync all mounted filesystems.

	t
	Will dump a list of current tasks and their information to your
console.

	u
	Will attempt to remount all mounted filesystems read-only.

	v
	Forcefully restores framebuffer console

	v
	Causes ETM buffer dump [ARM-specific]

	w
	Dumps tasks that are in uninterruptable (blocked) state.

	x
	Used by xmon interface on ppc/powerpc platforms.
Show global PMU Registers on sparc64.
Dump all TLB entries on MIPS.

	y
	Show global CPU Registers [SPARC-64 specific]

	z
	Dump the ftrace buffer

	0-9
	Sets the console log level, controlling which kernel messages
will be printed to your console. (0, for example would make
it so that only emergency messages like PANICs or OOPSes would
make it to your console.)

Okay, so what can I use them for?

Well, unraw(r) is very handy when your X server or a svgalib program crashes.

sak(k) (Secure Access Key) is useful when you want to be sure there is no
trojan program running at console which could grab your password
when you would try to login. It will kill all programs on given console,
thus letting you make sure that the login prompt you see is actually
the one from init, not some trojan program.

重要

In its true form it is not a true SAK like the one in a
c2 compliant system, and it should not be mistaken as
such.

It seems others find it useful as (System Attention Key) which is
useful when you want to exit a program that will not let you switch consoles.
(For example, X or a svgalib program.)

reboot(b) is good when you’re unable to shut down. But you should also
sync(s) and umount(u) first.

crash(c) can be used to manually trigger a crashdump when the system is hung.
Note that this just triggers a crash if there is no dump mechanism available.

sync(s) is great when your system is locked up, it allows you to sync your
disks and will certainly lessen the chance of data loss and fscking. Note
that the sync hasn’t taken place until you see the “OK” and “Done” appear
on the screen. (If the kernel is really in strife, you may not ever get the
OK or Done message...)

umount(u) is basically useful in the same ways as sync(s). I generally
sync(s), umount(u), then reboot(b) when my system locks. It’s saved
me many a fsck. Again, the unmount (remount read-only) hasn’t taken place until
you see the “OK” and “Done” message appear on the screen.

The loglevels 0-9 are useful when your console is being flooded with
kernel messages you do not want to see. Selecting 0 will prevent all but
the most urgent kernel messages from reaching your console. (They will
still be logged if syslogd/klogd are alive, though.)

term(e) and kill(i) are useful if you have some sort of runaway process
you are unable to kill any other way, especially if it’s spawning other
processes.

“just thaw it(j)” is useful if your system becomes unresponsive due to a
frozen (probably root) filesystem via the FIFREEZE ioctl.

Sometimes SysRq seems to get ‘stuck’ after using it, what can I do?

That happens to me, also. I’ve found that tapping shift, alt, and control
on both sides of the keyboard, and hitting an invalid sysrq sequence again
will fix the problem. (i.e., something like alt-sysrq-z). Switching to
another virtual console (ALT+Fn) and then back again should also help.

I hit SysRq, but nothing seems to happen, what’s wrong?

There are some keyboards that produce a different keycode for SysRq than the
pre-defined value of 99
(see KEY_SYSRQ in include/uapi/linux/input-event-codes.h), or
which don’t have a SysRq key at all. In these cases, run showkey -s to find
an appropriate scancode sequence, and use setkeycodes <sequence> 99 to map
this sequence to the usual SysRq code (e.g., setkeycodes e05b 99). It’s
probably best to put this command in a boot script. Oh, and by the way, you
exit showkey by not typing anything for ten seconds.

I want to add SysRQ key events to a module, how does it work?

In order to register a basic function with the table, you must first include
the header include/linux/sysrq.h, this will define everything else you need.
Next, you must create a sysrq_key_op struct, and populate it with A) the key
handler function you will use, B) a help_msg string, that will print when SysRQ
prints help, and C) an action_msg string, that will print right before your
handler is called. Your handler must conform to the prototype in ‘sysrq.h’.

After the sysrq_key_op is created, you can call the kernel function
register_sysrq_key(int key, struct sysrq_key_op *op_p); this will
register the operation pointed to by op_p at table key ‘key’,
if that slot in the table is blank. At module unload time, you must call
the function unregister_sysrq_key(int key, struct sysrq_key_op *op_p), which
will remove the key op pointed to by ‘op_p’ from the key ‘key’, if and only if
it is currently registered in that slot. This is in case the slot has been
overwritten since you registered it.

The Magic SysRQ system works by registering key operations against a key op
lookup table, which is defined in ‘drivers/tty/sysrq.c’. This key table has
a number of operations registered into it at compile time, but is mutable,
and 2 functions are exported for interface to it:

register_sysrq_key and unregister_sysrq_key.

Of course, never ever leave an invalid pointer in the table. I.e., when
your module that called register_sysrq_key() exits, it must call
unregister_sysrq_key() to clean up the sysrq key table entry that it used.
Null pointers in the table are always safe. :)

If for some reason you feel the need to call the handle_sysrq function from
within a function called by handle_sysrq, you must be aware that you are in
a lock (you are also in an interrupt handler, which means don’t sleep!), so
you must call __handle_sysrq_nolock instead.

When I hit a SysRq key combination only the header appears on the console?

Sysrq output is subject to the same console loglevel control as all
other console output. This means that if the kernel was booted ‘quiet’
as is common on distro kernels the output may not appear on the actual
console, even though it will appear in the dmesg buffer, and be accessible
via the dmesg command and to the consumers of /proc/kmsg. As a specific
exception the header line from the sysrq command is passed to all console
consumers as if the current loglevel was maximum. If only the header
is emitted it is almost certain that the kernel loglevel is too low.
Should you require the output on the console channel then you will need
to temporarily up the console loglevel using alt-sysrq-8 or:

echo 8 > /proc/sysrq-trigger

Remember to return the loglevel to normal after triggering the sysrq
command you are interested in.

I have more questions, who can I ask?

	Just ask them on the linux-kernel mailing list:

	linux-kernel@vger.kernel.org

Credits

Written by Mydraal <vulpyne@vulpyne.net>
Updated by Adam Sulmicki <adam@cfar.umd.edu>
Updated by Jeremy M. Dolan <jmd@turbogeek.org> 2001/01/28 10:15:59
Added to by Crutcher Dunnavant <crutcher+kernel@datastacks.com>

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Unicode support

Last update: 2005-01-17, version 1.4

This file is maintained by H. Peter Anvin <unicode@lanana.org> as part
of the Linux Assigned Names And Numbers Authority (LANANA) project.
The current version can be found at:

http://www.lanana.org/docs/unicode/admin-guide/unicode.rst

Introduction

The Linux kernel code has been rewritten to use Unicode to map
characters to fonts. By downloading a single Unicode-to-font table,
both the eight-bit character sets and UTF-8 mode are changed to use
the font as indicated.

This changes the semantics of the eight-bit character tables subtly.
The four character tables are now:

	Map symbol
	Map name
	Escape code (G0)

	LAT1_MAP
	Latin-1 (ISO 8859-1)
	ESC (B

	GRAF_MAP
	DEC VT100 pseudographics
	ESC (0

	IBMPC_MAP
	IBM code page 437
	ESC (U

	USER_MAP
	User defined
	ESC (K

In particular, ESC (U is no longer “straight to font”, since the font
might be completely different than the IBM character set. This
permits for example the use of block graphics even with a Latin-1 font
loaded.

Note that although these codes are similar to ISO 2022, neither the
codes nor their uses match ISO 2022; Linux has two 8-bit codes (G0 and
G1), whereas ISO 2022 has four 7-bit codes (G0-G3).

In accordance with the Unicode standard/ISO 10646 the range U+F000 to
U+F8FF has been reserved for OS-wide allocation (the Unicode Standard
refers to this as a “Corporate Zone”, since this is inaccurate for
Linux we call it the “Linux Zone”). U+F000 was picked as the starting
point since it lets the direct-mapping area start on a large power of
two (in case 1024- or 2048-character fonts ever become necessary).
This leaves U+E000 to U+EFFF as End User Zone.

[v1.2]: The Unicodes range from U+F000 and up to U+F7FF have been
hard-coded to map directly to the loaded font, bypassing the
translation table. The user-defined map now defaults to U+F000 to
U+F0FF, emulating the previous behaviour. In practice, this range
might be shorter; for example, vgacon can only handle 256-character
(U+F000..U+F0FF) or 512-character (U+F000..U+F1FF) fonts.

Actual characters assigned in the Linux Zone

In addition, the following characters not present in Unicode 1.1.4
have been defined; these are used by the DEC VT graphics map. [v1.2]
THIS USE IS OBSOLETE AND SHOULD NO LONGER BE USED; PLEASE SEE BELOW.

	U+F800
	DEC VT GRAPHICS HORIZONTAL LINE SCAN 1

	U+F801
	DEC VT GRAPHICS HORIZONTAL LINE SCAN 3

	U+F803
	DEC VT GRAPHICS HORIZONTAL LINE SCAN 7

	U+F804
	DEC VT GRAPHICS HORIZONTAL LINE SCAN 9

The DEC VT220 uses a 6x10 character matrix, and these characters form
a smooth progression in the DEC VT graphics character set. I have
omitted the scan 5 line, since it is also used as a block-graphics
character, and hence has been coded as U+2500 FORMS LIGHT HORIZONTAL.

[v1.3]: These characters have been officially added to Unicode 3.2.0;
they are added at U+23BA, U+23BB, U+23BC, U+23BD. Linux now uses the
new values.

[v1.2]: The following characters have been added to represent common
keyboard symbols that are unlikely to ever be added to Unicode proper
since they are horribly vendor-specific. This, of course, is an
excellent example of horrible design.

	U+F810
	KEYBOARD SYMBOL FLYING FLAG

	U+F811
	KEYBOARD SYMBOL PULLDOWN MENU

	U+F812
	KEYBOARD SYMBOL OPEN APPLE

	U+F813
	KEYBOARD SYMBOL SOLID APPLE

Klingon language support

In 1996, Linux was the first operating system in the world to add
support for the artificial language Klingon, created by Marc Okrand
for the “Star Trek” television series. This encoding was later
adopted by the ConScript Unicode Registry and proposed (but ultimately
rejected) for inclusion in Unicode Plane 1. Thus, it remains as a
Linux/CSUR private assignment in the Linux Zone.

This encoding has been endorsed by the Klingon Language Institute.
For more information, contact them at:

http://www.kli.org/

Since the characters in the beginning of the Linux CZ have been more
of the dingbats/symbols/forms type and this is a language, I have
located it at the end, on a 16-cell boundary in keeping with standard
Unicode practice.

注解

This range is now officially managed by the ConScript Unicode
Registry. The normative reference is at:

http://www.evertype.com/standards/csur/klingon.html

Klingon has an alphabet of 26 characters, a positional numeric writing
system with 10 digits, and is written left-to-right, top-to-bottom.

Several glyph forms for the Klingon alphabet have been proposed.
However, since the set of symbols appear to be consistent throughout,
with only the actual shapes being different, in keeping with standard
Unicode practice these differences are considered font variants.

	U+F8D0
	KLINGON LETTER A

	U+F8D1
	KLINGON LETTER B

	U+F8D2
	KLINGON LETTER CH

	U+F8D3
	KLINGON LETTER D

	U+F8D4
	KLINGON LETTER E

	U+F8D5
	KLINGON LETTER GH

	U+F8D6
	KLINGON LETTER H

	U+F8D7
	KLINGON LETTER I

	U+F8D8
	KLINGON LETTER J

	U+F8D9
	KLINGON LETTER L

	U+F8DA
	KLINGON LETTER M

	U+F8DB
	KLINGON LETTER N

	U+F8DC
	KLINGON LETTER NG

	U+F8DD
	KLINGON LETTER O

	U+F8DE
	KLINGON LETTER P

	U+F8DF
	KLINGON LETTER Q
- Written <q> in standard Okrand Latin transliteration

	U+F8E0
	KLINGON LETTER QH
- Written <Q> in standard Okrand Latin transliteration

	U+F8E1
	KLINGON LETTER R

	U+F8E2
	KLINGON LETTER S

	U+F8E3
	KLINGON LETTER T

	U+F8E4
	KLINGON LETTER TLH

	U+F8E5
	KLINGON LETTER U

	U+F8E6
	KLINGON LETTER V

	U+F8E7
	KLINGON LETTER W

	U+F8E8
	KLINGON LETTER Y

	U+F8E9
	KLINGON LETTER GLOTTAL STOP

	U+F8F0
	KLINGON DIGIT ZERO

	U+F8F1
	KLINGON DIGIT ONE

	U+F8F2
	KLINGON DIGIT TWO

	U+F8F3
	KLINGON DIGIT THREE

	U+F8F4
	KLINGON DIGIT FOUR

	U+F8F5
	KLINGON DIGIT FIVE

	U+F8F6
	KLINGON DIGIT SIX

	U+F8F7
	KLINGON DIGIT SEVEN

	U+F8F8
	KLINGON DIGIT EIGHT

	U+F8F9
	KLINGON DIGIT NINE

	U+F8FD
	KLINGON COMMA

	U+F8FE
	KLINGON FULL STOP

	U+F8FF
	KLINGON SYMBOL FOR EMPIRE

Other Fictional and Artificial Scripts

Since the assignment of the Klingon Linux Unicode block, a registry of
fictional and artificial scripts has been established by John Cowan
<jcowan@reutershealth.com> and Michael Everson <everson@evertype.com>.
The ConScript Unicode Registry is accessible at:

http://www.evertype.com/standards/csur/

The ranges used fall at the low end of the End User Zone and can hence
not be normatively assigned, but it is recommended that people who
wish to encode fictional scripts use these codes, in the interest of
interoperability. For Klingon, CSUR has adopted the Linux encoding.
The CSUR people are driving adding Tengwar and Cirth into Unicode
Plane 1; the addition of Klingon to Unicode Plane 1 has been rejected
and so the above encoding remains official.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Software cursor for VGA

by Pavel Machek <pavel@atrey.karlin.mff.cuni.cz>
and Martin Mares <mj@atrey.karlin.mff.cuni.cz>

Linux now has some ability to manipulate cursor appearance. Normally,
you can set the size of hardware cursor. You can now play a few new
tricks: you can make your cursor look like a non-blinking red block,
make it inverse background of the character it’s over or to highlight
that character and still choose whether the original hardware cursor
should remain visible or not. There may be other things I have never
thought of.

The cursor appearance is controlled by a <ESC>[?1;2;3c escape sequence
where 1, 2 and 3 are parameters described below. If you omit any of them,
they will default to zeroes.

	first Parameter

	specifies cursor size:

0=default
1=invisible
2=underline,
...
8=full block
+ 16 if you want the software cursor to be applied
+ 32 if you want to always change the background color
+ 64 if you dislike having the background the same as the
 foreground.

Highlights are ignored for the last two flags.

	second parameter

	selects character attribute bits you want to change
(by simply XORing them with the value of this parameter). On standard
VGA, the high four bits specify background and the low four the
foreground. In both groups, low three bits set color (as in normal
color codes used by the console) and the most significant one turns
on highlight (or sometimes blinking – it depends on the configuration
of your VGA).

	third parameter

	consists of character attribute bits you want to set.

Bit setting takes place before bit toggling, so you can simply clear a
bit by including it in both the set mask and the toggle mask.

Examples

To get normal blinking underline, use:

echo -e '\033[?2c'

To get blinking block, use:

echo -e '\033[?6c'

To get red non-blinking block, use:

echo -e '\033[?17;0;64c'

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Kernel Support for miscellaneous (your favourite) Binary Formats v1.1

This Kernel feature allows you to invoke almost (for restrictions see below)
every program by simply typing its name in the shell.
This includes for example compiled Java(TM), Python or Emacs programs.

To achieve this you must tell binfmt_misc which interpreter has to be invoked
with which binary. Binfmt_misc recognises the binary-type by matching some bytes
at the beginning of the file with a magic byte sequence (masking out specified
bits) you have supplied. Binfmt_misc can also recognise a filename extension
aka .com or .exe.

First you must mount binfmt_misc:

mount binfmt_misc -t binfmt_misc /proc/sys/fs/binfmt_misc

To actually register a new binary type, you have to set up a string looking like
:name:type:offset:magic:mask:interpreter:flags (where you can choose the
: upon your needs) and echo it to /proc/sys/fs/binfmt_misc/register.

Here is what the fields mean:

	
	name

	is an identifier string. A new /proc file will be created with this
name below /proc/sys/fs/binfmt_misc; cannot contain slashes / for
obvious reasons.

	
	type

	is the type of recognition. Give M for magic and E for extension.

	
	offset

	is the offset of the magic/mask in the file, counted in bytes. This
defaults to 0 if you omit it (i.e. you write :name:type::magic...).
Ignored when using filename extension matching.

	
	magic

	is the byte sequence binfmt_misc is matching for. The magic string
may contain hex-encoded characters like \x0a or \xA4. Note that you
must escape any NUL bytes; parsing halts at the first one. In a shell
environment you might have to write \\x0a to prevent the shell from
eating your \.
If you chose filename extension matching, this is the extension to be
recognised (without the ., the \x0a specials are not allowed).
Extension matching is case sensitive, and slashes / are not allowed!

	
	mask

	is an (optional, defaults to all 0xff) mask. You can mask out some
bits from matching by supplying a string like magic and as long as magic.
The mask is anded with the byte sequence of the file. Note that you must
escape any NUL bytes; parsing halts at the first one. Ignored when using
filename extension matching.

	
	interpreter

	is the program that should be invoked with the binary as first
argument (specify the full path)

	
	flags

	is an optional field that controls several aspects of the invocation
of the interpreter. It is a string of capital letters, each controls a
certain aspect. The following flags are supported:

	P - preserve-argv[0]

	Legacy behavior of binfmt_misc is to overwrite
the original argv[0] with the full path to the binary. When this
flag is included, binfmt_misc will add an argument to the argument
vector for this purpose, thus preserving the original argv[0].
e.g. If your interp is set to /bin/foo and you run blah
(which is in /usr/local/bin), then the kernel will execute
/bin/foo with argv[] set to ["/bin/foo", "/usr/local/bin/blah", "blah"]. The interp has to be aware of this so it can
execute /usr/local/bin/blah
with argv[] set to ["blah"].

	O - open-binary

	Legacy behavior of binfmt_misc is to pass the full path
of the binary to the interpreter as an argument. When this flag is
included, binfmt_misc will open the file for reading and pass its
descriptor as an argument, instead of the full path, thus allowing
the interpreter to execute non-readable binaries. This feature
should be used with care - the interpreter has to be trusted not to
emit the contents of the non-readable binary.

	C - credentials

	Currently, the behavior of binfmt_misc is to calculate
the credentials and security token of the new process according to
the interpreter. When this flag is included, these attributes are
calculated according to the binary. It also implies the O flag.
This feature should be used with care as the interpreter
will run with root permissions when a setuid binary owned by root
is run with binfmt_misc.

	F - fix binary

	The usual behaviour of binfmt_misc is to spawn the
binary lazily when the misc format file is invoked. However,
this doesn``t work very well in the face of mount namespaces and
changeroots, so the F mode opens the binary as soon as the
emulation is installed and uses the opened image to spawn the
emulator, meaning it is always available once installed,
regardless of how the environment changes.

There are some restrictions:

	the whole register string may not exceed 1920 characters

	the magic must reside in the first 128 bytes of the file, i.e.
offset+size(magic) has to be less than 128

	the interpreter string may not exceed 127 characters

To use binfmt_misc you have to mount it first. You can mount it with
mount -t binfmt_misc none /proc/sys/fs/binfmt_misc command, or you can add
a line none /proc/sys/fs/binfmt_misc binfmt_misc defaults 0 0 to your
/etc/fstab so it auto mounts on boot.

You may want to add the binary formats in one of your /etc/rc scripts during
boot-up. Read the manual of your init program to figure out how to do this
right.

Think about the order of adding entries! Later added entries are matched first!

A few examples (assumed you are in /proc/sys/fs/binfmt_misc):

	enable support for em86 (like binfmt_em86, for Alpha AXP only):

echo ':i386:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x03:\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' > register
echo ':i486:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x06:\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' > register

	enable support for packed DOS applications (pre-configured dosemu hdimages):

echo ':DEXE:M::\x0eDEX::/usr/bin/dosexec:' > register

	enable support for Windows executables using wine:

echo ':DOSWin:M::MZ::/usr/local/bin/wine:' > register

For java support see Documentation/admin-guide/java.rst

You can enable/disable binfmt_misc or one binary type by echoing 0 (to disable)
or 1 (to enable) to /proc/sys/fs/binfmt_misc/status or
/proc/.../the_name.
Catting the file tells you the current status of binfmt_misc/the_entry.

You can remove one entry or all entries by echoing -1 to /proc/.../the_name
or /proc/sys/fs/binfmt_misc/status.

Hints

If you want to pass special arguments to your interpreter, you can
write a wrapper script for it. See Documentation/admin-guide/java.rst for an
example.

Your interpreter should NOT look in the PATH for the filename; the kernel
passes it the full filename (or the file descriptor) to use. Using $PATH can
cause unexpected behaviour and can be a security hazard.

Richard Günther <rguenth@tat.physik.uni-tuebingen.de>

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Mono(tm) Binary Kernel Support for Linux

To configure Linux to automatically execute Mono-based .NET binaries
(in the form of .exe files) without the need to use the mono CLR
wrapper, you can use the BINFMT_MISC kernel support.

This will allow you to execute Mono-based .NET binaries just like any
other program after you have done the following:

	You MUST FIRST install the Mono CLR support, either by downloading
a binary package, a source tarball or by installing from Git. Binary
packages for several distributions can be found at:

http://www.mono-project.com/download/

Instructions for compiling Mono can be found at:

http://www.mono-project.com/docs/compiling-mono/linux/

Once the Mono CLR support has been installed, just check that
/usr/bin/mono (which could be located elsewhere, for example
/usr/local/bin/mono) is working.

	You have to compile BINFMT_MISC either as a module or into
the kernel (CONFIG_BINFMT_MISC) and set it up properly.
If you choose to compile it as a module, you will have
to insert it manually with modprobe/insmod, as kmod
cannot be easily supported with binfmt_misc.
Read the file binfmt_misc.txt in this directory to know
more about the configuration process.

	Add the following entries to /etc/rc.local or similar script
to be run at system startup:

Insert BINFMT_MISC module into the kernel
if [! -e /proc/sys/fs/binfmt_misc/register]; then
 /sbin/modprobe binfmt_misc
 # Some distributions, like Fedora Core, perform
 # the following command automatically when the
 # binfmt_misc module is loaded into the kernel
 # or during normal boot up (systemd-based systems).
 # Thus, it is possible that the following line
 # is not needed at all.
 mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
fi

Register support for .NET CLR binaries
if [-e /proc/sys/fs/binfmt_misc/register]; then
 # Replace /usr/bin/mono with the correct pathname to
 # the Mono CLR runtime (usually /usr/local/bin/mono
 # when compiling from sources or CVS).
 echo ':CLR:M::MZ::/usr/bin/mono:' > /proc/sys/fs/binfmt_misc/register
else
 echo "No binfmt_misc support"
 exit 1
fi

	Check that .exe binaries can be ran without the need of a
wrapper script, simply by launching the .exe file directly
from a command prompt, for example:

/usr/bin/xsd.exe

注解

If this fails with a permission denied error, check
that the .exe file has execute permissions.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Java(tm) Binary Kernel Support for Linux v1.03

Linux beats them ALL! While all other OS’s are TALKING about direct
support of Java Binaries in the OS, Linux is doing it!

You can execute Java applications and Java Applets just like any
other program after you have done the following:

	You MUST FIRST install the Java Developers Kit for Linux.
The Java on Linux HOWTO gives the details on getting and
installing this. This HOWTO can be found at:

ftp://sunsite.unc.edu/pub/Linux/docs/HOWTO/Java-HOWTO

You should also set up a reasonable CLASSPATH environment
variable to use Java applications that make use of any
nonstandard classes (not included in the same directory
as the application itself).

	You have to compile BINFMT_MISC either as a module or into
the kernel (CONFIG_BINFMT_MISC) and set it up properly.
If you choose to compile it as a module, you will have
to insert it manually with modprobe/insmod, as kmod
cannot easily be supported with binfmt_misc.
Read the file ‘binfmt_misc.txt’ in this directory to know
more about the configuration process.

	Add the following configuration items to binfmt_misc
(you should really have read binfmt_misc.txt now):
support for Java applications:

':Java:M::\xca\xfe\xba\xbe::/usr/local/bin/javawrapper:'

support for executable Jar files:

':ExecutableJAR:E::jar::/usr/local/bin/jarwrapper:'

support for Java Applets:

':Applet:E::html::/usr/bin/appletviewer:'

or the following, if you want to be more selective:

':Applet:M::<!--applet::/usr/bin/appletviewer:'

Of course you have to fix the path names. The path/file names given in this
document match the Debian 2.1 system. (i.e. jdk installed in /usr,
custom wrappers from this document in /usr/local)

Note, that for the more selective applet support you have to modify
existing html-files to contain <!--applet--> in the first line
(< has to be the first character!) to let this work!

For the compiled Java programs you need a wrapper script like the
following (this is because Java is broken in case of the filename
handling), again fix the path names, both in the script and in the
above given configuration string.

You, too, need the little program after the script. Compile like:

gcc -O2 -o javaclassname javaclassname.c

and stick it to /usr/local/bin.

Both the javawrapper shellscript and the javaclassname program
were supplied by Colin J. Watson <cjw44@cam.ac.uk>.

Javawrapper shell script:

#!/bin/bash
/usr/local/bin/javawrapper - the wrapper for binfmt_misc/java

if [-z "$1"]; then
 exec 1>&2
 echo Usage: $0 class-file
 exit 1
fi

CLASS=$1
FQCLASS=`/usr/local/bin/javaclassname $1`
FQCLASSN=`echo $FQCLASS | sed -e 's/^.*\.\([^.]*\)$/\1/'`
FQCLASSP=`echo $FQCLASS | sed -e 's-\.-/-g' -e 's-^[^/]*$--' -e 's-/[^/]*$--'`

for example:
CLASS=Test.class
FQCLASS=foo.bar.Test
FQCLASSN=Test
FQCLASSP=foo/bar

unset CLASSBASE

declare -i LINKLEVEL=0

while :; do
 if ["`basename $CLASS .class`" == "$FQCLASSN"]; then
 # See if this directory works straight off
 cd -L `dirname $CLASS`
 CLASSDIR=$PWD
 cd $OLDPWD
 if echo $CLASSDIR | grep -q "$FQCLASSP$"; then
 CLASSBASE=`echo $CLASSDIR | sed -e "s.$FQCLASSP$.."`
 break;
 fi
 # Try dereferencing the directory name
 cd -P `dirname $CLASS`
 CLASSDIR=$PWD
 cd $OLDPWD
 if echo $CLASSDIR | grep -q "$FQCLASSP$"; then
 CLASSBASE=`echo $CLASSDIR | sed -e "s.$FQCLASSP$.."`
 break;
 fi
 # If no other possible filename exists
 if [! -L $CLASS]; then
 exec 1>&2
 echo $0:
 echo " $CLASS should be in a" \
 "directory tree called $FQCLASSP"
 exit 1
 fi
 fi
 if [! -L $CLASS]; then break; fi
 # Go down one more level of symbolic links
 let LINKLEVEL+=1
 if [$LINKLEVEL -gt 5]; then
 exec 1>&2
 echo $0:
 echo " Too many symbolic links encountered"
 exit 1
 fi
 CLASS=`ls --color=no -l $CLASS | sed -e 's/^.* \([^]*\)$/\1/'`
done

if [-z "$CLASSBASE"]; then
 if [-z "$FQCLASSP"]; then
 GOODNAME=$FQCLASSN.class
 else
 GOODNAME=$FQCLASSP/$FQCLASSN.class
 fi
 exec 1>&2
 echo $0:
 echo " $FQCLASS should be in a file called $GOODNAME"
 exit 1
fi

if ! echo $CLASSPATH | grep -q "^\(.*:\)*$CLASSBASE\(:.*\)*"; then
 # class is not in CLASSPATH, so prepend dir of class to CLASSPATH
 if [-z "${CLASSPATH}"] ; then
 export CLASSPATH=$CLASSBASE
 else
 export CLASSPATH=$CLASSBASE:$CLASSPATH
 fi
fi

shift
/usr/bin/java $FQCLASS "$@"

javaclassname.c:

/* javaclassname.c
 *
 * Extracts the class name from a Java class file; intended for use in a Java
 * wrapper of the type supported by the binfmt_misc option in the Linux kernel.
 *
 * Copyright (C) 1999 Colin J. Watson <cjw44@cam.ac.uk>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/types.h>

/* From Sun's Java VM Specification, as tag entries in the constant pool. */

#define CP_UTF8 1
#define CP_INTEGER 3
#define CP_FLOAT 4
#define CP_LONG 5
#define CP_DOUBLE 6
#define CP_CLASS 7
#define CP_STRING 8
#define CP_FIELDREF 9
#define CP_METHODREF 10
#define CP_INTERFACEMETHODREF 11
#define CP_NAMEANDTYPE 12
#define CP_METHODHANDLE 15
#define CP_METHODTYPE 16
#define CP_INVOKEDYNAMIC 18

/* Define some commonly used error messages */

#define seek_error() error("%s: Cannot seek\n", program)
#define corrupt_error() error("%s: Class file corrupt\n", program)
#define eof_error() error("%s: Unexpected end of file\n", program)
#define utf8_error() error("%s: Only ASCII 1-255 supported\n", program);

char *program;

long *pool;

u_int8_t read_8(FILE *classfile);
u_int16_t read_16(FILE *classfile);
void skip_constant(FILE *classfile, u_int16_t *cur);
void error(const char *format, ...);
int main(int argc, char **argv);

/* Reads in an unsigned 8-bit integer. */
u_int8_t read_8(FILE *classfile)
{
 int b = fgetc(classfile);
 if(b == EOF)
 eof_error();
 return (u_int8_t)b;
}

/* Reads in an unsigned 16-bit integer. */
u_int16_t read_16(FILE *classfile)
{
 int b1, b2;
 b1 = fgetc(classfile);
 if(b1 == EOF)
 eof_error();
 b2 = fgetc(classfile);
 if(b2 == EOF)
 eof_error();
 return (u_int16_t)((b1 << 8) | b2);
}

/* Reads in a value from the constant pool. */
void skip_constant(FILE *classfile, u_int16_t *cur)
{
 u_int16_t len;
 int seekerr = 1;
 pool[*cur] = ftell(classfile);
 switch(read_8(classfile))
 {
 case CP_UTF8:
 len = read_16(classfile);
 seekerr = fseek(classfile, len, SEEK_CUR);
 break;
 case CP_CLASS:
 case CP_STRING:
 case CP_METHODTYPE:
 seekerr = fseek(classfile, 2, SEEK_CUR);
 break;
 case CP_METHODHANDLE:
 seekerr = fseek(classfile, 3, SEEK_CUR);
 break;
 case CP_INTEGER:
 case CP_FLOAT:
 case CP_FIELDREF:
 case CP_METHODREF:
 case CP_INTERFACEMETHODREF:
 case CP_NAMEANDTYPE:
 case CP_INVOKEDYNAMIC:
 seekerr = fseek(classfile, 4, SEEK_CUR);
 break;
 case CP_LONG:
 case CP_DOUBLE:
 seekerr = fseek(classfile, 8, SEEK_CUR);
 ++(*cur);
 break;
 default:
 corrupt_error();
 }
 if(seekerr)
 seek_error();
}

void error(const char *format, ...)
{
 va_list ap;
 va_start(ap, format);
 vfprintf(stderr, format, ap);
 va_end(ap);
 exit(1);
}

int main(int argc, char **argv)
{
 FILE *classfile;
 u_int16_t cp_count, i, this_class, classinfo_ptr;
 u_int8_t length;

 program = argv[0];

 if(!argv[1])
 error("%s: Missing input file\n", program);
 classfile = fopen(argv[1], "rb");
 if(!classfile)
 error("%s: Error opening %s\n", program, argv[1]);

 if(fseek(classfile, 8, SEEK_SET)) /* skip magic and version numbers */
 seek_error();
 cp_count = read_16(classfile);
 pool = calloc(cp_count, sizeof(long));
 if(!pool)
 error("%s: Out of memory for constant pool\n", program);

 for(i = 1; i < cp_count; ++i)
 skip_constant(classfile, &i);
 if(fseek(classfile, 2, SEEK_CUR)) /* skip access flags */
 seek_error();

 this_class = read_16(classfile);
 if(this_class < 1 || this_class >= cp_count)
 corrupt_error();
 if(!pool[this_class] || pool[this_class] == -1)
 corrupt_error();
 if(fseek(classfile, pool[this_class] + 1, SEEK_SET))
 seek_error();

 classinfo_ptr = read_16(classfile);
 if(classinfo_ptr < 1 || classinfo_ptr >= cp_count)
 corrupt_error();
 if(!pool[classinfo_ptr] || pool[classinfo_ptr] == -1)
 corrupt_error();
 if(fseek(classfile, pool[classinfo_ptr] + 1, SEEK_SET))
 seek_error();

 length = read_16(classfile);
 for(i = 0; i < length; ++i)
 {
 u_int8_t x = read_8(classfile);
 if((x & 0x80) || !x)
 {
 if((x & 0xE0) == 0xC0)
 {
 u_int8_t y = read_8(classfile);
 if((y & 0xC0) == 0x80)
 {
 int c = ((x & 0x1f) << 6) + (y & 0x3f);
 if(c) putchar(c);
 else utf8_error();
 }
 else utf8_error();
 }
 else utf8_error();
 }
 else if(x == '/') putchar('.');
 else putchar(x);
 }
 putchar('\n');
 free(pool);
 fclose(classfile);
 return 0;
}

jarwrapper:

#!/bin/bash
/usr/local/java/bin/jarwrapper - the wrapper for binfmt_misc/jar

java -jar $1

Now simply chmod +x the .class, .jar and/or .html files you
want to execute.

To add a Java program to your path best put a symbolic link to the main
.class file into /usr/bin (or another place you like) omitting the .class
extension. The directory containing the original .class file will be
added to your CLASSPATH during execution.

To test your new setup, enter in the following simple Java app, and name
it “HelloWorld.java”:

class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World!");
 }
}

Now compile the application with:

javac HelloWorld.java

Set the executable permissions of the binary file, with:

chmod 755 HelloWorld.class

And then execute it:

./HelloWorld.class

To execute Java Jar files, simple chmod the *.jar files to include
the execution bit, then just do:

./Application.jar

To execute Java Applets, simple chmod the *.html files to include
the execution bit, then just do:

./Applet.html

originally by Brian A. Lantz, brian@lantz.com
heavily edited for binfmt_misc by Richard Günther
new scripts by Colin J. Watson <cjw44@cam.ac.uk>
added executable Jar file support by Kurt Huwig <kurt@iku-netz.de>

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Reliability, Availability and Serviceability

RAS concepts

Reliability, Availability and Serviceability (RAS) is a concept used on
servers meant to measure their robustness.

	Reliability

	is the probability that a system will produce correct outputs.

	Generally measured as Mean Time Between Failures (MTBF)

	Enhanced by features that help to avoid, detect and repair hardware faults

	Availability

	is the probability that a system is operational at a given time

	Generally measured as a percentage of downtime per a period of time

	Often uses mechanisms to detect and correct hardware faults in
runtime;

	Serviceability (or maintainability)

	is the simplicity and speed with which a system can be repaired or
maintained

	Generally measured on Mean Time Between Repair (MTBR)

Improving RAS

In order to reduce systems downtime, a system should be capable of detecting
hardware errors, and, when possible correcting them in runtime. It should
also provide mechanisms to detect hardware degradation, in order to warn
the system administrator to take the action of replacing a component before
it causes data loss or system downtime.

Among the monitoring measures, the most usual ones include:

	CPU – detect errors at instruction execution and at L1/L2/L3 caches;

	Memory – add error correction logic (ECC) to detect and correct errors;

	I/O – add CRC checksums for transferred data;

	Storage – RAID, journal file systems, checksums,
Self-Monitoring, Analysis and Reporting Technology (SMART).

By monitoring the number of occurrences of error detections, it is possible
to identify if the probability of hardware errors is increasing, and, on such
case, do a preventive maintenance to replace a degraded component while
those errors are correctable.

Types of errors

Most mechanisms used on modern systems use use technologies like Hamming
Codes that allow error correction when the number of errors on a bit packet
is below a threshold. If the number of errors is above, those mechanisms
can indicate with a high degree of confidence that an error happened, but
they can’t correct.

Also, sometimes an error occur on a component that it is not used. For
example, a part of the memory that it is not currently allocated.

That defines some categories of errors:

	Correctable Error (CE) - the error detection mechanism detected and
corrected the error. Such errors are usually not fatal, although some
Kernel mechanisms allow the system administrator to consider them as fatal.

	Uncorrected Error (UE) - the amount of errors happened above the error
correction threshold, and the system was unable to auto-correct.

	Fatal Error - when an UE error happens on a critical component of the
system (for example, a piece of the Kernel got corrupted by an UE), the
only reliable way to avoid data corruption is to hang or reboot the machine.

	Non-fatal Error - when an UE error happens on an unused component,
like a CPU in power down state or an unused memory bank, the system may
still run, eventually replacing the affected hardware by a hot spare,
if available.

Also, when an error happens on a userspace process, it is also possible to
kill such process and let userspace restart it.

The mechanism for handling non-fatal errors is usually complex and may
require the help of some userspace application, in order to apply the
policy desired by the system administrator.

Identifying a bad hardware component

Just detecting a hardware flaw is usually not enough, as the system needs
to pinpoint to the minimal replaceable unit (MRU) that should be exchanged
to make the hardware reliable again.

So, it requires not only error logging facilities, but also mechanisms that
will translate the error message to the silkscreen or component label for
the MRU.

Typically, it is very complex for memory, as modern CPUs interlace memory
from different memory modules, in order to provide a better performance. The
DMI BIOS usually have a list of memory module labels, with can be obtained
using the dmidecode tool. For example, on a desktop machine, it shows:

Memory Device
 Total Width: 64 bits
 Data Width: 64 bits
 Size: 16384 MB
 Form Factor: SODIMM
 Set: None
 Locator: ChannelA-DIMM0
 Bank Locator: BANK 0
 Type: DDR4
 Type Detail: Synchronous
 Speed: 2133 MHz
 Rank: 2
 Configured Clock Speed: 2133 MHz

On the above example, a DDR4 SO-DIMM memory module is located at the
system’s memory labeled as “BANK 0”, as given by the bank locator field.
Please notice that, on such system, the total width is equal to the
data width. It means that such memory module doesn’t have error
detection/correction mechanisms.

Unfortunately, not all systems use the same field to specify the memory
bank. On this example, from an older server, dmidecode shows:

Memory Device
 Array Handle: 0x1000
 Error Information Handle: Not Provided
 Total Width: 72 bits
 Data Width: 64 bits
 Size: 8192 MB
 Form Factor: DIMM
 Set: 1
 Locator: DIMM_A1
 Bank Locator: Not Specified
 Type: DDR3
 Type Detail: Synchronous Registered (Buffered)
 Speed: 1600 MHz
 Rank: 2
 Configured Clock Speed: 1600 MHz

There, the DDR3 RDIMM memory module is located at the system’s memory labeled
as “DIMM_A1”, as given by the locator field. Please notice that this
memory module has 64 bits of data width and 72 bits of total width. So,
it has 8 extra bits to be used by error detection and correction mechanisms.
Such kind of memory is called Error-correcting code memory (ECC memory).

To make things even worse, it is not uncommon that systems with different
labels on their system’s board to use exactly the same BIOS, meaning that
the labels provided by the BIOS won’t match the real ones.

ECC memory

As mentioned on the previous section, ECC memory has extra bits to be
used for error correction. So, on 64 bit systems, a memory module
has 64 bits of data width, and 74 bits of total width. So, there are
8 bits extra bits to be used for the error detection and correction
mechanisms. Those extra bits are called syndrome[1][2].

So, when the cpu requests the memory controller to write a word with
data width, the memory controller calculates the syndrome in real time,
using Hamming code, or some other error correction code, like SECDED+,
producing a code with total width size. Such code is then written
on the memory modules.

At read, the total width bits code is converted back, using the same
ECC code used on write, producing a word with data width and a syndrome.
The word with data width is sent to the CPU, even when errors happen.

The memory controller also looks at the syndrome in order to check if
there was an error, and if the ECC code was able to fix such error.
If the error was corrected, a Corrected Error (CE) happened. If not, an
Uncorrected Error (UE) happened.

The information about the CE/UE errors is stored on some special registers
at the memory controller and can be accessed by reading such registers,
either by BIOS, by some special CPUs or by Linux EDAC driver. On x86 64
bit CPUs, such errors can also be retrieved via the Machine Check
Architecture (MCA)[3].

	[1]	Please notice that several memory controllers allow operation on a
mode called “Lock-Step”, where it groups two memory modules together,
doing 128-bit reads/writes. That gives 16 bits for error correction, with
significantly improves the error correction mechanism, at the expense
that, when an error happens, there’s no way to know what memory module is
to blame. So, it has to blame both memory modules.

	[2]	Some memory controllers also allow using memory in mirror mode.
On such mode, the same data is written to two memory modules. At read,
the system checks both memory modules, in order to check if both provide
identical data. On such configuration, when an error happens, there’s no
way to know what memory module is to blame. So, it has to blame both
memory modules (or 4 memory modules, if the system is also on Lock-step
mode).

	[3]	For more details about the Machine Check Architecture (MCA),
please read Documentation/x86/x86_64/machinecheck at the Kernel tree.

EDAC - Error Detection And Correction

注解

“bluesmoke” was the name for this device driver subsystem when it
was “out-of-tree” and maintained at http://bluesmoke.sourceforge.net.
That site is mostly archaic now and can be used only for historical
purposes.

When the subsystem was pushed upstream for the first time, on
Kernel 2.6.16, for the first time, it was renamed to EDAC.

Purpose

The edac kernel module’s goal is to detect and report hardware errors
that occur within the computer system running under linux.

Memory

Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the
primary errors being harvested. These types of errors are harvested by
the edac_mc device.

Detecting CE events, then harvesting those events and reporting them,
can but must not necessarily be a predictor of future UE events. With
CE events only, the system can and will continue to operate as no data
has been damaged yet.

However, preventive maintenance and proactive part replacement of memory
modules exhibiting CEs can reduce the likelihood of the dreaded UE events
and system panics.

Other hardware elements

A new feature for EDAC, the edac_device class of device, was added in
the 2.6.23 version of the kernel.

This new device type allows for non-memory type of ECC hardware detectors
to have their states harvested and presented to userspace via the sysfs
interface.

Some architectures have ECC detectors for L1, L2 and L3 caches,
along with DMA engines, fabric switches, main data path switches,
interconnections, and various other hardware data paths. If the hardware
reports it, then a edac_device device probably can be constructed to
harvest and present that to userspace.

PCI bus scanning

In addition, PCI devices are scanned for PCI Bus Parity and SERR Errors
in order to determine if errors are occurring during data transfers.

The presence of PCI Parity errors must be examined with a grain of salt.
There are several add-in adapters that do not follow the PCI specification
with regards to Parity generation and reporting. The specification says
the vendor should tie the parity status bits to 0 if they do not intend
to generate parity. Some vendors do not do this, and thus the parity bit
can “float” giving false positives.

There is a PCI device attribute located in sysfs that is checked by
the EDAC PCI scanning code. If that attribute is set, PCI parity/error
scanning is skipped for that device. The attribute is:

broken_parity_status

and is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for
PCI devices.

Versioning

EDAC is composed of a “core” module (edac_core.ko) and several Memory
Controller (MC) driver modules. On a given system, the CORE is loaded
and one MC driver will be loaded. Both the CORE and the MC driver (or
edac_device driver) have individual versions that reflect current
release level of their respective modules.

Thus, to “report” on what version a system is running, one must report
both the CORE’s and the MC driver’s versions.

Loading

If edac was statically linked with the kernel then no loading
is necessary. If edac was built as modules then simply modprobe
the edac pieces that you need. You should be able to modprobe
hardware-specific modules and have the dependencies load the necessary
core modules.

Example:

$ modprobe amd76x_edac

loads both the amd76x_edac.ko memory controller module and the
edac_mc.ko core module.

Sysfs interface

EDAC presents a sysfs interface for control and reporting purposes. It
lives in the /sys/devices/system/edac directory.

Within this directory there currently reside 2 components:

	mc
	memory controller(s) system

	pci
	PCI control and status system

Memory Controller (mc) Model

Each mc device controls a set of memory modules [4]. These modules
are laid out in a Chip-Select Row (csrowX) and Channel table (chX).
There can be multiple csrows and multiple channels.

	[4]	Nowadays, the term DIMM (Dual In-line Memory Module) is widely
used to refer to a memory module, although there are other memory
packaging alternatives, like SO-DIMM, SIMM, etc. Along this document,
and inside the EDAC system, the term “dimm” is used for all memory
modules, even when they use a different kind of packaging.

Memory controllers allow for several csrows, with 8 csrows being a
typical value. Yet, the actual number of csrows depends on the layout of
a given motherboard, memory controller and memory module characteristics.

Dual channels allow for dual data length (e. g. 128 bits, on 64 bit systems)
data transfers to/from the CPU from/to memory. Some newer chipsets allow
for more than 2 channels, like Fully Buffered DIMMs (FB-DIMMs) memory
controllers. The following example will assume 2 channels:

	CS Rows
	Channels

	
	ch0
	ch1

	csrow0
	DIMM_A0
	DIMM_B0

	csrow1

	csrow2
	DIMM_A1
	DIMM_B1

	csrow3

In the above example, there are 4 physical slots on the motherboard
for memory DIMMs:

	DIMM_A0
	DIMM_B0

	DIMM_A1
	DIMM_B1

Labels for these slots are usually silk-screened on the motherboard.
Slots labeled A are channel 0 in this example. Slots labeled B are
channel 1. Notice that there are two csrows possible on a physical DIMM.
These csrows are allocated their csrow assignment based on the slot into
which the memory DIMM is placed. Thus, when 1 DIMM is placed in each
Channel, the csrows cross both DIMMs.

Memory DIMMs come single or dual “ranked”. A rank is a populated csrow.
Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
will have just one csrow (csrow0). csrow1 will be empty. On the other
hand, when 2 dual ranked DIMMs are similarly placed, then both csrow0
and csrow1 will be populated. The pattern repeats itself for csrow2 and
csrow3.

The representation of the above is reflected in the directory
tree in EDAC’s sysfs interface. Starting in directory
/sys/devices/system/edac/mc, each memory controller will be
represented by its own mcX directory, where X is the
index of the MC:

..../edac/mc/
 |
 |->mc0
 |->mc1
 |->mc2

Under each mcX directory each csrowX is again represented by a
csrowX, where X is the csrow index:

.../mc/mc0/
 |
 |->csrow0
 |->csrow2
 |->csrow3

Notice that there is no csrow1, which indicates that csrow0 is composed
of a single ranked DIMMs. This should also apply in both Channels, in
order to have dual-channel mode be operational. Since both csrow2 and
csrow3 are populated, this indicates a dual ranked set of DIMMs for
channels 0 and 1.

Within each of the mcX and csrowX directories are several EDAC
control and attribute files.

mcX directories

In mcX directories are EDAC control and attribute files for
this X instance of the memory controllers.

For a description of the sysfs API, please see:

Documentation/ABI/testing/sysfs-devices-edac

dimmX or rankX directories

The recommended way to use the EDAC subsystem is to look at the information
provided by the dimmX or rankX directories [5].

A typical EDAC system has the following structure under
/sys/devices/system/edac/[6]:

/sys/devices/system/edac/
├── mc
│ ├── mc0
│ │ ├── ce_count
│ │ ├── ce_noinfo_count
│ │ ├── dimm0
│ │ │ ├── dimm_ce_count
│ │ │ ├── dimm_dev_type
│ │ │ ├── dimm_edac_mode
│ │ │ ├── dimm_label
│ │ │ ├── dimm_location
│ │ │ ├── dimm_mem_type
│ │ │ ├── dimm_ue_count
│ │ │ ├── size
│ │ │ └── uevent
│ │ ├── max_location
│ │ ├── mc_name
│ │ ├── reset_counters
│ │ ├── seconds_since_reset
│ │ ├── size_mb
│ │ ├── ue_count
│ │ ├── ue_noinfo_count
│ │ └── uevent
│ ├── mc1
│ │ ├── ce_count
│ │ ├── ce_noinfo_count
│ │ ├── dimm0
│ │ │ ├── dimm_ce_count
│ │ │ ├── dimm_dev_type
│ │ │ ├── dimm_edac_mode
│ │ │ ├── dimm_label
│ │ │ ├── dimm_location
│ │ │ ├── dimm_mem_type
│ │ │ ├── dimm_ue_count
│ │ │ ├── size
│ │ │ └── uevent
│ │ ├── max_location
│ │ ├── mc_name
│ │ ├── reset_counters
│ │ ├── seconds_since_reset
│ │ ├── size_mb
│ │ ├── ue_count
│ │ ├── ue_noinfo_count
│ │ └── uevent
│ └── uevent
└── uevent

In the dimmX directories are EDAC control and attribute files for
this X memory module:

	size - Total memory managed by this csrow attribute file

This attribute file displays, in count of megabytes, the memory
that this csrow contains.

	dimm_ue_count - Uncorrectable Errors count attribute file

This attribute file displays the total count of uncorrectable
errors that have occurred on this DIMM. If panic_on_ue is set
this counter will not have a chance to increment, since EDAC
will panic the system.

	dimm_ce_count - Correctable Errors count attribute file

This attribute file displays the total count of correctable
errors that have occurred on this DIMM. This count is very
important to examine. CEs provide early indications that a
DIMM is beginning to fail. This count field should be
monitored for non-zero values and report such information
to the system administrator.

	dimm_dev_type - Device type attribute file

This attribute file will display what type of DRAM device is
being utilized on this DIMM.
Examples:

	x1

	x2

	x4

	x8

	dimm_edac_mode - EDAC Mode of operation attribute file

This attribute file will display what type of Error detection
and correction is being utilized.

	dimm_label - memory module label control file

This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
the output can provide the DIMM label in the system log.
This becomes vital for panic events to isolate the
cause of the UE event.

DIMM Labels must be assigned after booting, with information
that correctly identifies the physical slot with its
silk screen label. This information is currently very
motherboard specific and determination of this information
must occur in userland at this time.

	dimm_location - location of the memory module

The location can have up to 3 levels, and describe how the
memory controller identifies the location of a memory module.
Depending on the type of memory and memory controller, it
can be:

	csrow and channel - used when the memory controller
doesn’t identify a single DIMM - e. g. in rankX dir;

	branch, channel, slot - typically used on FB-DIMM memory
controllers;

	channel, slot - used on Nehalem and newer Intel drivers.

	dimm_mem_type - Memory Type attribute file

This attribute file will display what type of memory is currently
on this csrow. Normally, either buffered or unbuffered memory.
Examples:

	Registered-DDR

	Unbuffered-DDR

	[5]	On some systems, the memory controller doesn’t have any logic
to identify the memory module. On such systems, the directory is called rankX and works on a similar way as the csrowX directories.
On modern Intel memory controllers, the memory controller identifies the
memory modules directly. On such systems, the directory is called dimmX.

	[6]	There are also some power directories and subsystem
symlinks inside the sysfs mapping that are automatically created by
the sysfs subsystem. Currently, they serve no purpose.

csrowX directories

When CONFIG_EDAC_LEGACY_SYSFS is enabled, sysfs will contain the csrowX
directories. As this API doesn’t work properly for Rambus, FB-DIMMs and
modern Intel Memory Controllers, this is being deprecated in favor of
dimmX directories.

In the csrowX directories are EDAC control and attribute files for
this X instance of csrow:

	ue_count - Total Uncorrectable Errors count attribute file

This attribute file displays the total count of uncorrectable
errors that have occurred on this csrow. If panic_on_ue is set
this counter will not have a chance to increment, since EDAC
will panic the system.

	ce_count - Total Correctable Errors count attribute file

This attribute file displays the total count of correctable
errors that have occurred on this csrow. This count is very
important to examine. CEs provide early indications that a
DIMM is beginning to fail. This count field should be
monitored for non-zero values and report such information
to the system administrator.

	size_mb - Total memory managed by this csrow attribute file

This attribute file displays, in count of megabytes, the memory
that this csrow contains.

	mem_type - Memory Type attribute file

This attribute file will display what type of memory is currently
on this csrow. Normally, either buffered or unbuffered memory.
Examples:

	Registered-DDR

	Unbuffered-DDR

	edac_mode - EDAC Mode of operation attribute file

This attribute file will display what type of Error detection
and correction is being utilized.

	dev_type - Device type attribute file

This attribute file will display what type of DRAM device is
being utilized on this DIMM.
Examples:

	x1

	x2

	x4

	x8

	ch0_ce_count - Channel 0 CE Count attribute file

This attribute file will display the count of CEs on this
DIMM located in channel 0.

	ch0_ue_count - Channel 0 UE Count attribute file

This attribute file will display the count of UEs on this
DIMM located in channel 0.

	ch0_dimm_label - Channel 0 DIMM Label control file

This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
the output can provide the DIMM label in the system log.
This becomes vital for panic events to isolate the
cause of the UE event.

DIMM Labels must be assigned after booting, with information
that correctly identifies the physical slot with its
silk screen label. This information is currently very
motherboard specific and determination of this information
must occur in userland at this time.

	ch1_ce_count - Channel 1 CE Count attribute file

This attribute file will display the count of CEs on this
DIMM located in channel 1.

	ch1_ue_count - Channel 1 UE Count attribute file

This attribute file will display the count of UEs on this
DIMM located in channel 0.

	ch1_dimm_label - Channel 1 DIMM Label control file

This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
the output can provide the DIMM label in the system log.
This becomes vital for panic events to isolate the
cause of the UE event.

DIMM Labels must be assigned after booting, with information
that correctly identifies the physical slot with its
silk screen label. This information is currently very
motherboard specific and determination of this information
must occur in userland at this time.

System Logging

If logging for UEs and CEs is enabled, then system logs will contain
information indicating that errors have been detected:

EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0, channel 1 "DIMM_B1": amd76x_edac
EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0, channel 1 "DIMM_B1": amd76x_edac

The structure of the message is:

	Content
	Example

	The memory controller
	MC0

	Error type
	CE

	Memory page
	0x283

	Offset in the page
	0xce0

	The byte granularity
or resolution of the error
	grain 8

	The error syndrome
	0xb741

	Memory row
	row 0

	Memory channel
	channel 1

	DIMM label, if set prior
	DIMM B1

	And then an optional, driver-specific
message that may have additional
information.
	

Both UEs and CEs with no info will lack all but memory controller, error
type, a notice of “no info” and then an optional, driver-specific error
message.

PCI Bus Parity Detection

On Header Type 00 devices, the primary status is looked at for any
parity error regardless of whether parity is enabled on the device or
not. (The spec indicates parity is generated in some cases). On Header
Type 01 bridges, the secondary status register is also looked at to see
if parity occurred on the bus on the other side of the bridge.

Sysfs configuration

Under /sys/devices/system/edac/pci are control and attribute files as
follows:

	check_pci_parity - Enable/Disable PCI Parity checking control file

This control file enables or disables the PCI Bus Parity scanning
operation. Writing a 1 to this file enables the scanning. Writing
a 0 to this file disables the scanning.

Enable:

echo "1" >/sys/devices/system/edac/pci/check_pci_parity

Disable:

echo "0" >/sys/devices/system/edac/pci/check_pci_parity

	pci_parity_count - Parity Count

This attribute file will display the number of parity errors that
have been detected.

Module parameters

	edac_mc_panic_on_ue - Panic on UE control file

An uncorrectable error will cause a machine panic. This is usually
desirable. It is a bad idea to continue when an uncorrectable error
occurs - it is indeterminate what was uncorrected and the operating
system context might be so mangled that continuing will lead to further
corruption. If the kernel has MCE configured, then EDAC will never
notice the UE.

LOAD TIME:

module/kernel parameter: edac_mc_panic_on_ue=[0|1]

RUN TIME:

echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue

	edac_mc_log_ue - Log UE control file

Generate kernel messages describing uncorrectable errors. These errors
are reported through the system message log system. UE statistics
will be accumulated even when UE logging is disabled.

LOAD TIME:

module/kernel parameter: edac_mc_log_ue=[0|1]

RUN TIME:

echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue

	edac_mc_log_ce - Log CE control file

Generate kernel messages describing correctable errors. These
errors are reported through the system message log system.
CE statistics will be accumulated even when CE logging is disabled.

LOAD TIME:

module/kernel parameter: edac_mc_log_ce=[0|1]

RUN TIME:

echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce

	edac_mc_poll_msec - Polling period control file

The time period, in milliseconds, for polling for error information.
Too small a value wastes resources. Too large a value might delay
necessary handling of errors and might loose valuable information for
locating the error. 1000 milliseconds (once each second) is the current
default. Systems which require all the bandwidth they can get, may
increase this.

LOAD TIME:

module/kernel parameter: edac_mc_poll_msec=[0|1]

RUN TIME:

echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec

	panic_on_pci_parity - Panic on PCI PARITY Error

This control file enables or disables panicking when a parity
error has been detected.

module/kernel parameter:

edac_panic_on_pci_pe=[0|1]

Enable:

echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe

Disable:

echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe

EDAC device type

In the header file, edac_pci.h, there is a series of edac_device structures
and APIs for the EDAC_DEVICE.

User space access to an edac_device is through the sysfs interface.

At the location /sys/devices/system/edac (sysfs) new edac_device devices
will appear.

There is a three level tree beneath the above edac directory. For example,
the test_device_edac device (found at the http://bluesmoke.sourceforget.net
website) installs itself as:

/sys/devices/system/edac/test-instance

in this directory are various controls, a symlink and one or more instance
directories.

The standard default controls are:

	log_ce
	boolean to log CE events

	log_ue
	boolean to log UE events

	panic_on_ue
	boolean to panic the system if an UE is encountered
(default off, can be set true via startup script)

	poll_msec
	time period between POLL cycles for events

The test_device_edac device adds at least one of its own custom control:

	test_bits
	which in the current test driver does nothing but
show how it is installed. A ported driver can
add one or more such controls and/or attributes
for specific uses.
One out-of-tree driver uses controls here to allow
for ERROR INJECTION operations to hardware
injection registers

The symlink points to the ‘struct dev’ that is registered for this edac_device.

Instances

One or more instance directories are present. For the test_device_edac
case:

	test-instance0

In this directory there are two default counter attributes, which are totals of
counter in deeper subdirectories.

	ce_count
	total of CE events of subdirectories

	ue_count
	total of UE events of subdirectories

Blocks

At the lowest directory level is the block directory. There can be 0, 1
or more blocks specified in each instance:

	test-block0

In this directory the default attributes are:

	ce_count
	which is counter of CE events for this block
of hardware being monitored

	ue_count
	which is counter of UE events for this block
of hardware being monitored

The test_device_edac device adds 4 attributes and 1 control:

	test-block-bits-0
	for every POLL cycle this counter
is incremented

	test-block-bits-1
	every 10 cycles, this counter is bumped once,
and test-block-bits-0 is set to 0

	test-block-bits-2
	every 100 cycles, this counter is bumped once,
and test-block-bits-1 is set to 0

	test-block-bits-3
	every 1000 cycles, this counter is bumped once,
and test-block-bits-2 is set to 0

	reset-counters
	writing ANY thing to this control will
reset all the above counters.

Use of the test_device_edac driver should enable any others to create their own
unique drivers for their hardware systems.

The test_device_edac sample driver is located at the
http://bluesmoke.sourceforge.net project site for EDAC.

Usage of EDAC APIs on Nehalem and newer Intel CPUs

On older Intel architectures, the memory controller was part of the North
Bridge chipset. Nehalem, Sandy Bridge, Ivy Bridge, Haswell, Sky Lake and
newer Intel architectures integrated an enhanced version of the memory
controller (MC) inside the CPUs.

This chapter will cover the differences of the enhanced memory controllers
found on newer Intel CPUs, such as i7core_edac, sb_edac and
sbx_edac drivers.

注解

The Xeon E7 processor families use a separate chip for the memory
controller, called Intel Scalable Memory Buffer. This section doesn’t
apply for such families.

	There is one Memory Controller per Quick Patch Interconnect
(QPI). At the driver, the term “socket” means one QPI. This is
associated with a physical CPU socket.

Each MC have 3 physical read channels, 3 physical write channels and
3 logic channels. The driver currently sees it as just 3 channels.
Each channel can have up to 3 DIMMs.

The minimum known unity is DIMMs. There are no information about csrows.
As EDAC API maps the minimum unity is csrows, the driver sequentially
maps channel/DIMM into different csrows.

For example, supposing the following layout:

Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs
 dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
 dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
Ch1 phy rd1, wr1 (0x063f4031): 2 ranks, UDIMMs
 dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs
 dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400

The driver will map it as:

csrow0: channel 0, dimm0
csrow1: channel 0, dimm1
csrow2: channel 1, dimm0
csrow3: channel 2, dimm0

exports one DIMM per csrow.

Each QPI is exported as a different memory controller.

	The MC has the ability to inject errors to test drivers. The drivers
implement this functionality via some error injection nodes:

For injecting a memory error, there are some sysfs nodes, under
/sys/devices/system/edac/mc/mc?/:

	
	inject_addrmatch/*:

	Controls the error injection mask register. It is possible to specify
several characteristics of the address to match an error code:

dimm = the affected dimm. Numbers are relative to a channel;
rank = the memory rank;
channel = the channel that will generate an error;
bank = the affected bank;
page = the page address;
column (or col) = the address column.

each of the above values can be set to “any” to match any valid value.

At driver init, all values are set to any.

For example, to generate an error at rank 1 of dimm 2, for any channel,
any bank, any page, any column:

 echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
 echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank

To return to the default behaviour of matching any, you can do::

 echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
 echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank

	
	inject_eccmask:

	specifies what bits will have troubles,

	
	inject_section:

	specifies what ECC cache section will get the error:

3 for both
2 for the highest
1 for the lowest

	
	inject_type:

	specifies the type of error, being a combination of the following bits:

bit 0 - repeat
bit 1 - ecc
bit 2 - parity

	
	inject_enable:

	starts the error generation when something different than 0 is written.

All inject vars can be read. root permission is needed for write.

Datasheet states that the error will only be generated after a write on an
address that matches inject_addrmatch. It seems, however, that reading will
also produce an error.

For example, the following code will generate an error for any write access
at socket 0, on any DIMM/address on channel 2:

echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable
dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null

For socket 1, it is needed to replace “mc0” by “mc1” at the above
commands.

The generated error message will look like:

EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482 (read error: read ECC error))

	Corrected Error memory register counters

Those newer MCs have some registers to count memory errors. The driver
uses those registers to report Corrected Errors on devices with Registered
DIMMs.

However, those counters don’t work with Unregistered DIMM. As the chipset
offers some counters that also work with UDIMMs (but with a worse level of
granularity than the default ones), the driver exposes those registers for
UDIMM memories.

They can be read by looking at the contents of all_channel_counts/:

$ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
 /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
 0
 /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
 0
 /sys/devices/system/edac/mc/mc0/all_channel_counts/udimm2
 0

What happens here is that errors on different csrows, but at the same
dimm number will increment the same counter.
So, in this memory mapping:

csrow0: channel 0, dimm0
csrow1: channel 0, dimm1
csrow2: channel 1, dimm0
csrow3: channel 2, dimm0

The hardware will increment udimm0 for an error at the first dimm at either
csrow0, csrow2 or csrow3;

The hardware will increment udimm1 for an error at the second dimm at either
csrow0, csrow2 or csrow3;

The hardware will increment udimm2 for an error at the third dimm at either
csrow0, csrow2 or csrow3;

	Standard error counters

The standard error counters are generated when an mcelog error is received
by the driver. Since, with UDIMM, this is counted by software, it is
possible that some errors could be lost. With RDIMM’s, they display the
contents of the registers

Reference documents used on amd64_edac

amd64_edac module is based on the following documents
(available from http://support.amd.com/en-us/search/tech-docs):

	

	Title:	BIOS and Kernel Developer’s Guide for AMD Athlon 64 and AMD
Opteron Processors

	AMD publication #:

		26094

	Revision:	3.26

	Link:	http://support.amd.com/TechDocs/26094.PDF

	

	Title:	BIOS and Kernel Developer’s Guide for AMD NPT Family 0Fh
Processors

	AMD publication #:

		32559

	Revision:	3.00

	Issue Date:	May 2006

	Link:	http://support.amd.com/TechDocs/32559.pdf

	

	Title:	BIOS and Kernel Developer’s Guide (BKDG) For AMD Family 10h
Processors

	AMD publication #:

		31116

	Revision:	3.00

	Issue Date:	September 07, 2007

	Link:	http://support.amd.com/TechDocs/31116.pdf

	

	Title:	BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h
Models 30h-3Fh Processors

	AMD publication #:

		49125

	Revision:	3.06

	Issue Date:	2/12/2015 (latest release)

	Link:	http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf

	

	Title:	BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h
Models 60h-6Fh Processors

	AMD publication #:

		50742

	Revision:	3.01

	Issue Date:	7/23/2015 (latest release)

	Link:	http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf

	

	Title:	BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 16h
Models 00h-0Fh Processors

	AMD publication #:

		48751

	Revision:	3.03

	Issue Date:	2/23/2015 (latest release)

	Link:	http://support.amd.com/TechDocs/48751_16h_bkdg.pdf

Credits

	Written by Doug Thompson <dougthompson@xmission.com>
	7 Dec 2005

	17 Jul 2007 Updated

	© Mauro Carvalho Chehab
	05 Aug 2009 Nehalem interface

	26 Oct 2016 Converted to ReST and cleanups at the Nehalem section

	EDAC authors/maintainers:
	Doug Thompson, Dave Jiang, Dave Peterson et al,

	Mauro Carvalho Chehab

	Borislav Petkov

	original author: Thayne Harbaugh

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

A block layer cache (bcache)

Say you’ve got a big slow raid 6, and an ssd or three. Wouldn’t it be
nice if you could use them as cache... Hence bcache.

Wiki and git repositories are at:

	http://bcache.evilpiepirate.org

	http://evilpiepirate.org/git/linux-bcache.git

	http://evilpiepirate.org/git/bcache-tools.git

It’s designed around the performance characteristics of SSDs - it only allocates
in erase block sized buckets, and it uses a hybrid btree/log to track cached
extents (which can be anywhere from a single sector to the bucket size). It’s
designed to avoid random writes at all costs; it fills up an erase block
sequentially, then issues a discard before reusing it.

Both writethrough and writeback caching are supported. Writeback defaults to
off, but can be switched on and off arbitrarily at runtime. Bcache goes to
great lengths to protect your data - it reliably handles unclean shutdown. (It
doesn’t even have a notion of a clean shutdown; bcache simply doesn’t return
writes as completed until they’re on stable storage).

Writeback caching can use most of the cache for buffering writes - writing
dirty data to the backing device is always done sequentially, scanning from the
start to the end of the index.

Since random IO is what SSDs excel at, there generally won’t be much benefit
to caching large sequential IO. Bcache detects sequential IO and skips it;
it also keeps a rolling average of the IO sizes per task, and as long as the
average is above the cutoff it will skip all IO from that task - instead of
caching the first 512k after every seek. Backups and large file copies should
thus entirely bypass the cache.

In the event of a data IO error on the flash it will try to recover by reading
from disk or invalidating cache entries. For unrecoverable errors (meta data
or dirty data), caching is automatically disabled; if dirty data was present
in the cache it first disables writeback caching and waits for all dirty data
to be flushed.

Getting started:
You’ll need make-bcache from the bcache-tools repository. Both the cache device
and backing device must be formatted before use:

make-bcache -B /dev/sdb
make-bcache -C /dev/sdc

make-bcache has the ability to format multiple devices at the same time - if
you format your backing devices and cache device at the same time, you won’t
have to manually attach:

make-bcache -B /dev/sda /dev/sdb -C /dev/sdc

bcache-tools now ships udev rules, and bcache devices are known to the kernel
immediately. Without udev, you can manually register devices like this:

echo /dev/sdb > /sys/fs/bcache/register
echo /dev/sdc > /sys/fs/bcache/register

Registering the backing device makes the bcache device show up in /dev; you can
now format it and use it as normal. But the first time using a new bcache
device, it’ll be running in passthrough mode until you attach it to a cache.
If you are thinking about using bcache later, it is recommended to setup all your
slow devices as bcache backing devices without a cache, and you can choose to add
a caching device later.
See ‘ATTACHING’ section below.

The devices show up as:

/dev/bcache<N>

As well as (with udev):

/dev/bcache/by-uuid/<uuid>
/dev/bcache/by-label/<label>

To get started:

mkfs.ext4 /dev/bcache0
mount /dev/bcache0 /mnt

You can control bcache devices through sysfs at /sys/block/bcache<N>/bcache .
You can also control them through /sys/fs//bcache/<cset-uuid>/ .

Cache devices are managed as sets; multiple caches per set isn’t supported yet
but will allow for mirroring of metadata and dirty data in the future. Your new
cache set shows up as /sys/fs/bcache/<UUID>

Attaching

After your cache device and backing device are registered, the backing device
must be attached to your cache set to enable caching. Attaching a backing
device to a cache set is done thusly, with the UUID of the cache set in
/sys/fs/bcache:

echo <CSET-UUID> > /sys/block/bcache0/bcache/attach

This only has to be done once. The next time you reboot, just reregister all
your bcache devices. If a backing device has data in a cache somewhere, the
/dev/bcache<N> device won’t be created until the cache shows up - particularly
important if you have writeback caching turned on.

If you’re booting up and your cache device is gone and never coming back, you
can force run the backing device:

echo 1 > /sys/block/sdb/bcache/running

(You need to use /sys/block/sdb (or whatever your backing device is called), not
/sys/block/bcache0, because bcache0 doesn’t exist yet. If you’re using a
partition, the bcache directory would be at /sys/block/sdb/sdb2/bcache)

The backing device will still use that cache set if it shows up in the future,
but all the cached data will be invalidated. If there was dirty data in the
cache, don’t expect the filesystem to be recoverable - you will have massive
filesystem corruption, though ext4’s fsck does work miracles.

Error Handling

Bcache tries to transparently handle IO errors to/from the cache device without
affecting normal operation; if it sees too many errors (the threshold is
configurable, and defaults to 0) it shuts down the cache device and switches all
the backing devices to passthrough mode.

	For reads from the cache, if they error we just retry the read from the
backing device.

	For writethrough writes, if the write to the cache errors we just switch to
invalidating the data at that lba in the cache (i.e. the same thing we do for
a write that bypasses the cache)

	For writeback writes, we currently pass that error back up to the
filesystem/userspace. This could be improved - we could retry it as a write
that skips the cache so we don’t have to error the write.

	When we detach, we first try to flush any dirty data (if we were running in
writeback mode). It currently doesn’t do anything intelligent if it fails to
read some of the dirty data, though.

Howto/cookbook

	Starting a bcache with a missing caching device

If registering the backing device doesn’t help, it’s already there, you just need
to force it to run without the cache:

host:~# echo /dev/sdb1 > /sys/fs/bcache/register
[119.844831] bcache: register_bcache() error opening /dev/sdb1: device already registered

Next, you try to register your caching device if it’s present. However
if it’s absent, or registration fails for some reason, you can still
start your bcache without its cache, like so:

host:/sys/block/sdb/sdb1/bcache# echo 1 > running

Note that this may cause data loss if you were running in writeback mode.

	Bcache does not find its cache:

host:/sys/block/md5/bcache# echo 0226553a-37cf-41d5-b3ce-8b1e944543a8 > attach
[1933.455082] bcache: bch_cached_dev_attach() Couldn't find uuid for md5 in set
[1933.478179] bcache: __cached_dev_store() Can't attach 0226553a-37cf-41d5-b3ce-8b1e944543a8
[1933.478179] : cache set not found

In this case, the caching device was simply not registered at boot
or disappeared and came back, and needs to be (re-)registered:

host:/sys/block/md5/bcache# echo /dev/sdh2 > /sys/fs/bcache/register

	Corrupt bcache crashes the kernel at device registration time:

This should never happen. If it does happen, then you have found a bug!
Please report it to the bcache development list: linux-bcache@vger.kernel.org

Be sure to provide as much information that you can including kernel dmesg
output if available so that we may assist.

	Recovering data without bcache:

If bcache is not available in the kernel, a filesystem on the backing
device is still available at an 8KiB offset. So either via a loopdev
of the backing device created with –offset 8K, or any value defined by
–data-offset when you originally formatted bcache with make-bcache.

For example:

losetup -o 8192 /dev/loop0 /dev/your_bcache_backing_dev

This should present your unmodified backing device data in /dev/loop0

If your cache is in writethrough mode, then you can safely discard the
cache device without loosing data.

	Wiping a cache device

host:~# wipefs -a /dev/sdh2
16 bytes were erased at offset 0x1018 (bcache)
they were: c6 85 73 f6 4e 1a 45 ca 82 65 f5 7f 48 ba 6d 81

After you boot back with bcache enabled, you recreate the cache and attach it:

host:~# make-bcache -C /dev/sdh2
UUID: 7be7e175-8f4c-4f99-94b2-9c904d227045
Set UUID: 5bc072a8-ab17-446d-9744-e247949913c1
version: 0
nbuckets: 106874
block_size: 1
bucket_size: 1024
nr_in_set: 1
nr_this_dev: 0
first_bucket: 1
[650.511912] bcache: run_cache_set() invalidating existing data
[650.549228] bcache: register_cache() registered cache device sdh2

start backing device with missing cache:

host:/sys/block/md5/bcache# echo 1 > running

attach new cache:

host:/sys/block/md5/bcache# echo 5bc072a8-ab17-446d-9744-e247949913c1 > attach
[865.276616] bcache: bch_cached_dev_attach() Caching md5 as bcache0 on set 5bc072a8-ab17-446d-9744-e247949913c1

	Remove or replace a caching device:

host:/sys/block/sda/sda7/bcache# echo 1 > detach
[695.872542] bcache: cached_dev_detach_finish() Caching disabled for sda7

host:~# wipefs -a /dev/nvme0n1p4
wipefs: error: /dev/nvme0n1p4: probing initialization failed: Device or resource busy
Ooops, it's disabled, but not unregistered, so it's still protected

We need to go and unregister it:

host:/sys/fs/bcache/b7ba27a1-2398-4649-8ae3-0959f57ba128# ls -l cache0
lrwxrwxrwx 1 root root 0 Feb 25 18:33 cache0 -> ../../../devices/pci0000:00/0000:00:1d.0/0000:70:00.0/nvme/nvme0/nvme0n1/nvme0n1p4/bcache/
host:/sys/fs/bcache/b7ba27a1-2398-4649-8ae3-0959f57ba128# echo 1 > stop
kernel: [917.041908] bcache: cache_set_free() Cache set b7ba27a1-2398-4649-8ae3-0959f57ba128 unregistered

Now we can wipe it:

host:~# wipefs -a /dev/nvme0n1p4
/dev/nvme0n1p4: 16 bytes were erased at offset 0x00001018 (bcache): c6 85 73 f6 4e 1a 45 ca 82 65 f5 7f 48 ba 6d 81

	dm-crypt and bcache

First setup bcache unencrypted and then install dmcrypt on top of
/dev/bcache<N> This will work faster than if you dmcrypt both the backing
and caching devices and then install bcache on top. [benchmarks?]

	Stop/free a registered bcache to wipe and/or recreate it

Suppose that you need to free up all bcache references so that you can
fdisk run and re-register a changed partition table, which won’t work
if there are any active backing or caching devices left on it:

	Is it present in /dev/bcache* ? (there are times where it won’t be)

If so, it’s easy:

host:/sys/block/bcache0/bcache# echo 1 > stop

	But if your backing device is gone, this won’t work:

host:/sys/block/bcache0# cd bcache
bash: cd: bcache: No such file or directory

In this case, you may have to unregister the dmcrypt block device that
references this bcache to free it up:

host:~# dmsetup remove oldds1
bcache: bcache_device_free() bcache0 stopped
bcache: cache_set_free() Cache set 5bc072a8-ab17-446d-9744-e247949913c1 unregistered

This causes the backing bcache to be removed from /sys/fs/bcache and
then it can be reused. This would be true of any block device stacking
where bcache is a lower device.

	In other cases, you can also look in /sys/fs/bcache/:

host:/sys/fs/bcache# ls -l */{cache?,bdev?}
lrwxrwxrwx 1 root root 0 Mar 5 09:39 0226553a-37cf-41d5-b3ce-8b1e944543a8/bdev1 -> ../../../devices/virtual/block/dm-1/bcache/
lrwxrwxrwx 1 root root 0 Mar 5 09:39 0226553a-37cf-41d5-b3ce-8b1e944543a8/cache0 -> ../../../devices/virtual/block/dm-4/bcache/
lrwxrwxrwx 1 root root 0 Mar 5 09:39 5bc072a8-ab17-446d-9744-e247949913c1/cache0 -> ../../../devices/pci0000:00/0000:00:01.0/0000:01:00.0/ata10/host9/target9:0:0/9:0:0:0/block/sdl/sdl2/bcache/

The device names will show which UUID is relevant, cd in that directory
and stop the cache:

host:/sys/fs/bcache/5bc072a8-ab17-446d-9744-e247949913c1# echo 1 > stop

This will free up bcache references and let you reuse the partition for
other purposes.

Troubleshooting performance

Bcache has a bunch of config options and tunables. The defaults are intended to
be reasonable for typical desktop and server workloads, but they’re not what you
want for getting the best possible numbers when benchmarking.

	Backing device alignment

The default metadata size in bcache is 8k. If your backing device is
RAID based, then be sure to align this by a multiple of your stride
width using make-bcache –data-offset. If you intend to expand your
disk array in the future, then multiply a series of primes by your
raid stripe size to get the disk multiples that you would like.

For example: If you have a 64k stripe size, then the following offset
would provide alignment for many common RAID5 data spindle counts:

64k * 2*2*2*3*3*5*7 bytes = 161280k

That space is wasted, but for only 157.5MB you can grow your RAID 5
volume to the following data-spindle counts without re-aligning:

3,4,5,6,7,8,9,10,12,14,15,18,20,21 ...

	Bad write performance

If write performance is not what you expected, you probably wanted to be
running in writeback mode, which isn’t the default (not due to a lack of
maturity, but simply because in writeback mode you’ll lose data if something
happens to your SSD):

echo writeback > /sys/block/bcache0/bcache/cache_mode

	Bad performance, or traffic not going to the SSD that you’d expect

By default, bcache doesn’t cache everything. It tries to skip sequential IO -
because you really want to be caching the random IO, and if you copy a 10
gigabyte file you probably don’t want that pushing 10 gigabytes of randomly
accessed data out of your cache.

But if you want to benchmark reads from cache, and you start out with fio
writing an 8 gigabyte test file - so you want to disable that:

echo 0 > /sys/block/bcache0/bcache/sequential_cutoff

To set it back to the default (4 mb), do:

echo 4M > /sys/block/bcache0/bcache/sequential_cutoff

	Traffic’s still going to the spindle/still getting cache misses

In the real world, SSDs don’t always keep up with disks - particularly with
slower SSDs, many disks being cached by one SSD, or mostly sequential IO. So
you want to avoid being bottlenecked by the SSD and having it slow everything
down.

To avoid that bcache tracks latency to the cache device, and gradually
throttles traffic if the latency exceeds a threshold (it does this by
cranking down the sequential bypass).

You can disable this if you need to by setting the thresholds to 0:

echo 0 > /sys/fs/bcache/<cache set>/congested_read_threshold_us
echo 0 > /sys/fs/bcache/<cache set>/congested_write_threshold_us

The default is 2000 us (2 milliseconds) for reads, and 20000 for writes.

	Still getting cache misses, of the same data

One last issue that sometimes trips people up is actually an old bug, due to
the way cache coherency is handled for cache misses. If a btree node is full,
a cache miss won’t be able to insert a key for the new data and the data
won’t be written to the cache.

In practice this isn’t an issue because as soon as a write comes along it’ll
cause the btree node to be split, and you need almost no write traffic for
this to not show up enough to be noticeable (especially since bcache’s btree
nodes are huge and index large regions of the device). But when you’re
benchmarking, if you’re trying to warm the cache by reading a bunch of data
and there’s no other traffic - that can be a problem.

Solution: warm the cache by doing writes, or use the testing branch (there’s
a fix for the issue there).

Sysfs - backing device

Available at /sys/block/<bdev>/bcache, /sys/block/bcache*/bcache and
(if attached) /sys/fs/bcache/<cset-uuid>/bdev*

	attach

	Echo the UUID of a cache set to this file to enable caching.

	cache_mode

	Can be one of either writethrough, writeback, writearound or none.

	clear_stats

	Writing to this file resets the running total stats (not the day/hour/5 minute
decaying versions).

	detach

	Write to this file to detach from a cache set. If there is dirty data in the
cache, it will be flushed first.

	dirty_data

	Amount of dirty data for this backing device in the cache. Continuously
updated unlike the cache set’s version, but may be slightly off.

	label

	Name of underlying device.

	readahead

	Size of readahead that should be performed. Defaults to 0. If set to e.g.
1M, it will round cache miss reads up to that size, but without overlapping
existing cache entries.

	running

	1 if bcache is running (i.e. whether the /dev/bcache device exists, whether
it’s in passthrough mode or caching).

	sequential_cutoff

	A sequential IO will bypass the cache once it passes this threshold; the
most recent 128 IOs are tracked so sequential IO can be detected even when
it isn’t all done at once.

	sequential_merge

	If non zero, bcache keeps a list of the last 128 requests submitted to compare
against all new requests to determine which new requests are sequential
continuations of previous requests for the purpose of determining sequential
cutoff. This is necessary if the sequential cutoff value is greater than the
maximum acceptable sequential size for any single request.

	state

	The backing device can be in one of four different states:

no cache: Has never been attached to a cache set.

clean: Part of a cache set, and there is no cached dirty data.

dirty: Part of a cache set, and there is cached dirty data.

inconsistent: The backing device was forcibly run by the user when there was
dirty data cached but the cache set was unavailable; whatever data was on the
backing device has likely been corrupted.

	stop

	Write to this file to shut down the bcache device and close the backing
device.

	writeback_delay

	When dirty data is written to the cache and it previously did not contain
any, waits some number of seconds before initiating writeback. Defaults to
30.

	writeback_percent

	If nonzero, bcache tries to keep around this percentage of the cache dirty by
throttling background writeback and using a PD controller to smoothly adjust
the rate.

	writeback_rate

	Rate in sectors per second - if writeback_percent is nonzero, background
writeback is throttled to this rate. Continuously adjusted by bcache but may
also be set by the user.

	writeback_running

	If off, writeback of dirty data will not take place at all. Dirty data will
still be added to the cache until it is mostly full; only meant for
benchmarking. Defaults to on.

Sysfs - backing device stats

There are directories with these numbers for a running total, as well as
versions that decay over the past day, hour and 5 minutes; they’re also
aggregated in the cache set directory as well.

	bypassed

	Amount of IO (both reads and writes) that has bypassed the cache

	cache_hits, cache_misses, cache_hit_ratio

	Hits and misses are counted per individual IO as bcache sees them; a
partial hit is counted as a miss.

	cache_bypass_hits, cache_bypass_misses

	Hits and misses for IO that is intended to skip the cache are still counted,
but broken out here.

	cache_miss_collisions

	Counts instances where data was going to be inserted into the cache from a
cache miss, but raced with a write and data was already present (usually 0
since the synchronization for cache misses was rewritten)

	cache_readaheads

	Count of times readahead occurred.

Sysfs - cache set

Available at /sys/fs/bcache/<cset-uuid>

	average_key_size

	Average data per key in the btree.

	bdev<0..n>

	Symlink to each of the attached backing devices.

	block_size

	Block size of the cache devices.

	btree_cache_size

	Amount of memory currently used by the btree cache

	bucket_size

	Size of buckets

	cache<0..n>

	Symlink to each of the cache devices comprising this cache set.

	cache_available_percent

	Percentage of cache device which doesn’t contain dirty data, and could
potentially be used for writeback. This doesn’t mean this space isn’t used
for clean cached data; the unused statistic (in priority_stats) is typically
much lower.

	clear_stats

	Clears the statistics associated with this cache

	dirty_data

	Amount of dirty data is in the cache (updated when garbage collection runs).

	flash_vol_create

	Echoing a size to this file (in human readable units, k/M/G) creates a thinly
provisioned volume backed by the cache set.

	io_error_halflife, io_error_limit

	These determines how many errors we accept before disabling the cache.
Each error is decayed by the half life (in # ios). If the decaying count
reaches io_error_limit dirty data is written out and the cache is disabled.

	journal_delay_ms

	Journal writes will delay for up to this many milliseconds, unless a cache
flush happens sooner. Defaults to 100.

	root_usage_percent

	Percentage of the root btree node in use. If this gets too high the node
will split, increasing the tree depth.

	stop

	Write to this file to shut down the cache set - waits until all attached
backing devices have been shut down.

	tree_depth

	Depth of the btree (A single node btree has depth 0).

	unregister

	Detaches all backing devices and closes the cache devices; if dirty data is
present it will disable writeback caching and wait for it to be flushed.

Sysfs - cache set internal

This directory also exposes timings for a number of internal operations, with
separate files for average duration, average frequency, last occurrence and max
duration: garbage collection, btree read, btree node sorts and btree splits.

	active_journal_entries

	Number of journal entries that are newer than the index.

	btree_nodes

	Total nodes in the btree.

	btree_used_percent

	Average fraction of btree in use.

	bset_tree_stats

	Statistics about the auxiliary search trees

	btree_cache_max_chain

	Longest chain in the btree node cache’s hash table

	cache_read_races

	Counts instances where while data was being read from the cache, the bucket
was reused and invalidated - i.e. where the pointer was stale after the read
completed. When this occurs the data is reread from the backing device.

	trigger_gc

	Writing to this file forces garbage collection to run.

Sysfs - Cache device

Available at /sys/block/<cdev>/bcache

	block_size

	Minimum granularity of writes - should match hardware sector size.

	btree_written

	Sum of all btree writes, in (kilo/mega/giga) bytes

	bucket_size

	Size of buckets

	cache_replacement_policy

	One of either lru, fifo or random.

	discard

	Boolean; if on a discard/TRIM will be issued to each bucket before it is
reused. Defaults to off, since SATA TRIM is an unqueued command (and thus
slow).

	freelist_percent

	Size of the freelist as a percentage of nbuckets. Can be written to to
increase the number of buckets kept on the freelist, which lets you
artificially reduce the size of the cache at runtime. Mostly for testing
purposes (i.e. testing how different size caches affect your hit rate), but
since buckets are discarded when they move on to the freelist will also make
the SSD’s garbage collection easier by effectively giving it more reserved
space.

	io_errors

	Number of errors that have occurred, decayed by io_error_halflife.

	metadata_written

	Sum of all non data writes (btree writes and all other metadata).

	nbuckets

	Total buckets in this cache

	priority_stats

	Statistics about how recently data in the cache has been accessed.
This can reveal your working set size. Unused is the percentage of
the cache that doesn’t contain any data. Metadata is bcache’s
metadata overhead. Average is the average priority of cache buckets.
Next is a list of quantiles with the priority threshold of each.

	written

	Sum of all data that has been written to the cache; comparison with
btree_written gives the amount of write inflation in bcache.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

ext4 General Information

Ext4 is an advanced level of the ext3 filesystem which incorporates
scalability and reliability enhancements for supporting large filesystems
(64 bit) in keeping with increasing disk capacities and state-of-the-art
feature requirements.

Mailing list: linux-ext4@vger.kernel.org
Web site: http://ext4.wiki.kernel.org

Quick usage instructions

Note: More extensive information for getting started with ext4 can be
found at the ext4 wiki site at the URL:
http://ext4.wiki.kernel.org/index.php/Ext4_Howto

	The latest version of e2fsprogs can be found at:

https://www.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/

or

http://sourceforge.net/project/showfiles.php?group_id=2406

or grab the latest git repository from:

https://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git

	Create a new filesystem using the ext4 filesystem type:

mke2fs -t ext4 /dev/hda1

Or to configure an existing ext3 filesystem to support extents:

tune2fs -O extents /dev/hda1

If the filesystem was created with 128 byte inodes, it can be
converted to use 256 byte for greater efficiency via:

tune2fs -I 256 /dev/hda1

	Mounting:

mount -t ext4 /dev/hda1 /wherever

	When comparing performance with other filesystems, it’s always
important to try multiple workloads; very often a subtle change in a
workload parameter can completely change the ranking of which
filesystems do well compared to others. When comparing versus ext3,
note that ext4 enables write barriers by default, while ext3 does
not enable write barriers by default. So it is useful to use
explicitly specify whether barriers are enabled or not when via the
‘-o barriers=[0|1]’ mount option for both ext3 and ext4 filesystems
for a fair comparison. When tuning ext3 for best benchmark numbers,
it is often worthwhile to try changing the data journaling mode; ‘-o
data=writeback’ can be faster for some workloads. (Note however that
running mounted with data=writeback can potentially leave stale data
exposed in recently written files in case of an unclean shutdown,
which could be a security exposure in some situations.) Configuring
the filesystem with a large journal can also be helpful for
metadata-intensive workloads.

Features

Currently Available

	ability to use filesystems > 16TB (e2fsprogs support not available yet)

	extent format reduces metadata overhead (RAM, IO for access, transactions)

	extent format more robust in face of on-disk corruption due to magics,

	internal redundancy in tree

	improved file allocation (multi-block alloc)

	lift 32000 subdirectory limit imposed by i_links_count[1]

	nsec timestamps for mtime, atime, ctime, create time

	inode version field on disk (NFSv4, Lustre)

	reduced e2fsck time via uninit_bg feature

	journal checksumming for robustness, performance

	persistent file preallocation (e.g for streaming media, databases)

	ability to pack bitmaps and inode tables into larger virtual groups via the
flex_bg feature

	large file support

	inode allocation using large virtual block groups via flex_bg

	delayed allocation

	large block (up to pagesize) support

	efficient new ordered mode in JBD2 and ext4 (avoid using buffer head to force
the ordering)

[1] Filesystems with a block size of 1k may see a limit imposed by the
directory hash tree having a maximum depth of two.

Options

When mounting an ext4 filesystem, the following option are accepted:
(*) == default

	ro

	Mount filesystem read only. Note that ext4 will replay the journal (and
thus write to the partition) even when mounted “read only”. The mount
options “ro,noload” can be used to prevent writes to the filesystem.

	journal_checksum

	Enable checksumming of the journal transactions. This will allow the
recovery code in e2fsck and the kernel to detect corruption in the
kernel. It is a compatible change and will be ignored by older
kernels.

	journal_async_commit

	Commit block can be written to disk without waiting for descriptor
blocks. If enabled older kernels cannot mount the device. This will
enable ‘journal_checksum’ internally.

	journal_path=path, journal_dev=devnum

	When the external journal device’s major/minor numbers have changed,
these options allow the user to specify the new journal location. The
journal device is identified through either its new major/minor numbers
encoded in devnum, or via a path to the device.

	norecovery, noload

	Don’t load the journal on mounting. Note that if the filesystem was
not unmounted cleanly, skipping the journal replay will lead to the
filesystem containing inconsistencies that can lead to any number of
problems.

	data=journal

	All data are committed into the journal prior to being written into the
main file system. Enabling this mode will disable delayed allocation
and O_DIRECT support.

	data=ordered (*)

	All data are forced directly out to the main file system prior to its
metadata being committed to the journal.

	data=writeback

	Data ordering is not preserved, data may be written into the main file
system after its metadata has been committed to the journal.

	commit=nrsec (*)

	Ext4 can be told to sync all its data and metadata every ‘nrsec’
seconds. The default value is 5 seconds. This means that if you lose
your power, you will lose as much as the latest 5 seconds of work (your
filesystem will not be damaged though, thanks to the journaling). This
default value (or any low value) will hurt performance, but it’s good
for data-safety. Setting it to 0 will have the same effect as leaving
it at the default (5 seconds). Setting it to very large values will
improve performance.

	barrier=<0|1(*)>, barrier(*), nobarrier

	This enables/disables the use of write barriers in the jbd code.
barrier=0 disables, barrier=1 enables. This also requires an IO stack
which can support barriers, and if jbd gets an error on a barrier
write, it will disable again with a warning. Write barriers enforce
proper on-disk ordering of journal commits, making volatile disk write
caches safe to use, at some performance penalty. If your disks are
battery-backed in one way or another, disabling barriers may safely
improve performance. The mount options “barrier” and “nobarrier” can
also be used to enable or disable barriers, for consistency with other
ext4 mount options.

	inode_readahead_blks=n

	This tuning parameter controls the maximum number of inode table blocks
that ext4’s inode table readahead algorithm will pre-read into the
buffer cache. The default value is 32 blocks.

	nouser_xattr

	Disables Extended User Attributes. See the attr(5) manual page for
more information about extended attributes.

	noacl

	This option disables POSIX Access Control List support. If ACL support
is enabled in the kernel configuration (CONFIG_EXT4_FS_POSIX_ACL), ACL
is enabled by default on mount. See the acl(5) manual page for more
information about acl.

	bsddf (*)

	Make ‘df’ act like BSD.

	minixdf

	Make ‘df’ act like Minix.

	debug

	Extra debugging information is sent to syslog.

	abort

	Simulate the effects of calling ext4_abort() for debugging purposes.
This is normally used while remounting a filesystem which is already
mounted.

	errors=remount-ro

	Remount the filesystem read-only on an error.

	errors=continue

	Keep going on a filesystem error.

	errors=panic

	Panic and halt the machine if an error occurs. (These mount options
override the errors behavior specified in the superblock, which can be
configured using tune2fs)

	data_err=ignore(*)

	Just print an error message if an error occurs in a file data buffer in
ordered mode.

	data_err=abort

	Abort the journal if an error occurs in a file data buffer in ordered
mode.

	grpid | bsdgroups

	New objects have the group ID of their parent.

	nogrpid (*) | sysvgroups

	New objects have the group ID of their creator.

	resgid=n

	The group ID which may use the reserved blocks.

	resuid=n

	The user ID which may use the reserved blocks.

	sb=

	Use alternate superblock at this location.

	quota, noquota, grpquota, usrquota

	These options are ignored by the filesystem. They are used only by
quota tools to recognize volumes where quota should be turned on. See
documentation in the quota-tools package for more details
(http://sourceforge.net/projects/linuxquota).

	jqfmt=<quota type>, usrjquota=<file>, grpjquota=<file>

	These options tell filesystem details about quota so that quota
information can be properly updated during journal replay. They replace
the above quota options. See documentation in the quota-tools package
for more details (http://sourceforge.net/projects/linuxquota).

	stripe=n

	Number of filesystem blocks that mballoc will try to use for allocation
size and alignment. For RAID5/6 systems this should be the number of
data disks * RAID chunk size in file system blocks.

	delalloc (*)

	Defer block allocation until just before ext4 writes out the block(s)
in question. This allows ext4 to better allocation decisions more
efficiently.

	nodelalloc

	Disable delayed allocation. Blocks are allocated when the data is
copied from userspace to the page cache, either via the write(2) system
call or when an mmap’ed page which was previously unallocated is
written for the first time.

	max_batch_time=usec

	Maximum amount of time ext4 should wait for additional filesystem
operations to be batch together with a synchronous write operation.
Since a synchronous write operation is going to force a commit and then
a wait for the I/O complete, it doesn’t cost much, and can be a huge
throughput win, we wait for a small amount of time to see if any other
transactions can piggyback on the synchronous write. The algorithm
used is designed to automatically tune for the speed of the disk, by
measuring the amount of time (on average) that it takes to finish
committing a transaction. Call this time the “commit time”. If the
time that the transaction has been running is less than the commit
time, ext4 will try sleeping for the commit time to see if other
operations will join the transaction. The commit time is capped by
the max_batch_time, which defaults to 15000us (15ms). This
optimization can be turned off entirely by setting max_batch_time to 0.

	min_batch_time=usec

	This parameter sets the commit time (as described above) to be at least
min_batch_time. It defaults to zero microseconds. Increasing this
parameter may improve the throughput of multi-threaded, synchronous
workloads on very fast disks, at the cost of increasing latency.

	journal_ioprio=prio

	The I/O priority (from 0 to 7, where 0 is the highest priority) which
should be used for I/O operations submitted by kjournald2 during a
commit operation. This defaults to 3, which is a slightly higher
priority than the default I/O priority.

	auto_da_alloc(*), noauto_da_alloc

	Many broken applications don’t use fsync() when replacing existing
files via patterns such as fd = open(“foo.new”)/write(fd,..)/close(fd)/
rename(“foo.new”, “foo”), or worse yet, fd = open(“foo”,
O_TRUNC)/write(fd,..)/close(fd). If auto_da_alloc is enabled, ext4
will detect the replace-via-rename and replace-via-truncate patterns
and force that any delayed allocation blocks are allocated such that at
the next journal commit, in the default data=ordered mode, the data
blocks of the new file are forced to disk before the rename() operation
is committed. This provides roughly the same level of guarantees as
ext3, and avoids the “zero-length” problem that can happen when a
system crashes before the delayed allocation blocks are forced to disk.

	noinit_itable

	Do not initialize any uninitialized inode table blocks in the
background. This feature may be used by installation CD’s so that the
install process can complete as quickly as possible; the inode table
initialization process would then be deferred until the next time the
file system is unmounted.

	init_itable=n

	The lazy itable init code will wait n times the number of milliseconds
it took to zero out the previous block group’s inode table. This
minimizes the impact on the system performance while file system’s
inode table is being initialized.

	discard, nodiscard(*)

	Controls whether ext4 should issue discard/TRIM commands to the
underlying block device when blocks are freed. This is useful for SSD
devices and sparse/thinly-provisioned LUNs, but it is off by default
until sufficient testing has been done.

	nouid32

	Disables 32-bit UIDs and GIDs. This is for interoperability with
older kernels which only store and expect 16-bit values.

	block_validity(*), noblock_validity

	These options enable or disable the in-kernel facility for tracking
filesystem metadata blocks within internal data structures. This
allows multi- block allocator and other routines to notice bugs or
corrupted allocation bitmaps which cause blocks to be allocated which
overlap with filesystem metadata blocks.

	dioread_lock, dioread_nolock

	Controls whether or not ext4 should use the DIO read locking. If the
dioread_nolock option is specified ext4 will allocate uninitialized
extent before buffer write and convert the extent to initialized after
IO completes. This approach allows ext4 code to avoid using inode
mutex, which improves scalability on high speed storages. However this
does not work with data journaling and dioread_nolock option will be
ignored with kernel warning. Note that dioread_nolock code path is only
used for extent-based files. Because of the restrictions this options
comprises it is off by default (e.g. dioread_lock).

	max_dir_size_kb=n

	This limits the size of directories so that any attempt to expand them
beyond the specified limit in kilobytes will cause an ENOSPC error.
This is useful in memory constrained environments, where a very large
directory can cause severe performance problems or even provoke the Out
Of Memory killer. (For example, if there is only 512mb memory
available, a 176mb directory may seriously cramp the system’s style.)

	i_version

	Enable 64-bit inode version support. This option is off by default.

	dax

	Use direct access (no page cache). See
Documentation/filesystems/dax.txt. Note that this option is
incompatible with data=journal.

Data Mode

There are 3 different data modes:

	writeback mode

In data=writeback mode, ext4 does not journal data at all. This mode provides
a similar level of journaling as that of XFS, JFS, and ReiserFS in its default
mode - metadata journaling. A crash+recovery can cause incorrect data to
appear in files which were written shortly before the crash. This mode will
typically provide the best ext4 performance.

	ordered mode

In data=ordered mode, ext4 only officially journals metadata, but it logically
groups metadata information related to data changes with the data blocks into
a single unit called a transaction. When it’s time to write the new metadata
out to disk, the associated data blocks are written first. In general, this
mode performs slightly slower than writeback but significantly faster than
journal mode.

	journal mode

data=journal mode provides full data and metadata journaling. All new data is
written to the journal first, and then to its final location. In the event of
a crash, the journal can be replayed, bringing both data and metadata into a
consistent state. This mode is the slowest except when data needs to be read
from and written to disk at the same time where it outperforms all others
modes. Enabling this mode will disable delayed allocation and O_DIRECT
support.

/proc entries

Information about mounted ext4 file systems can be found in
/proc/fs/ext4. Each mounted filesystem will have a directory in
/proc/fs/ext4 based on its device name (i.e., /proc/fs/ext4/hdc or
/proc/fs/ext4/dm-0). The files in each per-device directory are shown
in table below.

Files in /proc/fs/ext4/<devname>

	mb_groups

	details of multiblock allocator buddy cache of free blocks

/sys entries

Information about mounted ext4 file systems can be found in
/sys/fs/ext4. Each mounted filesystem will have a directory in
/sys/fs/ext4 based on its device name (i.e., /sys/fs/ext4/hdc or
/sys/fs/ext4/dm-0). The files in each per-device directory are shown
in table below.

Files in /sys/fs/ext4/<devname>:

(see also Documentation/ABI/testing/sysfs-fs-ext4)

	delayed_allocation_blocks

	This file is read-only and shows the number of blocks that are dirty in
the page cache, but which do not have their location in the filesystem
allocated yet.

	inode_goal

	Tuning parameter which (if non-zero) controls the goal inode used by
the inode allocator in preference to all other allocation heuristics.
This is intended for debugging use only, and should be 0 on production
systems.

	inode_readahead_blks

	Tuning parameter which controls the maximum number of inode table
blocks that ext4’s inode table readahead algorithm will pre-read into
the buffer cache.

	lifetime_write_kbytes

	This file is read-only and shows the number of kilobytes of data that
have been written to this filesystem since it was created.

	max_writeback_mb_bump

	The maximum number of megabytes the writeback code will try to write
out before move on to another inode.

	mb_group_prealloc

	The multiblock allocator will round up allocation requests to a
multiple of this tuning parameter if the stripe size is not set in the
ext4 superblock

	mb_max_to_scan

	The maximum number of extents the multiblock allocator will search to
find the best extent.

	mb_min_to_scan

	The minimum number of extents the multiblock allocator will search to
find the best extent.

	mb_order2_req

	Tuning parameter which controls the minimum size for requests (as a
power of 2) where the buddy cache is used.

	mb_stats

	Controls whether the multiblock allocator should collect statistics,
which are shown during the unmount. 1 means to collect statistics, 0
means not to collect statistics.

	mb_stream_req

	Files which have fewer blocks than this tunable parameter will have
their blocks allocated out of a block group specific preallocation
pool, so that small files are packed closely together. Each large file
will have its blocks allocated out of its own unique preallocation
pool.

	session_write_kbytes

	This file is read-only and shows the number of kilobytes of data that
have been written to this filesystem since it was mounted.

	reserved_clusters

	This is RW file and contains number of reserved clusters in the file
system which will be used in the specific situations to avoid costly
zeroout, unexpected ENOSPC, or possible data loss. The default is 2% or
4096 clusters, whichever is smaller and this can be changed however it
can never exceed number of clusters in the file system. If there is not
enough space for the reserved space when mounting the file mount will
not fail.

Ioctls

There is some Ext4 specific functionality which can be accessed by applications
through the system call interfaces. The list of all Ext4 specific ioctls are
shown in the table below.

Table of Ext4 specific ioctls

	EXT4_IOC_GETFLAGS

	Get additional attributes associated with inode. The ioctl argument is
an integer bitfield, with bit values described in ext4.h. This ioctl is
an alias for FS_IOC_GETFLAGS.

	EXT4_IOC_SETFLAGS

	Set additional attributes associated with inode. The ioctl argument is
an integer bitfield, with bit values described in ext4.h. This ioctl is
an alias for FS_IOC_SETFLAGS.

	EXT4_IOC_GETVERSION, EXT4_IOC_GETVERSION_OLD

	Get the inode i_generation number stored for each inode. The
i_generation number is normally changed only when new inode is created
and it is particularly useful for network filesystems. The ‘_OLD’
version of this ioctl is an alias for FS_IOC_GETVERSION.

	EXT4_IOC_SETVERSION, EXT4_IOC_SETVERSION_OLD

	Set the inode i_generation number stored for each inode. The ‘_OLD’
version of this ioctl is an alias for FS_IOC_SETVERSION.

	EXT4_IOC_GROUP_EXTEND

	This ioctl has the same purpose as the resize mount option. It allows
to resize filesystem to the end of the last existing block group,
further resize has to be done with resize2fs, either online, or
offline. The argument points to the unsigned logn number representing
the filesystem new block count.

	EXT4_IOC_MOVE_EXT

	Move the block extents from orig_fd (the one this ioctl is pointing to)
to the donor_fd (the one specified in move_extent structure passed as
an argument to this ioctl). Then, exchange inode metadata between
orig_fd and donor_fd. This is especially useful for online
defragmentation, because the allocator has the opportunity to allocate
moved blocks better, ideally into one contiguous extent.

	EXT4_IOC_GROUP_ADD

	Add a new group descriptor to an existing or new group descriptor
block. The new group descriptor is described by ext4_new_group_input
structure, which is passed as an argument to this ioctl. This is
especially useful in conjunction with EXT4_IOC_GROUP_EXTEND, which
allows online resize of the filesystem to the end of the last existing
block group. Those two ioctls combined is used in userspace online
resize tool (e.g. resize2fs).

	EXT4_IOC_MIGRATE

	This ioctl operates on the filesystem itself. It converts (migrates)
ext3 indirect block mapped inode to ext4 extent mapped inode by walking
through indirect block mapping of the original inode and converting
contiguous block ranges into ext4 extents of the temporary inode. Then,
inodes are swapped. This ioctl might help, when migrating from ext3 to
ext4 filesystem, however suggestion is to create fresh ext4 filesystem
and copy data from the backup. Note, that filesystem has to support
extents for this ioctl to work.

	EXT4_IOC_ALLOC_DA_BLKS

	Force all of the delay allocated blocks to be allocated to preserve
application-expected ext3 behaviour. Note that this will also start
triggering a write of the data blocks, but this behaviour may change in
the future as it is not necessary and has been done this way only for
sake of simplicity.

	EXT4_IOC_RESIZE_FS

	Resize the filesystem to a new size. The number of blocks of resized
filesystem is passed in via 64 bit integer argument. The kernel
allocates bitmaps and inode table, the userspace tool thus just passes
the new number of blocks.

	EXT4_IOC_SWAP_BOOT

	Swap i_blocks and associated attributes (like i_blocks, i_size,
i_flags, ...) from the specified inode with inode EXT4_BOOT_LOADER_INO
(#5). This is typically used to store a boot loader in a secure part of
the filesystem, where it can’t be changed by a normal user by accident.
The data blocks of the previous boot loader will be associated with the
given inode.

References

	kernel source: <file:fs/ext4/>

	<file:fs/jbd2/>

programs: http://e2fsprogs.sourceforge.net/

	useful links: http://fedoraproject.org/wiki/ext3-devel

	http://www.bullopensource.org/ext4/
http://ext4.wiki.kernel.org/index.php/Main_Page
http://fedoraproject.org/wiki/Features/Ext4

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Power Management

	Power Management Strategies

	System-Wide Power Management
	System Sleep States

	Working-State Power Management
	CPU Performance Scaling

	intel_pstate CPU Performance Scaling Driver

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Power Management »

Power Management Strategies

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

The Linux kernel supports two major high-level power management strategies.

One of them is based on using global low-power states of the whole system in
which user space code cannot be executed and the overall system activity is
significantly reduced, referred to as sleep states. The
kernel puts the system into one of these states when requested by user space
and the system stays in it until a special signal is received from one of
designated devices, triggering a transition to the working state in which
user space code can run. Because sleep states are global and the whole system
is affected by the state changes, this strategy is referred to as the
system-wide power management.

The other strategy, referred to as the working-state power management, is based on adjusting the power states of individual hardware
components of the system, as needed, in the working state. In consequence, if
this strategy is in use, the working state of the system usually does not
correspond to any particular physical configuration of it, but can be treated as
a metastate covering a range of different power states of the system in which
the individual components of it can be either active (in use) or
inactive (idle). If they are active, they have to be in power states
allowing them to process data and to be accessed by software. In turn, if they
are inactive, ideally, they should be in low-power states in which they may not
be accessible.

If all of the system components are active, the system as a whole is regarded as
“runtime active” and that situation typically corresponds to the maximum power
draw (or maximum energy usage) of it. If all of them are inactive, the system
as a whole is regarded as “runtime idle” which may be very close to a sleep
state from the physical system configuration and power draw perspective, but
then it takes much less time and effort to start executing user space code than
for the same system in a sleep state. However, transitions from sleep states
back to the working state can only be started by a limited set of devices, so
typically the system can spend much more time in a sleep state than it can be
runtime idle in one go. For this reason, systems usually use less energy in
sleep states than when they are runtime idle most of the time.

Moreover, the two power management strategies address different usage scenarios.
Namely, if the user indicates that the system will not be in use going forward,
for example by closing its lid (if the system is a laptop), it probably should
go into a sleep state at that point. On the other hand, if the user simply goes
away from the laptop keyboard, it probably should stay in the working state and
use the working-state power management in case it becomes idle, because the user
may come back to it at any time and then may want the system to be immediately
accessible.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Power Management »

System-Wide Power Management

	System Sleep States
	Sleep States That Can Be Supported

	Basic sysfs Interfaces for System Suspend and Hibernation

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Power Management »

 	System-Wide Power Management »

System Sleep States

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

Sleep states are global low-power states of the entire system in which user
space code cannot be executed and the overall system activity is significantly
reduced.

Sleep States That Can Be Supported

Depending on its configuration and the capabilities of the platform it runs on,
the Linux kernel can support up to four system sleep states, including
hibernation and up to three variants of system suspend. The sleep states that
can be supported by the kernel are listed below.

Suspend-to-Idle

This is a generic, pure software, light-weight variant of system suspend (also
referred to as S2I or S2Idle). It allows more energy to be saved relative to
runtime idle by freezing user space, suspending the timekeeping and putting all
I/O devices into low-power states (possibly lower-power than available in the
working state), such that the processors can spend time in their deepest idle
states while the system is suspended.

The system is woken up from this state by in-band interrupts, so theoretically
any devices that can cause interrupts to be generated in the working state can
also be set up as wakeup devices for S2Idle.

This state can be used on platforms without support for standby
or suspend-to-RAM, or it can be used in addition to any of the
deeper system suspend variants to provide reduced resume latency. It is always
supported if the CONFIG_SUSPEND kernel configuration option is set.

Standby

This state, if supported, offers moderate, but real, energy savings, while
providing a relatively straightforward transition back to the working state. No
operating state is lost (the system core logic retains power), so the system can
go back to where it left off easily enough.

In addition to freezing user space, suspending the timekeeping and putting all
I/O devices into low-power states, which is done for suspend-to-idle too, nonboot CPUs are taken offline and all low-level system functions
are suspended during transitions into this state. For this reason, it should
allow more energy to be saved relative to suspend-to-idle, but
the resume latency will generally be greater than for that state.

The set of devices that can wake up the system from this state usually is
reduced relative to suspend-to-idle and it may be necessary to
rely on the platform for setting up the wakeup functionality as appropriate.

This state is supported if the CONFIG_SUSPEND kernel configuration
option is set and the support for it is registered by the platform with the
core system suspend subsystem. On ACPI-based systems this state is mapped to
the S1 system state defined by ACPI.

Suspend-to-RAM

This state (also referred to as STR or S2RAM), if supported, offers significant
energy savings as everything in the system is put into a low-power state, except
for memory, which should be placed into the self-refresh mode to retain its
contents. All of the steps carried out when entering standby
are also carried out during transitions to S2RAM. Additional operations may
take place depending on the platform capabilities. In particular, on ACPI-based
systems the kernel passes control to the platform firmware (BIOS) as the last
step during S2RAM transitions and that usually results in powering down some
more low-level components that are not directly controlled by the kernel.

The state of devices and CPUs is saved and held in memory. All devices are
suspended and put into low-power states. In many cases, all peripheral buses
lose power when entering S2RAM, so devices must be able to handle the transition
back to the “on” state.

On ACPI-based systems S2RAM requires some minimal boot-strapping code in the
platform firmware to resume the system from it. This may be the case on other
platforms too.

The set of devices that can wake up the system from S2RAM usually is reduced
relative to suspend-to-idle and standby and it
may be necessary to rely on the platform for setting up the wakeup functionality
as appropriate.

S2RAM is supported if the CONFIG_SUSPEND kernel configuration option
is set and the support for it is registered by the platform with the core system
suspend subsystem. On ACPI-based systems it is mapped to the S3 system state
defined by ACPI.

Hibernation

This state (also referred to as Suspend-to-Disk or STD) offers the greatest
energy savings and can be used even in the absence of low-level platform support
for system suspend. However, it requires some low-level code for resuming the
system to be present for the underlying CPU architecture.

Hibernation is significantly different from any of the system suspend variants.
It takes three system state changes to put it into hibernation and two system
state changes to resume it.

First, when hibernation is triggered, the kernel stops all system activity and
creates a snapshot image of memory to be written into persistent storage. Next,
the system goes into a state in which the snapshot image can be saved, the image
is written out and finally the system goes into the target low-power state in
which power is cut from almost all of its hardware components, including memory,
except for a limited set of wakeup devices.

Once the snapshot image has been written out, the system may either enter a
special low-power state (like ACPI S4), or it may simply power down itself.
Powering down means minimum power draw and it allows this mechanism to work on
any system. However, entering a special low-power state may allow additional
means of system wakeup to be used (e.g. pressing a key on the keyboard or
opening a laptop lid).

After wakeup, control goes to the platform firmware that runs a boot loader
which boots a fresh instance of the kernel (control may also go directly to
the boot loader, depending on the system configuration, but anyway it causes
a fresh instance of the kernel to be booted). That new instance of the kernel
(referred to as the restore kernel) looks for a hibernation image in
persistent storage and if one is found, it is loaded into memory. Next, all
activity in the system is stopped and the restore kernel overwrites itself with
the image contents and jumps into a special trampoline area in the original
kernel stored in the image (referred to as the image kernel), which is where
the special architecture-specific low-level code is needed. Finally, the
image kernel restores the system to the pre-hibernation state and allows user
space to run again.

Hibernation is supported if the CONFIG_HIBERNATION kernel
configuration option is set. However, this option can only be set if support
for the given CPU architecture includes the low-level code for system resume.

Basic sysfs Interfaces for System Suspend and Hibernation

The following files located in the /sys/power/ directory can be used by
user space for sleep states control.

	state

	This file contains a list of strings representing sleep states supported
by the kernel. Writing one of these strings into it causes the kernel
to start a transition of the system into the sleep state represented by
that string.

In particular, the strings “disk”, “freeze” and “standby” represent the
hibernation, suspend-to-idle and
standby sleep states, respectively. The string “mem”
is interpreted in accordance with the contents of the mem_sleep file
described below.

If the kernel does not support any system sleep states, this file is
not present.

	mem_sleep

	This file contains a list of strings representing supported system
suspend variants and allows user space to select the variant to be
associated with the “mem” string in the state file described above.

The strings that may be present in this file are “s2idle”, “shallow”
and “deep”. The string “s2idle” always represents suspend-to-idle and, by convention, “shallow” and “deep” represent
standby and suspend-to-RAM,
respectively.

Writing one of the listed strings into this file causes the system
suspend variant represented by it to be associated with the “mem” string
in the state file. The string representing the suspend variant
currently associated with the “mem” string in the state file
is listed in square brackets.

If the kernel does not support system suspend, this file is not present.

	disk

	This file contains a list of strings representing different operations
that can be carried out after the hibernation image has been saved. The
possible options are as follows:

	platform

	Put the system into a special low-power state (e.g. ACPI S4) to
make additional wakeup options available and possibly allow the
platform firmware to take a simplified initialization path after
wakeup.

	shutdown

	Power off the system.

	reboot

	Reboot the system (useful for diagnostics mostly).

	suspend

	Hybrid system suspend. Put the system into the suspend sleep
state selected through the mem_sleep file described above.
If the system is successfully woken up from that state, discard
the hibernation image and continue. Otherwise, use the image
to restore the previous state of the system.

	test_resume

	Diagnostic operation. Load the image as though the system had
just woken up from hibernation and the currently running kernel
instance was a restore kernel and follow up with full system
resume.

Writing one of the listed strings into this file causes the option
represented by it to be selected.

The currently selected option is shown in square brackets which means
that the operation represented by it will be carried out after creating
and saving the image next time hibernation is triggered by writing
disk to /sys/power/state.

If the kernel does not support hibernation, this file is not present.

According to the above, there are two ways to make the system go into the
suspend-to-idle state. The first one is to write “freeze”
directly to /sys/power/state. The second one is to write “s2idle” to
/sys/power/mem_sleep and then to write “mem” to
/sys/power/state. Likewise, there are two ways to make the system go
into the standby state (the strings to write to the control
files in that case are “standby” or “shallow” and “mem”, respectively) if that
state is supported by the platform. However, there is only one way to make the
system go into the suspend-to-RAM state (write “deep” into
/sys/power/mem_sleep and “mem” into /sys/power/state).

The default suspend variant (ie. the one to be used without writing anything
into /sys/power/mem_sleep) is either “deep” (on the majority of systems
supporting suspend-to-RAM) or “s2idle”, but it can be overridden
by the value of the “mem_sleep_default” parameter in the kernel command line.
On some ACPI-based systems, depending on the information in the ACPI tables, the
default may be “s2idle” even if suspend-to-RAM is supported.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Power Management »

Working-State Power Management

	CPU Performance Scaling
	The Concept of CPU Performance Scaling

	CPU Performance Scaling in Linux

	CPUFreq Policy Objects

	CPU Initialization

	Policy Interface in sysfs

	Generic Scaling Governors

	Frequency Boost Support

	intel_pstate CPU Performance Scaling Driver
	General Information

	Operation Modes

	Turbo P-states Support

	Processor Support

	User Space Interface in sysfs

	intel_pstate vs acpi-cpufreq

	Kernel Command Line Options for intel_pstate

	Diagnostics and Tuning

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Power Management »

 	Working-State Power Management »

CPU Performance Scaling

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

The Concept of CPU Performance Scaling

The majority of modern processors are capable of operating in a number of
different clock frequency and voltage configurations, often referred to as
Operating Performance Points or P-states (in ACPI terminology). As a rule,
the higher the clock frequency and the higher the voltage, the more instructions
can be retired by the CPU over a unit of time, but also the higher the clock
frequency and the higher the voltage, the more energy is consumed over a unit of
time (or the more power is drawn) by the CPU in the given P-state. Therefore
there is a natural tradeoff between the CPU capacity (the number of instructions
that can be executed over a unit of time) and the power drawn by the CPU.

In some situations it is desirable or even necessary to run the program as fast
as possible and then there is no reason to use any P-states different from the
highest one (i.e. the highest-performance frequency/voltage configuration
available). In some other cases, however, it may not be necessary to execute
instructions so quickly and maintaining the highest available CPU capacity for a
relatively long time without utilizing it entirely may be regarded as wasteful.
It also may not be physically possible to maintain maximum CPU capacity for too
long for thermal or power supply capacity reasons or similar. To cover those
cases, there are hardware interfaces allowing CPUs to be switched between
different frequency/voltage configurations or (in the ACPI terminology) to be
put into different P-states.

Typically, they are used along with algorithms to estimate the required CPU
capacity, so as to decide which P-states to put the CPUs into. Of course, since
the utilization of the system generally changes over time, that has to be done
repeatedly on a regular basis. The activity by which this happens is referred
to as CPU performance scaling or CPU frequency scaling (because it involves
adjusting the CPU clock frequency).

CPU Performance Scaling in Linux

The Linux kernel supports CPU performance scaling by means of the CPUFreq
(CPU Frequency scaling) subsystem that consists of three layers of code: the
core, scaling governors and scaling drivers.

The CPUFreq core provides the common code infrastructure and user space
interfaces for all platforms that support CPU performance scaling. It defines
the basic framework in which the other components operate.

Scaling governors implement algorithms to estimate the required CPU capacity.
As a rule, each governor implements one, possibly parametrized, scaling
algorithm.

Scaling drivers talk to the hardware. They provide scaling governors with
information on the available P-states (or P-state ranges in some cases) and
access platform-specific hardware interfaces to change CPU P-states as requested
by scaling governors.

In principle, all available scaling governors can be used with every scaling
driver. That design is based on the observation that the information used by
performance scaling algorithms for P-state selection can be represented in a
platform-independent form in the majority of cases, so it should be possible
to use the same performance scaling algorithm implemented in exactly the same
way regardless of which scaling driver is used. Consequently, the same set of
scaling governors should be suitable for every supported platform.

However, that observation may not hold for performance scaling algorithms
based on information provided by the hardware itself, for example through
feedback registers, as that information is typically specific to the hardware
interface it comes from and may not be easily represented in an abstract,
platform-independent way. For this reason, CPUFreq allows scaling drivers
to bypass the governor layer and implement their own performance scaling
algorithms. That is done by the intel_pstate scaling driver.

CPUFreq Policy Objects

In some cases the hardware interface for P-state control is shared by multiple
CPUs. That is, for example, the same register (or set of registers) is used to
control the P-state of multiple CPUs at the same time and writing to it affects
all of those CPUs simultaneously.

Sets of CPUs sharing hardware P-state control interfaces are represented by
CPUFreq as struct cpufreq_policy objects. For consistency,
struct cpufreq_policy is also used when there is only one CPU in the given
set.

The CPUFreq core maintains a pointer to a struct cpufreq_policy object for
every CPU in the system, including CPUs that are currently offline. If multiple
CPUs share the same hardware P-state control interface, all of the pointers
corresponding to them point to the same struct cpufreq_policy object.

CPUFreq uses struct cpufreq_policy as its basic data type and the design
of its user space interface is based on the policy concept.

CPU Initialization

First of all, a scaling driver has to be registered for CPUFreq to work.
It is only possible to register one scaling driver at a time, so the scaling
driver is expected to be able to handle all CPUs in the system.

The scaling driver may be registered before or after CPU registration. If
CPUs are registered earlier, the driver core invokes the CPUFreq core to
take a note of all of the already registered CPUs during the registration of the
scaling driver. In turn, if any CPUs are registered after the registration of
the scaling driver, the CPUFreq core will be invoked to take note of them
at their registration time.

In any case, the CPUFreq core is invoked to take note of any logical CPU it
has not seen so far as soon as it is ready to handle that CPU. [Note that the
logical CPU may be a physical single-core processor, or a single core in a
multicore processor, or a hardware thread in a physical processor or processor
core. In what follows “CPU” always means “logical CPU” unless explicitly stated
otherwise and the word “processor” is used to refer to the physical part
possibly including multiple logical CPUs.]

Once invoked, the CPUFreq core checks if the policy pointer is already set
for the given CPU and if so, it skips the policy object creation. Otherwise,
a new policy object is created and initialized, which involves the creation of
a new policy directory in sysfs, and the policy pointer corresponding to
the given CPU is set to the new policy object’s address in memory.

Next, the scaling driver’s ->init() callback is invoked with the policy
pointer of the new CPU passed to it as the argument. That callback is expected
to initialize the performance scaling hardware interface for the given CPU (or,
more precisely, for the set of CPUs sharing the hardware interface it belongs
to, represented by its policy object) and, if the policy object it has been
called for is new, to set parameters of the policy, like the minimum and maximum
frequencies supported by the hardware, the table of available frequencies (if
the set of supported P-states is not a continuous range), and the mask of CPUs
that belong to the same policy (including both online and offline CPUs). That
mask is then used by the core to populate the policy pointers for all of the
CPUs in it.

The next major initialization step for a new policy object is to attach a
scaling governor to it (to begin with, that is the default scaling governor
determined by the kernel configuration, but it may be changed later
via sysfs). First, a pointer to the new policy object is passed to the
governor’s ->init() callback which is expected to initialize all of the
data structures necessary to handle the given policy and, possibly, to add
a governor sysfs interface to it. Next, the governor is started by
invoking its ->start() callback.

That callback is expected to register per-CPU utilization update callbacks for
all of the online CPUs belonging to the given policy with the CPU scheduler.
The utilization update callbacks will be invoked by the CPU scheduler on
important events, like task enqueue and dequeue, on every iteration of the
scheduler tick or generally whenever the CPU utilization may change (from the
scheduler’s perspective). They are expected to carry out computations needed
to determine the P-state to use for the given policy going forward and to
invoke the scaling driver to make changes to the hardware in accordance with
the P-state selection. The scaling driver may be invoked directly from
scheduler context or asynchronously, via a kernel thread or workqueue, depending
on the configuration and capabilities of the scaling driver and the governor.

Similar steps are taken for policy objects that are not new, but were “inactive”
previously, meaning that all of the CPUs belonging to them were offline. The
only practical difference in that case is that the CPUFreq core will attempt
to use the scaling governor previously used with the policy that became
“inactive” (and is re-initialized now) instead of the default governor.

In turn, if a previously offline CPU is being brought back online, but some
other CPUs sharing the policy object with it are online already, there is no
need to re-initialize the policy object at all. In that case, it only is
necessary to restart the scaling governor so that it can take the new online CPU
into account. That is achieved by invoking the governor’s ->stop and
->start() callbacks, in this order, for the entire policy.

As mentioned before, the intel_pstate scaling driver bypasses the scaling
governor layer of CPUFreq and provides its own P-state selection algorithms.
Consequently, if intel_pstate is used, scaling governors are not attached to
new policy objects. Instead, the driver’s ->setpolicy() callback is invoked
to register per-CPU utilization update callbacks for each policy. These
callbacks are invoked by the CPU scheduler in the same way as for scaling
governors, but in the intel_pstate case they both determine the P-state to
use and change the hardware configuration accordingly in one go from scheduler
context.

The policy objects created during CPU initialization and other data structures
associated with them are torn down when the scaling driver is unregistered
(which happens when the kernel module containing it is unloaded, for example) or
when the last CPU belonging to the given policy in unregistered.

Policy Interface in sysfs

During the initialization of the kernel, the CPUFreq core creates a
sysfs directory (kobject) called cpufreq under
/sys/devices/system/cpu/.

That directory contains a policyX subdirectory (where X represents an
integer number) for every policy object maintained by the CPUFreq core.
Each policyX directory is pointed to by cpufreq symbolic links
under /sys/devices/system/cpu/cpuY/ (where Y represents an integer
that may be different from the one represented by X) for all of the CPUs
associated with (or belonging to) the given policy. The policyX directories
in /sys/devices/system/cpu/cpufreq each contain policy-specific
attributes (files) to control CPUFreq behavior for the corresponding policy
objects (that is, for all of the CPUs associated with them).

Some of those attributes are generic. They are created by the CPUFreq core
and their behavior generally does not depend on what scaling driver is in use
and what scaling governor is attached to the given policy. Some scaling drivers
also add driver-specific attributes to the policy directories in sysfs to
control policy-specific aspects of driver behavior.

The generic attributes under /sys/devices/system/cpu/cpufreq/policyX/
are the following:

	affected_cpus

	List of online CPUs belonging to this policy (i.e. sharing the hardware
performance scaling interface represented by the policyX policy
object).

	bios_limit

	If the platform firmware (BIOS) tells the OS to apply an upper limit to
CPU frequencies, that limit will be reported through this attribute (if
present).

The existence of the limit may be a result of some (often unintentional)
BIOS settings, restrictions coming from a service processor or another
BIOS/HW-based mechanisms.

This does not cover ACPI thermal limitations which can be discovered
through a generic thermal driver.

This attribute is not present if the scaling driver in use does not
support it.

	cpuinfo_cur_freq

	Current frequency of the CPUs belonging to this policy as obtained from
the hardware (in KHz).

This is expected to be the frequency the hardware actually runs at.
If that frequency cannot be determined, this attribute should not
be present.

	cpuinfo_max_freq

	Maximum possible operating frequency the CPUs belonging to this policy
can run at (in kHz).

	cpuinfo_min_freq

	Minimum possible operating frequency the CPUs belonging to this policy
can run at (in kHz).

	cpuinfo_transition_latency

	The time it takes to switch the CPUs belonging to this policy from one
P-state to another, in nanoseconds.

If unknown or if known to be so high that the scaling driver does not
work with the ondemand governor, -1 (CPUFREQ_ETERNAL)
will be returned by reads from this attribute.

	related_cpus

	List of all (online and offline) CPUs belonging to this policy.

	scaling_available_governors

	List of CPUFreq scaling governors present in the kernel that can
be attached to this policy or (if the intel_pstate scaling driver is
in use) list of scaling algorithms provided by the driver that can be
applied to this policy.

[Note that some governors are modular and it may be necessary to load a
kernel module for the governor held by it to become available and be
listed by this attribute.]

	scaling_cur_freq

	Current frequency of all of the CPUs belonging to this policy (in kHz).

In the majority of cases, this is the frequency of the last P-state
requested by the scaling driver from the hardware using the scaling
interface provided by it, which may or may not reflect the frequency
the CPU is actually running at (due to hardware design and other
limitations).

Some architectures (e.g. x86) may attempt to provide information
more precisely reflecting the current CPU frequency through this
attribute, but that still may not be the exact current CPU frequency as
seen by the hardware at the moment.

	scaling_driver

	The scaling driver currently in use.

	scaling_governor

	The scaling governor currently attached to this policy or (if the
intel_pstate scaling driver is in use) the scaling algorithm
provided by the driver that is currently applied to this policy.

This attribute is read-write and writing to it will cause a new scaling
governor to be attached to this policy or a new scaling algorithm
provided by the scaling driver to be applied to it (in the
intel_pstate case), as indicated by the string written to this
attribute (which must be one of the names listed by the
scaling_available_governors attribute described above).

	scaling_max_freq

	Maximum frequency the CPUs belonging to this policy are allowed to be
running at (in kHz).

This attribute is read-write and writing a string representing an
integer to it will cause a new limit to be set (it must not be lower
than the value of the scaling_min_freq attribute).

	scaling_min_freq

	Minimum frequency the CPUs belonging to this policy are allowed to be
running at (in kHz).

This attribute is read-write and writing a string representing a
non-negative integer to it will cause a new limit to be set (it must not
be higher than the value of the scaling_max_freq attribute).

	scaling_setspeed

	This attribute is functional only if the userspace scaling governor
is attached to the given policy.

It returns the last frequency requested by the governor (in kHz) or can
be written to in order to set a new frequency for the policy.

Generic Scaling Governors

CPUFreq provides generic scaling governors that can be used with all
scaling drivers. As stated before, each of them implements a single, possibly
parametrized, performance scaling algorithm.

Scaling governors are attached to policy objects and different policy objects
can be handled by different scaling governors at the same time (although that
may lead to suboptimal results in some cases).

The scaling governor for a given policy object can be changed at any time with
the help of the scaling_governor policy attribute in sysfs.

Some governors expose sysfs attributes to control or fine-tune the scaling
algorithms implemented by them. Those attributes, referred to as governor
tunables, can be either global (system-wide) or per-policy, depending on the
scaling driver in use. If the driver requires governor tunables to be
per-policy, they are located in a subdirectory of each policy directory.
Otherwise, they are located in a subdirectory under
/sys/devices/system/cpu/cpufreq/. In either case the name of the
subdirectory containing the governor tunables is the name of the governor
providing them.

performance

When attached to a policy object, this governor causes the highest frequency,
within the scaling_max_freq policy limit, to be requested for that policy.

The request is made once at that time the governor for the policy is set to
performance and whenever the scaling_max_freq or scaling_min_freq
policy limits change after that.

powersave

When attached to a policy object, this governor causes the lowest frequency,
within the scaling_min_freq policy limit, to be requested for that policy.

The request is made once at that time the governor for the policy is set to
powersave and whenever the scaling_max_freq or scaling_min_freq
policy limits change after that.

userspace

This governor does not do anything by itself. Instead, it allows user space
to set the CPU frequency for the policy it is attached to by writing to the
scaling_setspeed attribute of that policy.

schedutil

This governor uses CPU utilization data available from the CPU scheduler. It
generally is regarded as a part of the CPU scheduler, so it can access the
scheduler’s internal data structures directly.

It runs entirely in scheduler context, although in some cases it may need to
invoke the scaling driver asynchronously when it decides that the CPU frequency
should be changed for a given policy (that depends on whether or not the driver
is capable of changing the CPU frequency from scheduler context).

The actions of this governor for a particular CPU depend on the scheduling class
invoking its utilization update callback for that CPU. If it is invoked by the
RT or deadline scheduling classes, the governor will increase the frequency to
the allowed maximum (that is, the scaling_max_freq policy limit). In turn,
if it is invoked by the CFS scheduling class, the governor will use the
Per-Entity Load Tracking (PELT) metric for the root control group of the
given CPU as the CPU utilization estimate (see the Per-entity load tracking [https://lwn.net/Articles/531853/]
LWN.net article for a description of the PELT mechanism). Then, the new
CPU frequency to apply is computed in accordance with the formula

f = 1.25 * f_0 * util / max

where util is the PELT number, max is the theoretical maximum of
util, and f_0 is either the maximum possible CPU frequency for the given
policy (if the PELT number is frequency-invariant), or the current CPU frequency
(otherwise).

This governor also employs a mechanism allowing it to temporarily bump up the
CPU frequency for tasks that have been waiting on I/O most recently, called
“IO-wait boosting”. That happens when the SCHED_CPUFREQ_IOWAIT flag
is passed by the scheduler to the governor callback which causes the frequency
to go up to the allowed maximum immediately and then draw back to the value
returned by the above formula over time.

This governor exposes only one tunable:

	rate_limit_us

	Minimum time (in microseconds) that has to pass between two consecutive
runs of governor computations (default: 1000 times the scaling driver’s
transition latency).

The purpose of this tunable is to reduce the scheduler context overhead
of the governor which might be excessive without it.

This governor generally is regarded as a replacement for the older ondemand
and conservative governors (described below), as it is simpler and more
tightly integrated with the CPU scheduler, its overhead in terms of CPU context
switches and similar is less significant, and it uses the scheduler’s own CPU
utilization metric, so in principle its decisions should not contradict the
decisions made by the other parts of the scheduler.

ondemand

This governor uses CPU load as a CPU frequency selection metric.

In order to estimate the current CPU load, it measures the time elapsed between
consecutive invocations of its worker routine and computes the fraction of that
time in which the given CPU was not idle. The ratio of the non-idle (active)
time to the total CPU time is taken as an estimate of the load.

If this governor is attached to a policy shared by multiple CPUs, the load is
estimated for all of them and the greatest result is taken as the load estimate
for the entire policy.

The worker routine of this governor has to run in process context, so it is
invoked asynchronously (via a workqueue) and CPU P-states are updated from
there if necessary. As a result, the scheduler context overhead from this
governor is minimum, but it causes additional CPU context switches to happen
relatively often and the CPU P-state updates triggered by it can be relatively
irregular. Also, it affects its own CPU load metric by running code that
reduces the CPU idle time (even though the CPU idle time is only reduced very
slightly by it).

It generally selects CPU frequencies proportional to the estimated load, so that
the value of the cpuinfo_max_freq policy attribute corresponds to the load of
1 (or 100%), and the value of the cpuinfo_min_freq policy attribute
corresponds to the load of 0, unless when the load exceeds a (configurable)
speedup threshold, in which case it will go straight for the highest frequency
it is allowed to use (the scaling_max_freq policy limit).

This governor exposes the following tunables:

	sampling_rate

	This is how often the governor’s worker routine should run, in
microseconds.

Typically, it is set to values of the order of 10000 (10 ms). Its
default value is equal to the value of cpuinfo_transition_latency
for each policy this governor is attached to (but since the unit here
is greater by 1000, this means that the time represented by
sampling_rate is 1000 times greater than the transition latency by
default).

If this tunable is per-policy, the following shell command sets the time
represented by it to be 750 times as high as the transition latency:

echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate

	up_threshold

	If the estimated CPU load is above this value (in percent), the governor
will set the frequency to the maximum value allowed for the policy.
Otherwise, the selected frequency will be proportional to the estimated
CPU load.

	ignore_nice_load

	If set to 1 (default 0), it will cause the CPU load estimation code to
treat the CPU time spent on executing tasks with “nice” levels greater
than 0 as CPU idle time.

This may be useful if there are tasks in the system that should not be
taken into account when deciding what frequency to run the CPUs at.
Then, to make that happen it is sufficient to increase the “nice” level
of those tasks above 0 and set this attribute to 1.

	sampling_down_factor

	Temporary multiplier, between 1 (default) and 100 inclusive, to apply to
the sampling_rate value if the CPU load goes above up_threshold.

This causes the next execution of the governor’s worker routine (after
setting the frequency to the allowed maximum) to be delayed, so the
frequency stays at the maximum level for a longer time.

Frequency fluctuations in some bursty workloads may be avoided this way
at the cost of additional energy spent on maintaining the maximum CPU
capacity.

	powersave_bias

	Reduction factor to apply to the original frequency target of the
governor (including the maximum value used when the up_threshold
value is exceeded by the estimated CPU load) or sensitivity threshold
for the AMD frequency sensitivity powersave bias driver
(drivers/cpufreq/amd_freq_sensitivity.c), between 0 and 1000
inclusive.

If the AMD frequency sensitivity powersave bias driver is not loaded,
the effective frequency to apply is given by

f * (1 - powersave_bias / 1000)

where f is the governor’s original frequency target. The default value
of this attribute is 0 in that case.

If the AMD frequency sensitivity powersave bias driver is loaded, the
value of this attribute is 400 by default and it is used in a different
way.

On Family 16h (and later) AMD processors there is a mechanism to get a
measured workload sensitivity, between 0 and 100% inclusive, from the
hardware. That value can be used to estimate how the performance of the
workload running on a CPU will change in response to frequency changes.

The performance of a workload with the sensitivity of 0 (memory-bound or
IO-bound) is not expected to increase at all as a result of increasing
the CPU frequency, whereas workloads with the sensitivity of 100%
(CPU-bound) are expected to perform much better if the CPU frequency is
increased.

If the workload sensitivity is less than the threshold represented by
the powersave_bias value, the sensitivity powersave bias driver
will cause the governor to select a frequency lower than its original
target, so as to avoid over-provisioning workloads that will not benefit
from running at higher CPU frequencies.

conservative

This governor uses CPU load as a CPU frequency selection metric.

It estimates the CPU load in the same way as the ondemand governor described
above, but the CPU frequency selection algorithm implemented by it is different.

Namely, it avoids changing the frequency significantly over short time intervals
which may not be suitable for systems with limited power supply capacity (e.g.
battery-powered). To achieve that, it changes the frequency in relatively
small steps, one step at a time, up or down - depending on whether or not a
(configurable) threshold has been exceeded by the estimated CPU load.

This governor exposes the following tunables:

	freq_step

	Frequency step in percent of the maximum frequency the governor is
allowed to set (the scaling_max_freq policy limit), between 0 and
100 (5 by default).

This is how much the frequency is allowed to change in one go. Setting
it to 0 will cause the default frequency step (5 percent) to be used
and setting it to 100 effectively causes the governor to periodically
switch the frequency between the scaling_min_freq and
scaling_max_freq policy limits.

	down_threshold

	Threshold value (in percent, 20 by default) used to determine the
frequency change direction.

If the estimated CPU load is greater than this value, the frequency will
go up (by freq_step). If the load is less than this value (and the
sampling_down_factor mechanism is not in effect), the frequency will
go down. Otherwise, the frequency will not be changed.

	sampling_down_factor

	Frequency decrease deferral factor, between 1 (default) and 10
inclusive.

It effectively causes the frequency to go down sampling_down_factor
times slower than it ramps up.

Frequency Boost Support

Background

Some processors support a mechanism to raise the operating frequency of some
cores in a multicore package temporarily (and above the sustainable frequency
threshold for the whole package) under certain conditions, for example if the
whole chip is not fully utilized and below its intended thermal or power budget.

Different names are used by different vendors to refer to this functionality.
For Intel processors it is referred to as “Turbo Boost”, AMD calls it
“Turbo-Core” or (in technical documentation) “Core Performance Boost” and so on.
As a rule, it also is implemented differently by different vendors. The simple
term “frequency boost” is used here for brevity to refer to all of those
implementations.

The frequency boost mechanism may be either hardware-based or software-based.
If it is hardware-based (e.g. on x86), the decision to trigger the boosting is
made by the hardware (although in general it requires the hardware to be put
into a special state in which it can control the CPU frequency within certain
limits). If it is software-based (e.g. on ARM), the scaling driver decides
whether or not to trigger boosting and when to do that.

The boost File in sysfs

This file is located under /sys/devices/system/cpu/cpufreq/ and controls
the “boost” setting for the whole system. It is not present if the underlying
scaling driver does not support the frequency boost mechanism (or supports it,
but provides a driver-specific interface for controlling it, like
intel_pstate).

If the value in this file is 1, the frequency boost mechanism is enabled. This
means that either the hardware can be put into states in which it is able to
trigger boosting (in the hardware-based case), or the software is allowed to
trigger boosting (in the software-based case). It does not mean that boosting
is actually in use at the moment on any CPUs in the system. It only means a
permission to use the frequency boost mechanism (which still may never be used
for other reasons).

If the value in this file is 0, the frequency boost mechanism is disabled and
cannot be used at all.

The only values that can be written to this file are 0 and 1.

Rationale for Boost Control Knob

The frequency boost mechanism is generally intended to help to achieve optimum
CPU performance on time scales below software resolution (e.g. below the
scheduler tick interval) and it is demonstrably suitable for many workloads, but
it may lead to problems in certain situations.

For this reason, many systems make it possible to disable the frequency boost
mechanism in the platform firmware (BIOS) setup, but that requires the system to
be restarted for the setting to be adjusted as desired, which may not be
practical at least in some cases. For example:

	Boosting means overclocking the processor, although under controlled
conditions. Generally, the processor’s energy consumption increases
as a result of increasing its frequency and voltage, even temporarily.
That may not be desirable on systems that switch to power sources of
limited capacity, such as batteries, so the ability to disable the boost
mechanism while the system is running may help there (but that depends on
the workload too).

	In some situations deterministic behavior is more important than
performance or energy consumption (or both) and the ability to disable
boosting while the system is running may be useful then.

	To examine the impact of the frequency boost mechanism itself, it is useful
to be able to run tests with and without boosting, preferably without
restarting the system in the meantime.

	Reproducible results are important when running benchmarks. Since
the boosting functionality depends on the load of the whole package,
single-thread performance may vary because of it which may lead to
unreproducible results sometimes. That can be avoided by disabling the
frequency boost mechanism before running benchmarks sensitive to that
issue.

Legacy AMD cpb Knob

The AMD powernow-k8 scaling driver supports a sysfs knob very similar to
the global boost one. It is used for disabling/enabling the “Core
Performance Boost” feature of some AMD processors.

If present, that knob is located in every CPUFreq policy directory in
sysfs (/sys/devices/system/cpu/cpufreq/policyX/) and is called
cpb, which indicates a more fine grained control interface. The actual
implementation, however, works on the system-wide basis and setting that knob
for one policy causes the same value of it to be set for all of the other
policies at the same time.

That knob is still supported on AMD processors that support its underlying
hardware feature, but it may be configured out of the kernel (via the
CONFIG_X86_ACPI_CPUFREQ_CPB configuration option) and the global
boost knob is present regardless. Thus it is always possible use the
boost knob instead of the cpb one which is highly recommended, as that
is more consistent with what all of the other systems do (and the cpb knob
may not be supported any more in the future).

The cpb knob is never present for any processors without the underlying
hardware feature (e.g. all Intel ones), even if the
CONFIG_X86_ACPI_CPUFREQ_CPB configuration option is set.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Power Management »

 	Working-State Power Management »

intel_pstate CPU Performance Scaling Driver

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

General Information

intel_pstate is a part of the
CPU performance scaling subsystem in the Linux kernel
(CPUFreq). It is a scaling driver for the Sandy Bridge and later
generations of Intel processors. Note, however, that some of those processors
may not be supported. [To understand intel_pstate it is necessary to know
how CPUFreq works in general, so this is the time to read CPU Performance Scaling if
you have not done that yet.]

For the processors supported by intel_pstate, the P-state concept is broader
than just an operating frequency or an operating performance point (see the
LinuxCon Europe 2015 presentation by Kristen Accardi [http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf] for more
information about that). For this reason, the representation of P-states used
by intel_pstate internally follows the hardware specification (for details
refer to Intel® 64 and IA-32 Architectures Software Developer’s Manual
Volume 3: System Programming Guide [http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html]). However, the CPUFreq core
uses frequencies for identifying operating performance points of CPUs and
frequencies are involved in the user space interface exposed by it, so
intel_pstate maps its internal representation of P-states to frequencies too
(fortunately, that mapping is unambiguous). At the same time, it would not be
practical for intel_pstate to supply the CPUFreq core with a table of
available frequencies due to the possible size of it, so the driver does not do
that. Some functionality of the core is limited by that.

Since the hardware P-state selection interface used by intel_pstate is
available at the logical CPU level, the driver always works with individual
CPUs. Consequently, if intel_pstate is in use, every CPUFreq policy
object corresponds to one logical CPU and CPUFreq policies are effectively
equivalent to CPUs. In particular, this means that they become “inactive” every
time the corresponding CPU is taken offline and need to be re-initialized when
it goes back online.

intel_pstate is not modular, so it cannot be unloaded, which means that the
only way to pass early-configuration-time parameters to it is via the kernel
command line. However, its configuration can be adjusted via sysfs to a
great extent. In some configurations it even is possible to unregister it via
sysfs which allows another CPUFreq scaling driver to be loaded and
registered (see below).

Operation Modes

intel_pstate can operate in three different modes: in the active mode with
or without hardware-managed P-states support and in the passive mode. Which of
them will be in effect depends on what kernel command line options are used and
on the capabilities of the processor.

Active Mode

This is the default operation mode of intel_pstate. If it works in this
mode, the scaling_driver policy attribute in sysfs for all CPUFreq
policies contains the string “intel_pstate”.

In this mode the driver bypasses the scaling governors layer of CPUFreq and
provides its own scaling algorithms for P-state selection. Those algorithms
can be applied to CPUFreq policies in the same way as generic scaling
governors (that is, through the scaling_governor policy attribute in
sysfs). [Note that different P-state selection algorithms may be chosen for
different policies, but that is not recommended.]

They are not generic scaling governors, but their names are the same as the
names of some of those governors. Moreover, confusingly enough, they generally
do not work in the same way as the generic governors they share the names with.
For example, the powersave P-state selection algorithm provided by
intel_pstate is not a counterpart of the generic powersave governor
(roughly, it corresponds to the schedutil and ondemand governors).

There are two P-state selection algorithms provided by intel_pstate in the
active mode: powersave and performance. The way they both operate
depends on whether or not the hardware-managed P-states (HWP) feature has been
enabled in the processor and possibly on the processor model.

Which of the P-state selection algorithms is used by default depends on the
CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE kernel configuration option.
Namely, if that option is set, the performance algorithm will be used by
default, and the other one will be used by default if it is not set.

Active Mode With HWP

If the processor supports the HWP feature, it will be enabled during the
processor initialization and cannot be disabled after that. It is possible
to avoid enabling it by passing the intel_pstate=no_hwp argument to the
kernel in the command line.

If the HWP feature has been enabled, intel_pstate relies on the processor to
select P-states by itself, but still it can give hints to the processor’s
internal P-state selection logic. What those hints are depends on which P-state
selection algorithm has been applied to the given policy (or to the CPU it
corresponds to).

Even though the P-state selection is carried out by the processor automatically,
intel_pstate registers utilization update callbacks with the CPU scheduler
in this mode. However, they are not used for running a P-state selection
algorithm, but for periodic updates of the current CPU frequency information to
be made available from the scaling_cur_freq policy attribute in sysfs.

HWP + performance

In this configuration intel_pstate will write 0 to the processor’s
Energy-Performance Preference (EPP) knob (if supported) or its
Energy-Performance Bias (EPB) knob (otherwise), which means that the processor’s
internal P-state selection logic is expected to focus entirely on performance.

This will override the EPP/EPB setting coming from the sysfs interface
(see Energy vs Performance Hints below).

Also, in this configuration the range of P-states available to the processor’s
internal P-state selection logic is always restricted to the upper boundary
(that is, the maximum P-state that the driver is allowed to use).

HWP + powersave

In this configuration intel_pstate will set the processor’s
Energy-Performance Preference (EPP) knob (if supported) or its
Energy-Performance Bias (EPB) knob (otherwise) to whatever value it was
previously set to via sysfs (or whatever default value it was
set to by the platform firmware). This usually causes the processor’s
internal P-state selection logic to be less performance-focused.

Active Mode Without HWP

This is the default operation mode for processors that do not support the HWP
feature. It also is used by default with the intel_pstate=no_hwp argument
in the kernel command line. However, in this mode intel_pstate may refuse
to work with the given processor if it does not recognize it. [Note that
intel_pstate will never refuse to work with any processor with the HWP
feature enabled.]

In this mode intel_pstate registers utilization update callbacks with the
CPU scheduler in order to run a P-state selection algorithm, either
powersave or performance, depending on the scaling_governor policy
setting in sysfs. The current CPU frequency information to be made
available from the scaling_cur_freq policy attribute in sysfs is
periodically updated by those utilization update callbacks too.

performance

Without HWP, this P-state selection algorithm is always the same regardless of
the processor model and platform configuration.

It selects the maximum P-state it is allowed to use, subject to limits set via
sysfs, every time the driver configuration for the given CPU is updated
(e.g. via sysfs).

This is the default P-state selection algorithm if the
CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE kernel configuration option
is set.

powersave

Without HWP, this P-state selection algorithm is similar to the algorithm
implemented by the generic schedutil scaling governor except that the
utilization metric used by it is based on numbers coming from feedback
registers of the CPU. It generally selects P-states proportional to the
current CPU utilization.

This algorithm is run by the driver’s utilization update callback for the
given CPU when it is invoked by the CPU scheduler, but not more often than
every 10 ms. Like in the performance case, the hardware configuration
is not touched if the new P-state turns out to be the same as the current
one.

This is the default P-state selection algorithm if the
CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE kernel configuration option
is not set.

Passive Mode

This mode is used if the intel_pstate=passive argument is passed to the
kernel in the command line (it implies the intel_pstate=no_hwp setting too).
Like in the active mode without HWP support, in this mode intel_pstate may
refuse to work with the given processor if it does not recognize it.

If the driver works in this mode, the scaling_driver policy attribute in
sysfs for all CPUFreq policies contains the string “intel_cpufreq”.
Then, the driver behaves like a regular CPUFreq scaling driver. That is,
it is invoked by generic scaling governors when necessary to talk to the
hardware in order to change the P-state of a CPU (in particular, the
schedutil governor can invoke it directly from scheduler context).

While in this mode, intel_pstate can be used with all of the (generic)
scaling governors listed by the scaling_available_governors policy attribute
in sysfs (and the P-state selection algorithms described above are not
used). Then, it is responsible for the configuration of policy objects
corresponding to CPUs and provides the CPUFreq core (and the scaling
governors attached to the policy objects) with accurate information on the
maximum and minimum operating frequencies supported by the hardware (including
the so-called “turbo” frequency ranges). In other words, in the passive mode
the entire range of available P-states is exposed by intel_pstate to the
CPUFreq core. However, in this mode the driver does not register
utilization update callbacks with the CPU scheduler and the scaling_cur_freq
information comes from the CPUFreq core (and is the last frequency selected
by the current scaling governor for the given policy).

Turbo P-states Support

In the majority of cases, the entire range of P-states available to
intel_pstate can be divided into two sub-ranges that correspond to
different types of processor behavior, above and below a boundary that
will be referred to as the “turbo threshold” in what follows.

The P-states above the turbo threshold are referred to as “turbo P-states” and
the whole sub-range of P-states they belong to is referred to as the “turbo
range”. These names are related to the Turbo Boost technology allowing a
multicore processor to opportunistically increase the P-state of one or more
cores if there is enough power to do that and if that is not going to cause the
thermal envelope of the processor package to be exceeded.

Specifically, if software sets the P-state of a CPU core within the turbo range
(that is, above the turbo threshold), the processor is permitted to take over
performance scaling control for that core and put it into turbo P-states of its
choice going forward. However, that permission is interpreted differently by
different processor generations. Namely, the Sandy Bridge generation of
processors will never use any P-states above the last one set by software for
the given core, even if it is within the turbo range, whereas all of the later
processor generations will take it as a license to use any P-states from the
turbo range, even above the one set by software. In other words, on those
processors setting any P-state from the turbo range will enable the processor
to put the given core into all turbo P-states up to and including the maximum
supported one as it sees fit.

One important property of turbo P-states is that they are not sustainable. More
precisely, there is no guarantee that any CPUs will be able to stay in any of
those states indefinitely, because the power distribution within the processor
package may change over time or the thermal envelope it was designed for might
be exceeded if a turbo P-state was used for too long.

In turn, the P-states below the turbo threshold generally are sustainable. In
fact, if one of them is set by software, the processor is not expected to change
it to a lower one unless in a thermal stress or a power limit violation
situation (a higher P-state may still be used if it is set for another CPU in
the same package at the same time, for example).

Some processors allow multiple cores to be in turbo P-states at the same time,
but the maximum P-state that can be set for them generally depends on the number
of cores running concurrently. The maximum turbo P-state that can be set for 3
cores at the same time usually is lower than the analogous maximum P-state for
2 cores, which in turn usually is lower than the maximum turbo P-state that can
be set for 1 core. The one-core maximum turbo P-state is thus the maximum
supported one overall.

The maximum supported turbo P-state, the turbo threshold (the maximum supported
non-turbo P-state) and the minimum supported P-state are specific to the
processor model and can be determined by reading the processor’s model-specific
registers (MSRs). Moreover, some processors support the Configurable TDP
(Thermal Design Power) feature and, when that feature is enabled, the turbo
threshold effectively becomes a configurable value that can be set by the
platform firmware.

Unlike _PSS objects in the ACPI tables, intel_pstate always exposes
the entire range of available P-states, including the whole turbo range, to the
CPUFreq core and (in the passive mode) to generic scaling governors. This
generally causes turbo P-states to be set more often when intel_pstate is
used relative to ACPI-based CPU performance scaling (see below
for more information).

Moreover, since intel_pstate always knows what the real turbo threshold is
(even if the Configurable TDP feature is enabled in the processor), its
no_turbo attribute in sysfs (described below) should
work as expected in all cases (that is, if set to disable turbo P-states, it
always should prevent intel_pstate from using them).

Processor Support

To handle a given processor intel_pstate requires a number of different
pieces of information on it to be known, including:

	The minimum supported P-state.

	The maximum supported non-turbo P-state.

	Whether or not turbo P-states are supported at all.

	The maximum supported one-core turbo P-state (if turbo P-states
are supported).

	The scaling formula to translate the driver’s internal representation
of P-states into frequencies and the other way around.

Generally, ways to obtain that information are specific to the processor model
or family. Although it often is possible to obtain all of it from the processor
itself (using model-specific registers), there are cases in which hardware
manuals need to be consulted to get to it too.

For this reason, there is a list of supported processors in intel_pstate and
the driver initialization will fail if the detected processor is not in that
list, unless it supports the HWP feature. [The interface to
obtain all of the information listed above is the same for all of the processors
supporting the HWP feature, which is why they all are supported by
intel_pstate.]

User Space Interface in sysfs

Global Attributes

intel_pstate exposes several global attributes (files) in sysfs to
control its functionality at the system level. They are located in the
/sys/devices/system/cpu/intel_pstate/ directory and affect all CPUs.

Some of them are not present if the intel_pstate=per_cpu_perf_limits
argument is passed to the kernel in the command line.

	max_perf_pct

	Maximum P-state the driver is allowed to set in percent of the
maximum supported performance level (the highest supported turbo
P-state).

This attribute will not be exposed if the
intel_pstate=per_cpu_perf_limits argument is present in the kernel
command line.

	min_perf_pct

	Minimum P-state the driver is allowed to set in percent of the
maximum supported performance level (the highest supported turbo
P-state).

This attribute will not be exposed if the
intel_pstate=per_cpu_perf_limits argument is present in the kernel
command line.

	num_pstates

	Number of P-states supported by the processor (between 0 and 255
inclusive) including both turbo and non-turbo P-states (see
Turbo P-states Support).

The value of this attribute is not affected by the no_turbo
setting described below.

This attribute is read-only.

	turbo_pct

	Ratio of the turbo range size to the size of the entire
range of supported P-states, in percent.

This attribute is read-only.

	no_turbo

	If set (equal to 1), the driver is not allowed to set any turbo P-states
(see Turbo P-states Support). If unset (equalt to 0, which is the
default), turbo P-states can be set by the driver.
[Note that intel_pstate does not support the general boost
attribute (supported by some other scaling drivers) which is replaced
by this one.]

This attrubute does not affect the maximum supported frequency value
supplied to the CPUFreq core and exposed via the policy interface,
but it affects the maximum possible value of per-policy P-state limits
(see Interpretation of Policy Attributes below for details).

	hwp_dynamic_boost

	This attribute is only present if intel_pstate works in the
active mode with the HWP feature enabled in
the processor. If set (equal to 1), it causes the minimum P-state limit
to be increased dynamically for a short time whenever a task previously
waiting on I/O is selected to run on a given logical CPU (the purpose
of this mechanism is to improve performance).

This setting has no effect on logical CPUs whose minimum P-state limit
is directly set to the highest non-turbo P-state or above it.

	status

	Operation mode of the driver: “active”, “passive” or “off”.

	“active”

	The driver is functional and in the active mode.

	“passive”

	The driver is functional and in the passive mode.

	“off”

	The driver is not functional (it is not registered as a scaling
driver with the CPUFreq core).

This attribute can be written to in order to change the driver’s
operation mode or to unregister it. The string written to it must be
one of the possible values of it and, if successful, the write will
cause the driver to switch over to the operation mode represented by
that string - or to be unregistered in the “off” case. [Actually,
switching over from the active mode to the passive mode or the other
way around causes the driver to be unregistered and registered again
with a different set of callbacks, so all of its settings (the global
as well as the per-policy ones) are then reset to their default
values, possibly depending on the target operation mode.]

That only is supported in some configurations, though (for example, if
the HWP feature is enabled in the processor,
the operation mode of the driver cannot be changed), and if it is not
supported in the current configuration, writes to this attribute will
fail with an appropriate error.

Interpretation of Policy Attributes

The interpretation of some CPUFreq policy attributes described in
CPU Performance Scaling is special with intel_pstate as the current scaling driver
and it generally depends on the driver’s operation mode.

First of all, the values of the cpuinfo_max_freq, cpuinfo_min_freq and
scaling_cur_freq attributes are produced by applying a processor-specific
multiplier to the internal P-state representation used by intel_pstate.
Also, the values of the scaling_max_freq and scaling_min_freq
attributes are capped by the frequency corresponding to the maximum P-state that
the driver is allowed to set.

If the no_turbo global attribute is set, the driver is
not allowed to use turbo P-states, so the maximum value of scaling_max_freq
and scaling_min_freq is limited to the maximum non-turbo P-state frequency.
Accordingly, setting no_turbo causes scaling_max_freq and
scaling_min_freq to go down to that value if they were above it before.
However, the old values of scaling_max_freq and scaling_min_freq will be
restored after unsetting no_turbo, unless these attributes have been written
to after no_turbo was set.

If no_turbo is not set, the maximum possible value of scaling_max_freq
and scaling_min_freq corresponds to the maximum supported turbo P-state,
which also is the value of cpuinfo_max_freq in either case.

Next, the following policy attributes have special meaning if
intel_pstate works in the active mode:

	scaling_available_governors

	List of P-state selection algorithms provided by intel_pstate.

	scaling_governor

	P-state selection algorithm provided by intel_pstate currently in
use with the given policy.

	scaling_cur_freq

	Frequency of the average P-state of the CPU represented by the given
policy for the time interval between the last two invocations of the
driver’s utilization update callback by the CPU scheduler for that CPU.

One more policy attribute is present if the HWP feature is enabled in the
processor:

	base_frequency

	Shows the base frequency of the CPU. Any frequency above this will be
in the turbo frequency range.

The meaning of these attributes in the passive mode is the
same as for other scaling drivers.

Additionally, the value of the scaling_driver attribute for intel_pstate
depends on the operation mode of the driver. Namely, it is either
“intel_pstate” (in the active mode) or “intel_cpufreq” (in the
passive mode).

Coordination of P-State Limits

intel_pstate allows P-state limits to be set in two ways: with the help of
the max_perf_pct and min_perf_pct global attributes or via the scaling_max_freq and scaling_min_freq
CPUFreq policy attributes. The coordination between those limits is based
on the following rules, regardless of the current operation mode of the driver:

	All CPUs are affected by the global limits (that is, none of them can be
requested to run faster than the global maximum and none of them can be
requested to run slower than the global minimum).

	Each individual CPU is affected by its own per-policy limits (that is, it
cannot be requested to run faster than its own per-policy maximum and it
cannot be requested to run slower than its own per-policy minimum).

	The global and per-policy limits can be set independently.

If the HWP feature is enabled in the processor, the
resulting effective values are written into its registers whenever the limits
change in order to request its internal P-state selection logic to always set
P-states within these limits. Otherwise, the limits are taken into account by
scaling governors (in the passive mode) and by the driver
every time before setting a new P-state for a CPU.

Additionally, if the intel_pstate=per_cpu_perf_limits command line argument
is passed to the kernel, max_perf_pct and min_perf_pct are not exposed
at all and the only way to set the limits is by using the policy attributes.

Energy vs Performance Hints

If intel_pstate works in the active mode with the HWP feature enabled in the processor, additional attributes are present
in every CPUFreq policy directory in sysfs. They are intended to allow
user space to help intel_pstate to adjust the processor’s internal P-state
selection logic by focusing it on performance or on energy-efficiency, or
somewhere between the two extremes:

	energy_performance_preference

	Current value of the energy vs performance hint for the given policy
(or the CPU represented by it).

The hint can be changed by writing to this attribute.

	energy_performance_available_preferences

	List of strings that can be written to the
energy_performance_preference attribute.

They represent different energy vs performance hints and should be
self-explanatory, except that default represents whatever hint
value was set by the platform firmware.

Strings written to the energy_performance_preference attribute are
internally translated to integer values written to the processor’s
Energy-Performance Preference (EPP) knob (if supported) or its
Energy-Performance Bias (EPB) knob.

[Note that tasks may by migrated from one CPU to another by the scheduler’s
load-balancing algorithm and if different energy vs performance hints are
set for those CPUs, that may lead to undesirable outcomes. To avoid such
issues it is better to set the same energy vs performance hint for all CPUs
or to pin every task potentially sensitive to them to a specific CPU.]

intel_pstate vs acpi-cpufreq

On the majority of systems supported by intel_pstate, the ACPI tables
provided by the platform firmware contain _PSS objects returning information
that can be used for CPU performance scaling (refer to the ACPI specification [http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf]
for details on the _PSS objects and the format of the information returned
by them).

The information returned by the ACPI _PSS objects is used by the
acpi-cpufreq scaling driver. On systems supported by intel_pstate
the acpi-cpufreq driver uses the same hardware CPU performance scaling
interface, but the set of P-states it can use is limited by the _PSS
output.

On those systems each _PSS object returns a list of P-states supported by
the corresponding CPU which basically is a subset of the P-states range that can
be used by intel_pstate on the same system, with one exception: the whole
turbo range is represented by one item in it (the topmost one). By
convention, the frequency returned by _PSS for that item is greater by 1 MHz
than the frequency of the highest non-turbo P-state listed by it, but the
corresponding P-state representation (following the hardware specification)
returned for it matches the maximum supported turbo P-state (or is the
special value 255 meaning essentially “go as high as you can get”).

The list of P-states returned by _PSS is reflected by the table of
available frequencies supplied by acpi-cpufreq to the CPUFreq core and
scaling governors and the minimum and maximum supported frequencies reported by
it come from that list as well. In particular, given the special representation
of the turbo range described above, this means that the maximum supported
frequency reported by acpi-cpufreq is higher by 1 MHz than the frequency
of the highest supported non-turbo P-state listed by _PSS which, of course,
affects decisions made by the scaling governors, except for powersave and
performance.

For example, if a given governor attempts to select a frequency proportional to
estimated CPU load and maps the load of 100% to the maximum supported frequency
(possibly multiplied by a constant), then it will tend to choose P-states below
the turbo threshold if acpi-cpufreq is used as the scaling driver, because
in that case the turbo range corresponds to a small fraction of the frequency
band it can use (1 MHz vs 1 GHz or more). In consequence, it will only go to
the turbo range for the highest loads and the other loads above 50% that might
benefit from running at turbo frequencies will be given non-turbo P-states
instead.

One more issue related to that may appear on systems supporting the
Configurable TDP feature allowing the platform firmware to set the
turbo threshold. Namely, if that is not coordinated with the lists of P-states
returned by _PSS properly, there may be more than one item corresponding to
a turbo P-state in those lists and there may be a problem with avoiding the
turbo range (if desirable or necessary). Usually, to avoid using turbo
P-states overall, acpi-cpufreq simply avoids using the topmost state listed
by _PSS, but that is not sufficient when there are other turbo P-states in
the list returned by it.

Apart from the above, acpi-cpufreq works like intel_pstate in the
passive mode, except that the number of P-states it can set
is limited to the ones listed by the ACPI _PSS objects.

Kernel Command Line Options for intel_pstate

Several kernel command line options can be used to pass early-configuration-time
parameters to intel_pstate in order to enforce specific behavior of it. All
of them have to be prepended with the intel_pstate= prefix.

	disable

	Do not register intel_pstate as the scaling driver even if the
processor is supported by it.

	passive

	Register intel_pstate in the passive mode to
start with.

This option implies the no_hwp one described below.

	force

	Register intel_pstate as the scaling driver instead of
acpi-cpufreq even if the latter is preferred on the given system.

This may prevent some platform features (such as thermal controls and
power capping) that rely on the availability of ACPI P-states
information from functioning as expected, so it should be used with
caution.

This option does not work with processors that are not supported by
intel_pstate and on platforms where the pcc-cpufreq scaling
driver is used instead of acpi-cpufreq.

	no_hwp

	Do not enable the hardware-managed P-states (HWP) feature even if it is supported by the processor.

	hwp_only

	Register intel_pstate as the scaling driver only if the
hardware-managed P-states (HWP) feature is
supported by the processor.

	support_acpi_ppc

	Take ACPI _PPC performance limits into account.

If the preferred power management profile in the FADT (Fixed ACPI
Description Table) is set to “Enterprise Server” or “Performance
Server”, the ACPI _PPC limits are taken into account by default
and this option has no effect.

	per_cpu_perf_limits

	Use per-logical-CPU P-State limits (see Coordination of P-state
Limits for details).

Diagnostics and Tuning

Trace Events

There are two static trace events that can be used for intel_pstate
diagnostics. One of them is the cpu_frequency trace event generally used
by CPUFreq, and the other one is the pstate_sample trace event specific
to intel_pstate. Both of them are triggered by intel_pstate only if
it works in the active mode.

The following sequence of shell commands can be used to enable them and see
their output (if the kernel is generally configured to support event tracing):

cd /sys/kernel/debug/tracing/
echo 1 > events/power/pstate_sample/enable
echo 1 > events/power/cpu_frequency/enable
cat trace
gnome-terminal--4510 [001] ..s. 1177.680733: pstate_sample: core_busy=107 scaled=94 from=26 to=26 mperf=1143818 aperf=1230607 tsc=29838618 freq=2474476
cat-5235 [002] ..s. 1177.681723: cpu_frequency: state=2900000 cpu_id=2

If intel_pstate works in the passive mode, the
cpu_frequency trace event will be triggered either by the schedutil
scaling governor (for the policies it is attached to), or by the CPUFreq
core (for the policies with other scaling governors).

ftrace

The ftrace interface can be used for low-level diagnostics of
intel_pstate. For example, to check how often the function to set a
P-state is called, the ftrace filter can be set to to
intel_pstate_set_pstate():

cd /sys/kernel/debug/tracing/
cat available_filter_functions | grep -i pstate
intel_pstate_set_pstate
intel_pstate_cpu_init
...
echo intel_pstate_set_pstate > set_ftrace_filter
echo function > current_tracer
cat trace | head -15
tracer: function
#
entries-in-buffer/entries-written: 80/80 #P:4
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU# |||| TIMESTAMP FUNCTION
| | | |||| | |
 Xorg-3129 [000] ..s. 2537.644844: intel_pstate_set_pstate <-intel_pstate_timer_func
 gnome-terminal--4510 [002] ..s. 2537.649844: intel_pstate_set_pstate <-intel_pstate_timer_func
 gnome-shell-3409 [001] ..s. 2537.650850: intel_pstate_set_pstate <-intel_pstate_timer_func
 <idle>-0 [000] ..s. 2537.654843: intel_pstate_set_pstate <-intel_pstate_timer_func

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Thunderbolt

The interface presented here is not meant for end users. Instead there
should be a userspace tool that handles all the low-level details, keeps
a database of the authorized devices and prompts users for new connections.

More details about the sysfs interface for Thunderbolt devices can be
found in Documentation/ABI/testing/sysfs-bus-thunderbolt.

Those users who just want to connect any device without any sort of
manual work can add following line to
/etc/udev/rules.d/99-local.rules:

ACTION=="add", SUBSYSTEM=="thunderbolt", ATTR{authorized}=="0", ATTR{authorized}="1"

This will authorize all devices automatically when they appear. However,
keep in mind that this bypasses the security levels and makes the system
vulnerable to DMA attacks.

Security levels and how to use them

Starting with Intel Falcon Ridge Thunderbolt controller there are 4
security levels available. Intel Titan Ridge added one more security level
(usbonly). The reason for these is the fact that the connected devices can
be DMA masters and thus read contents of the host memory without CPU and OS
knowing about it. There are ways to prevent this by setting up an IOMMU but
it is not always available for various reasons.

The security levels are as follows:

	none

	All devices are automatically connected by the firmware. No user
approval is needed. In BIOS settings this is typically called
Legacy mode.

	user

	User is asked whether the device is allowed to be connected.
Based on the device identification information available through
/sys/bus/thunderbolt/devices, the user then can make the decision.
In BIOS settings this is typically called Unique ID.

	secure

	User is asked whether the device is allowed to be connected. In
addition to UUID the device (if it supports secure connect) is sent
a challenge that should match the expected one based on a random key
written to the key sysfs attribute. In BIOS settings this is
typically called One time saved key.

	dponly

	The firmware automatically creates tunnels for Display Port and
USB. No PCIe tunneling is done. In BIOS settings this is
typically called Display Port Only.

	usbonly

	The firmware automatically creates tunnels for the USB controller and
Display Port in a dock. All PCIe links downstream of the dock are
removed.

The current security level can be read from
/sys/bus/thunderbolt/devices/domainX/security where domainX is
the Thunderbolt domain the host controller manages. There is typically
one domain per Thunderbolt host controller.

If the security level reads as user or secure the connected
device must be authorized by the user before PCIe tunnels are created
(e.g the PCIe device appears).

Each Thunderbolt device plugged in will appear in sysfs under
/sys/bus/thunderbolt/devices. The device directory carries
information that can be used to identify the particular device,
including its name and UUID.

Authorizing devices when security level is user or secure

When a device is plugged in it will appear in sysfs as follows:

/sys/bus/thunderbolt/devices/0-1/authorized - 0
/sys/bus/thunderbolt/devices/0-1/device - 0x8004
/sys/bus/thunderbolt/devices/0-1/device_name - Thunderbolt to FireWire Adapter
/sys/bus/thunderbolt/devices/0-1/vendor - 0x1
/sys/bus/thunderbolt/devices/0-1/vendor_name - Apple, Inc.
/sys/bus/thunderbolt/devices/0-1/unique_id - e0376f00-0300-0100-ffff-ffffffffffff

The authorized attribute reads 0 which means no PCIe tunnels are
created yet. The user can authorize the device by simply entering:

echo 1 > /sys/bus/thunderbolt/devices/0-1/authorized

This will create the PCIe tunnels and the device is now connected.

If the device supports secure connect, and the domain security level is
set to secure, it has an additional attribute key which can hold
a random 32-byte value used for authorization and challenging the device in
future connects:

/sys/bus/thunderbolt/devices/0-3/authorized - 0
/sys/bus/thunderbolt/devices/0-3/device - 0x305
/sys/bus/thunderbolt/devices/0-3/device_name - AKiTiO Thunder3 PCIe Box
/sys/bus/thunderbolt/devices/0-3/key -
/sys/bus/thunderbolt/devices/0-3/vendor - 0x41
/sys/bus/thunderbolt/devices/0-3/vendor_name - inXtron
/sys/bus/thunderbolt/devices/0-3/unique_id - dc010000-0000-8508-a22d-32ca6421cb16

Notice the key is empty by default.

If the user does not want to use secure connect they can just echo 1
to the authorized attribute and the PCIe tunnels will be created in
the same way as in the user security level.

If the user wants to use secure connect, the first time the device is
plugged a key needs to be created and sent to the device:

key=$(openssl rand -hex 32)
echo $key > /sys/bus/thunderbolt/devices/0-3/key
echo 1 > /sys/bus/thunderbolt/devices/0-3/authorized

Now the device is connected (PCIe tunnels are created) and in addition
the key is stored on the device NVM.

Next time the device is plugged in the user can verify (challenge) the
device using the same key:

echo $key > /sys/bus/thunderbolt/devices/0-3/key
echo 2 > /sys/bus/thunderbolt/devices/0-3/authorized

If the challenge the device returns back matches the one we expect based
on the key, the device is connected and the PCIe tunnels are created.
However, if the challenge fails no tunnels are created and error is
returned to the user.

If the user still wants to connect the device they can either approve
the device without a key or write a new key and write 1 to the
authorized file to get the new key stored on the device NVM.

Upgrading NVM on Thunderbolt device or host

Since most of the functionality is handled in firmware running on a
host controller or a device, it is important that the firmware can be
upgraded to the latest where possible bugs in it have been fixed.
Typically OEMs provide this firmware from their support site.

There is also a central site which has links where to download firmware
for some machines:

Thunderbolt Updates [https://thunderbolttechnology.net/updates]

Before you upgrade firmware on a device or host, please make sure it is a
suitable upgrade. Failing to do that may render the device (or host) in a
state where it cannot be used properly anymore without special tools!

Host NVM upgrade on Apple Macs is not supported.

Once the NVM image has been downloaded, you need to plug in a
Thunderbolt device so that the host controller appears. It does not
matter which device is connected (unless you are upgrading NVM on a
device - then you need to connect that particular device).

Note an OEM-specific method to power the controller up (“force power”) may
be available for your system in which case there is no need to plug in a
Thunderbolt device.

After that we can write the firmware to the non-active parts of the NVM
of the host or device. As an example here is how Intel NUC6i7KYK (Skull
Canyon) Thunderbolt controller NVM is upgraded:

dd if=KYK_TBT_FW_0018.bin of=/sys/bus/thunderbolt/devices/0-0/nvm_non_active0/nvmem

Once the operation completes we can trigger NVM authentication and
upgrade process as follows:

echo 1 > /sys/bus/thunderbolt/devices/0-0/nvm_authenticate

If no errors are returned, the host controller shortly disappears. Once
it comes back the driver notices it and initiates a full power cycle.
After a while the host controller appears again and this time it should
be fully functional.

We can verify that the new NVM firmware is active by running the following
commands:

cat /sys/bus/thunderbolt/devices/0-0/nvm_authenticate
0x0
cat /sys/bus/thunderbolt/devices/0-0/nvm_version
18.0

If nvm_authenticate contains anything other than 0x0 it is the error
code from the last authentication cycle, which means the authentication
of the NVM image failed.

Note names of the NVMem devices nvm_activeN and nvm_non_activeN
depend on the order they are registered in the NVMem subsystem. N in
the name is the identifier added by the NVMem subsystem.

Upgrading NVM when host controller is in safe mode

If the existing NVM is not properly authenticated (or is missing) the
host controller goes into safe mode which means that the only available
functionality is flashing a new NVM image. When in this mode, reading
nvm_version fails with ENODATA and the device identification
information is missing.

To recover from this mode, one needs to flash a valid NVM image to the
host controller in the same way it is done in the previous chapter.

Networking over Thunderbolt cable

Thunderbolt technology allows software communication between two hosts
connected by a Thunderbolt cable.

It is possible to tunnel any kind of traffic over a Thunderbolt link but
currently we only support Apple ThunderboltIP protocol.

If the other host is running Windows or macOS, the only thing you need to
do is to connect a Thunderbolt cable between the two hosts; the
thunderbolt-net driver is loaded automatically. If the other host is
also Linux you should load thunderbolt-net manually on one host (it
does not matter which one):

modprobe thunderbolt-net

This triggers module load on the other host automatically. If the driver
is built-in to the kernel image, there is no need to do anything.

The driver will create one virtual ethernet interface per Thunderbolt
port which are named like thunderbolt0 and so on. From this point
you can either use standard userspace tools like ifconfig to
configure the interface or let your GUI handle it automatically.

Forcing power

Many OEMs include a method that can be used to force the power of a
Thunderbolt controller to an “On” state even if nothing is connected.
If supported by your machine this will be exposed by the WMI bus with
a sysfs attribute called “force_power”.

	For example the intel-wmi-thunderbolt driver exposes this attribute in:

	/sys/bus/wmi/devices/86CCFD48-205E-4A77-9C48-2021CBEDE341/force_power

To force the power to on, write 1 to this attribute file.
To disable force power, write 0 to this attribute file.

Note: it’s currently not possible to query the force power state of a platform.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Linux Security Module Usage

The Linux Security Module (LSM) framework provides a mechanism for
various security checks to be hooked by new kernel extensions. The name
“module” is a bit of a misnomer since these extensions are not actually
loadable kernel modules. Instead, they are selectable at build-time via
CONFIG_DEFAULT_SECURITY and can be overridden at boot-time via the
"security=..." kernel command line argument, in the case where multiple
LSMs were built into a given kernel.

The primary users of the LSM interface are Mandatory Access Control
(MAC) extensions which provide a comprehensive security policy. Examples
include SELinux, Smack, Tomoyo, and AppArmor. In addition to the larger
MAC extensions, other extensions can be built using the LSM to provide
specific changes to system operation when these tweaks are not available
in the core functionality of Linux itself.

Without a specific LSM built into the kernel, the default LSM will be the
Linux capabilities system. Most LSMs choose to extend the capabilities
system, building their checks on top of the defined capability hooks.
For more details on capabilities, see capabilities(7) in the Linux
man-pages project.

A list of the active security modules can be found by reading
/sys/kernel/security/lsm. This is a comma separated list, and
will always include the capability module. The list reflects the
order in which checks are made. The capability module will always
be first, followed by any “minor” modules (e.g. Yama) and then
the one “major” module (e.g. SELinux) if there is one configured.

	AppArmor

	LoadPin

	SELinux

	Smack

	TOMOYO

	Yama

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Linux Security Module Usage »

AppArmor

What is AppArmor?

AppArmor is MAC style security extension for the Linux kernel. It implements
a task centered policy, with task “profiles” being created and loaded
from user space. Tasks on the system that do not have a profile defined for
them run in an unconfined state which is equivalent to standard Linux DAC
permissions.

How to enable/disable

set CONFIG_SECURITY_APPARMOR=y

If AppArmor should be selected as the default security module then set:

CONFIG_DEFAULT_SECURITY="apparmor"
CONFIG_SECURITY_APPARMOR_BOOTPARAM_VALUE=1

Build the kernel

If AppArmor is not the default security module it can be enabled by passing
security=apparmor on the kernel’s command line.

If AppArmor is the default security module it can be disabled by passing
apparmor=0, security=XXXX (where XXXX is valid security module), on the
kernel’s command line.

For AppArmor to enforce any restrictions beyond standard Linux DAC permissions
policy must be loaded into the kernel from user space (see the Documentation
and tools links).

Documentation

Documentation can be found on the wiki, linked below.

Links

Mailing List - apparmor@lists.ubuntu.com

Wiki - http://wiki.apparmor.net

User space tools - https://gitlab.com/apparmor

Kernel module - git://git.kernel.org/pub/scm/linux/kernel/git/jj/linux-apparmor

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Linux Security Module Usage »

LoadPin

LoadPin is a Linux Security Module that ensures all kernel-loaded files
(modules, firmware, etc) all originate from the same filesystem, with
the expectation that such a filesystem is backed by a read-only device
such as dm-verity or CDROM. This allows systems that have a verified
and/or unchangeable filesystem to enforce module and firmware loading
restrictions without needing to sign the files individually.

The LSM is selectable at build-time with CONFIG_SECURITY_LOADPIN, and
can be controlled at boot-time with the kernel command line option
“loadpin.enabled”. By default, it is enabled, but can be disabled at
boot (“loadpin.enabled=0”).

LoadPin starts pinning when it sees the first file loaded. If the
block device backing the filesystem is not read-only, a sysctl is
created to toggle pinning: /proc/sys/kernel/loadpin/enabled. (Having
a mutable filesystem means pinning is mutable too, but having the
sysctl allows for easy testing on systems with a mutable filesystem.)

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Linux Security Module Usage »

SELinux

If you want to use SELinux, chances are you will want
to use the distro-provided policies, or install the
latest reference policy release from

http://oss.tresys.com/projects/refpolicy

However, if you want to install a dummy policy for
testing, you can do using mdp provided under
scripts/selinux. Note that this requires the selinux
userspace to be installed - in particular you will
need checkpolicy to compile a kernel, and setfiles and
fixfiles to label the filesystem.

	Compile the kernel with selinux enabled.

	Type make to compile mdp.

	Make sure that you are not running with
SELinux enabled and a real policy. If
you are, reboot with selinux disabled
before continuing.

	Run install_policy.sh:

cd scripts/selinux
sh install_policy.sh

Step 4 will create a new dummy policy valid for your
kernel, with a single selinux user, role, and type.
It will compile the policy, will set your SELINUXTYPE to
dummy in /etc/selinux/config, install the compiled policy
as dummy, and relabel your filesystem.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Linux Security Module Usage »

Smack

“Good for you, you’ve decided to clean the elevator!”
- The Elevator, from Dark Star

Smack is the Simplified Mandatory Access Control Kernel.
Smack is a kernel based implementation of mandatory access
control that includes simplicity in its primary design goals.

Smack is not the only Mandatory Access Control scheme
available for Linux. Those new to Mandatory Access Control
are encouraged to compare Smack with the other mechanisms
available to determine which is best suited to the problem
at hand.

Smack consists of three major components:

	The kernel

	Basic utilities, which are helpful but not required

	Configuration data

The kernel component of Smack is implemented as a Linux
Security Modules (LSM) module. It requires netlabel and
works best with file systems that support extended attributes,
although xattr support is not strictly required.
It is safe to run a Smack kernel under a “vanilla” distribution.

Smack kernels use the CIPSO IP option. Some network
configurations are intolerant of IP options and can impede
access to systems that use them as Smack does.

Smack is used in the Tizen operating system. Please
go to http://wiki.tizen.org for information about how
Smack is used in Tizen.

The current git repository for Smack user space is:

git://github.com/smack-team/smack.git

This should make and install on most modern distributions.
There are five commands included in smackutil:

	chsmack:

	display or set Smack extended attribute values

	smackctl:

	load the Smack access rules

	smackaccess:

	report if a process with one label has access
to an object with another

These two commands are obsolete with the introduction of
the smackfs/load2 and smackfs/cipso2 interfaces.

	smackload:

	properly formats data for writing to smackfs/load

	smackcipso:

	properly formats data for writing to smackfs/cipso

In keeping with the intent of Smack, configuration data is
minimal and not strictly required. The most important
configuration step is mounting the smackfs pseudo filesystem.
If smackutil is installed the startup script will take care
of this, but it can be manually as well.

Add this line to /etc/fstab:

smackfs /sys/fs/smackfs smackfs defaults 0 0

The /sys/fs/smackfs directory is created by the kernel.

Smack uses extended attributes (xattrs) to store labels on filesystem
objects. The attributes are stored in the extended attribute security
name space. A process must have CAP_MAC_ADMIN to change any of these
attributes.

The extended attributes that Smack uses are:

	SMACK64

	Used to make access control decisions. In almost all cases
the label given to a new filesystem object will be the label
of the process that created it.

	SMACK64EXEC

	The Smack label of a process that execs a program file with
this attribute set will run with this attribute’s value.

	SMACK64MMAP

	Don’t allow the file to be mmapped by a process whose Smack
label does not allow all of the access permitted to a process
with the label contained in this attribute. This is a very
specific use case for shared libraries.

	SMACK64TRANSMUTE

	Can only have the value “TRUE”. If this attribute is present
on a directory when an object is created in the directory and
the Smack rule (more below) that permitted the write access
to the directory includes the transmute (“t”) mode the object
gets the label of the directory instead of the label of the
creating process. If the object being created is a directory
the SMACK64TRANSMUTE attribute is set as well.

	SMACK64IPIN

	This attribute is only available on file descriptors for sockets.
Use the Smack label in this attribute for access control
decisions on packets being delivered to this socket.

	SMACK64IPOUT

	This attribute is only available on file descriptors for sockets.
Use the Smack label in this attribute for access control
decisions on packets coming from this socket.

There are multiple ways to set a Smack label on a file:

attr -S -s SMACK64 -V "value" path
chsmack -a value path

A process can see the Smack label it is running with by
reading /proc/self/attr/current. A process with CAP_MAC_ADMIN
can set the process Smack by writing there.

Most Smack configuration is accomplished by writing to files
in the smackfs filesystem. This pseudo-filesystem is mounted
on /sys/fs/smackfs.

	access

	Provided for backward compatibility. The access2 interface
is preferred and should be used instead.
This interface reports whether a subject with the specified
Smack label has a particular access to an object with a
specified Smack label. Write a fixed format access rule to
this file. The next read will indicate whether the access
would be permitted. The text will be either “1” indicating
access, or “0” indicating denial.

	access2

	This interface reports whether a subject with the specified
Smack label has a particular access to an object with a
specified Smack label. Write a long format access rule to
this file. The next read will indicate whether the access
would be permitted. The text will be either “1” indicating
access, or “0” indicating denial.

	ambient

	This contains the Smack label applied to unlabeled network
packets.

	change-rule

	This interface allows modification of existing access control rules.
The format accepted on write is:

"%s %s %s %s"

where the first string is the subject label, the second the
object label, the third the access to allow and the fourth the
access to deny. The access strings may contain only the characters
“rwxat-”. If a rule for a given subject and object exists it will be
modified by enabling the permissions in the third string and disabling
those in the fourth string. If there is no such rule it will be
created using the access specified in the third and the fourth strings.

	cipso

	Provided for backward compatibility. The cipso2 interface
is preferred and should be used instead.
This interface allows a specific CIPSO header to be assigned
to a Smack label. The format accepted on write is:

"%24s%4d%4d"["%4d"]...

The first string is a fixed Smack label. The first number is
the level to use. The second number is the number of categories.
The following numbers are the categories:

"level-3-cats-5-19 3 2 5 19"

	cipso2

	This interface allows a specific CIPSO header to be assigned
to a Smack label. The format accepted on write is:

"%s%4d%4d"["%4d"]...

The first string is a long Smack label. The first number is
the level to use. The second number is the number of categories.
The following numbers are the categories:

"level-3-cats-5-19 3 2 5 19"

	direct

	This contains the CIPSO level used for Smack direct label
representation in network packets.

	doi

	This contains the CIPSO domain of interpretation used in
network packets.

	ipv6host

	This interface allows specific IPv6 internet addresses to be
treated as single label hosts. Packets are sent to single
label hosts only from processes that have Smack write access
to the host label. All packets received from single label hosts
are given the specified label. The format accepted on write is:

"%h:%h:%h:%h:%h:%h:%h:%h label" or
"%h:%h:%h:%h:%h:%h:%h:%h/%d label".

The ”::” address shortcut is not supported.
If label is “-DELETE” a matched entry will be deleted.

	load

	Provided for backward compatibility. The load2 interface
is preferred and should be used instead.
This interface allows access control rules in addition to
the system defined rules to be specified. The format accepted
on write is:

"%24s%24s%5s"

where the first string is the subject label, the second the
object label, and the third the requested access. The access
string may contain only the characters “rwxat-”, and specifies
which sort of access is allowed. The “-” is a placeholder for
permissions that are not allowed. The string “r-x–” would
specify read and execute access. Labels are limited to 23
characters in length.

	load2

	This interface allows access control rules in addition to
the system defined rules to be specified. The format accepted
on write is:

"%s %s %s"

where the first string is the subject label, the second the
object label, and the third the requested access. The access
string may contain only the characters “rwxat-”, and specifies
which sort of access is allowed. The “-” is a placeholder for
permissions that are not allowed. The string “r-x–” would
specify read and execute access.

	load-self

	Provided for backward compatibility. The load-self2 interface
is preferred and should be used instead.
This interface allows process specific access rules to be
defined. These rules are only consulted if access would
otherwise be permitted, and are intended to provide additional
restrictions on the process. The format is the same as for
the load interface.

	load-self2

	This interface allows process specific access rules to be
defined. These rules are only consulted if access would
otherwise be permitted, and are intended to provide additional
restrictions on the process. The format is the same as for
the load2 interface.

	logging

	This contains the Smack logging state.

	mapped

	This contains the CIPSO level used for Smack mapped label
representation in network packets.

	netlabel

	This interface allows specific internet addresses to be
treated as single label hosts. Packets are sent to single
label hosts without CIPSO headers, but only from processes
that have Smack write access to the host label. All packets
received from single label hosts are given the specified
label. The format accepted on write is:

"%d.%d.%d.%d label" or "%d.%d.%d.%d/%d label".

If the label specified is “-CIPSO” the address is treated
as a host that supports CIPSO headers.

	onlycap

	This contains labels processes must have for CAP_MAC_ADMIN
and CAP_MAC_OVERRIDE to be effective. If this file is empty
these capabilities are effective at for processes with any
label. The values are set by writing the desired labels, separated
by spaces, to the file or cleared by writing “-” to the file.

	ptrace

	This is used to define the current ptrace policy

	0 - default:

	this is the policy that relies on Smack access rules.
For the PTRACE_READ a subject needs to have a read access on
object. For the PTRACE_ATTACH a read-write access is required.

	1 - exact:

	this is the policy that limits PTRACE_ATTACH. Attach is
only allowed when subject’s and object’s labels are equal.
PTRACE_READ is not affected. Can be overridden with CAP_SYS_PTRACE.

	2 - draconian:

	this policy behaves like the ‘exact’ above with an
exception that it can’t be overridden with CAP_SYS_PTRACE.

	revoke-subject

	Writing a Smack label here sets the access to ‘-‘ for all access
rules with that subject label.

	unconfined

	If the kernel is configured with CONFIG_SECURITY_SMACK_BRINGUP
a process with CAP_MAC_ADMIN can write a label into this interface.
Thereafter, accesses that involve that label will be logged and
the access permitted if it wouldn’t be otherwise. Note that this
is dangerous and can ruin the proper labeling of your system.
It should never be used in production.

	relabel-self

	This interface contains a list of labels to which the process can
transition to, by writing to /proc/self/attr/current.
Normally a process can change its own label to any legal value, but only
if it has CAP_MAC_ADMIN. This interface allows a process without
CAP_MAC_ADMIN to relabel itself to one of labels from predefined list.
A process without CAP_MAC_ADMIN can change its label only once. When it
does, this list will be cleared.
The values are set by writing the desired labels, separated
by spaces, to the file or cleared by writing “-” to the file.

If you are using the smackload utility
you can add access rules in /etc/smack/accesses. They take the form:

subjectlabel objectlabel access

access is a combination of the letters rwxatb which specify the
kind of access permitted a subject with subjectlabel on an
object with objectlabel. If there is no rule no access is allowed.

Look for additional programs on http://schaufler-ca.com

The Simplified Mandatory Access Control Kernel (Whitepaper)

Casey Schaufler
casey@schaufler-ca.com

Mandatory Access Control

Computer systems employ a variety of schemes to constrain how information is
shared among the people and services using the machine. Some of these schemes
allow the program or user to decide what other programs or users are allowed
access to pieces of data. These schemes are called discretionary access
control mechanisms because the access control is specified at the discretion
of the user. Other schemes do not leave the decision regarding what a user or
program can access up to users or programs. These schemes are called mandatory
access control mechanisms because you don’t have a choice regarding the users
or programs that have access to pieces of data.

Bell & LaPadula

From the middle of the 1980’s until the turn of the century Mandatory Access
Control (MAC) was very closely associated with the Bell & LaPadula security
model, a mathematical description of the United States Department of Defense
policy for marking paper documents. MAC in this form enjoyed a following
within the Capital Beltway and Scandinavian supercomputer centers but was
often sited as failing to address general needs.

Domain Type Enforcement

Around the turn of the century Domain Type Enforcement (DTE) became popular.
This scheme organizes users, programs, and data into domains that are
protected from each other. This scheme has been widely deployed as a component
of popular Linux distributions. The administrative overhead required to
maintain this scheme and the detailed understanding of the whole system
necessary to provide a secure domain mapping leads to the scheme being
disabled or used in limited ways in the majority of cases.

Smack

Smack is a Mandatory Access Control mechanism designed to provide useful MAC
while avoiding the pitfalls of its predecessors. The limitations of Bell &
LaPadula are addressed by providing a scheme whereby access can be controlled
according to the requirements of the system and its purpose rather than those
imposed by an arcane government policy. The complexity of Domain Type
Enforcement and avoided by defining access controls in terms of the access
modes already in use.

Smack Terminology

The jargon used to talk about Smack will be familiar to those who have dealt
with other MAC systems and shouldn’t be too difficult for the uninitiated to
pick up. There are four terms that are used in a specific way and that are
especially important:

	Subject:

	A subject is an active entity on the computer system.
On Smack a subject is a task, which is in turn the basic unit
of execution.

	Object:

	An object is a passive entity on the computer system.
On Smack files of all types, IPC, and tasks can be objects.

	Access:

	Any attempt by a subject to put information into or get
information from an object is an access.

	Label:

	Data that identifies the Mandatory Access Control
characteristics of a subject or an object.

These definitions are consistent with the traditional use in the security
community. There are also some terms from Linux that are likely to crop up:

	Capability:

	A task that possesses a capability has permission to
violate an aspect of the system security policy, as identified by
the specific capability. A task that possesses one or more
capabilities is a privileged task, whereas a task with no
capabilities is an unprivileged task.

	Privilege:

	A task that is allowed to violate the system security
policy is said to have privilege. As of this writing a task can
have privilege either by possessing capabilities or by having an
effective user of root.

Smack Basics

Smack is an extension to a Linux system. It enforces additional restrictions
on what subjects can access which objects, based on the labels attached to
each of the subject and the object.

Labels

Smack labels are ASCII character strings. They can be up to 255 characters
long, but keeping them to twenty-three characters is recommended.
Single character labels using special characters, that being anything
other than a letter or digit, are reserved for use by the Smack development
team. Smack labels are unstructured, case sensitive, and the only operation
ever performed on them is comparison for equality. Smack labels cannot
contain unprintable characters, the “/” (slash), the “” (backslash), the “’”
(quote) and ‘”’ (double-quote) characters.
Smack labels cannot begin with a ‘-‘. This is reserved for special options.

There are some predefined labels:

_ Pronounced "floor", a single underscore character.
^ Pronounced "hat", a single circumflex character.
* Pronounced "star", a single asterisk character.
? Pronounced "huh", a single question mark character.
@ Pronounced "web", a single at sign character.

Every task on a Smack system is assigned a label. The Smack label
of a process will usually be assigned by the system initialization
mechanism.

Access Rules

Smack uses the traditional access modes of Linux. These modes are read,
execute, write, and occasionally append. There are a few cases where the
access mode may not be obvious. These include:

	Signals:

	A signal is a write operation from the subject task to
the object task.

	Internet Domain IPC:

	Transmission of a packet is considered a
write operation from the source task to the destination task.

Smack restricts access based on the label attached to a subject and the label
attached to the object it is trying to access. The rules enforced are, in
order:

	Any access requested by a task labeled “*” is denied.

	A read or execute access requested by a task labeled “^”
is permitted.

	A read or execute access requested on an object labeled “_”
is permitted.

	Any access requested on an object labeled “*” is permitted.

	Any access requested by a task on an object with the same
label is permitted.

	Any access requested that is explicitly defined in the loaded
rule set is permitted.

	Any other access is denied.

Smack Access Rules

With the isolation provided by Smack access separation is simple. There are
many interesting cases where limited access by subjects to objects with
different labels is desired. One example is the familiar spy model of
sensitivity, where a scientist working on a highly classified project would be
able to read documents of lower classifications and anything she writes will
be “born” highly classified. To accommodate such schemes Smack includes a
mechanism for specifying rules allowing access between labels.

Access Rule Format

The format of an access rule is:

subject-label object-label access

Where subject-label is the Smack label of the task, object-label is the Smack
label of the thing being accessed, and access is a string specifying the sort
of access allowed. The access specification is searched for letters that
describe access modes:

a: indicates that append access should be granted.
r: indicates that read access should be granted.
w: indicates that write access should be granted.
x: indicates that execute access should be granted.
t: indicates that the rule requests transmutation.
b: indicates that the rule should be reported for bring-up.

Uppercase values for the specification letters are allowed as well.
Access mode specifications can be in any order. Examples of acceptable rules
are:

TopSecret Secret rx
Secret Unclass R
Manager Game x
User HR w
Snap Crackle rwxatb
New Old rRrRr
Closed Off -

Examples of unacceptable rules are:

Top Secret Secret rx
Ace Ace r
Odd spells waxbeans

Spaces are not allowed in labels. Since a subject always has access to files
with the same label specifying a rule for that case is pointless. Only
valid letters (rwxatbRWXATB) and the dash (‘-‘) character are allowed in
access specifications. The dash is a placeholder, so “a-r” is the same
as “ar”. A lone dash is used to specify that no access should be allowed.

Applying Access Rules

The developers of Linux rarely define new sorts of things, usually importing
schemes and concepts from other systems. Most often, the other systems are
variants of Unix. Unix has many endearing properties, but consistency of
access control models is not one of them. Smack strives to treat accesses as
uniformly as is sensible while keeping with the spirit of the underlying
mechanism.

File system objects including files, directories, named pipes, symbolic links,
and devices require access permissions that closely match those used by mode
bit access. To open a file for reading read access is required on the file. To
search a directory requires execute access. Creating a file with write access
requires both read and write access on the containing directory. Deleting a
file requires read and write access to the file and to the containing
directory. It is possible that a user may be able to see that a file exists
but not any of its attributes by the circumstance of having read access to the
containing directory but not to the differently labeled file. This is an
artifact of the file name being data in the directory, not a part of the file.

If a directory is marked as transmuting (SMACK64TRANSMUTE=TRUE) and the
access rule that allows a process to create an object in that directory
includes ‘t’ access the label assigned to the new object will be that
of the directory, not the creating process. This makes it much easier
for two processes with different labels to share data without granting
access to all of their files.

IPC objects, message queues, semaphore sets, and memory segments exist in flat
namespaces and access requests are only required to match the object in
question.

Process objects reflect tasks on the system and the Smack label used to access
them is the same Smack label that the task would use for its own access
attempts. Sending a signal via the kill() system call is a write operation
from the signaler to the recipient. Debugging a process requires both reading
and writing. Creating a new task is an internal operation that results in two
tasks with identical Smack labels and requires no access checks.

Sockets are data structures attached to processes and sending a packet from
one process to another requires that the sender have write access to the
receiver. The receiver is not required to have read access to the sender.

Setting Access Rules

The configuration file /etc/smack/accesses contains the rules to be set at
system startup. The contents are written to the special file
/sys/fs/smackfs/load2. Rules can be added at any time and take effect
immediately. For any pair of subject and object labels there can be only
one rule, with the most recently specified overriding any earlier
specification.

Task Attribute

The Smack label of a process can be read from /proc/<pid>/attr/current. A
process can read its own Smack label from /proc/self/attr/current. A
privileged process can change its own Smack label by writing to
/proc/self/attr/current but not the label of another process.

File Attribute

The Smack label of a filesystem object is stored as an extended attribute
named SMACK64 on the file. This attribute is in the security namespace. It can
only be changed by a process with privilege.

Privilege

A process with CAP_MAC_OVERRIDE or CAP_MAC_ADMIN is privileged.
CAP_MAC_OVERRIDE allows the process access to objects it would
be denied otherwise. CAP_MAC_ADMIN allows a process to change
Smack data, including rules and attributes.

Smack Networking

As mentioned before, Smack enforces access control on network protocol
transmissions. Every packet sent by a Smack process is tagged with its Smack
label. This is done by adding a CIPSO tag to the header of the IP packet. Each
packet received is expected to have a CIPSO tag that identifies the label and
if it lacks such a tag the network ambient label is assumed. Before the packet
is delivered a check is made to determine that a subject with the label on the
packet has write access to the receiving process and if that is not the case
the packet is dropped.

CIPSO Configuration

It is normally unnecessary to specify the CIPSO configuration. The default
values used by the system handle all internal cases. Smack will compose CIPSO
label values to match the Smack labels being used without administrative
intervention. Unlabeled packets that come into the system will be given the
ambient label.

Smack requires configuration in the case where packets from a system that is
not Smack that speaks CIPSO may be encountered. Usually this will be a Trusted
Solaris system, but there are other, less widely deployed systems out there.
CIPSO provides 3 important values, a Domain Of Interpretation (DOI), a level,
and a category set with each packet. The DOI is intended to identify a group
of systems that use compatible labeling schemes, and the DOI specified on the
Smack system must match that of the remote system or packets will be
discarded. The DOI is 3 by default. The value can be read from
/sys/fs/smackfs/doi and can be changed by writing to /sys/fs/smackfs/doi.

The label and category set are mapped to a Smack label as defined in
/etc/smack/cipso.

A Smack/CIPSO mapping has the form:

smack level [category [category]*]

Smack does not expect the level or category sets to be related in any
particular way and does not assume or assign accesses based on them. Some
examples of mappings:

TopSecret 7
TS:A,B 7 1 2
SecBDE 5 2 4 6
RAFTERS 7 12 26

The ”:” and ”,” characters are permitted in a Smack label but have no special
meaning.

The mapping of Smack labels to CIPSO values is defined by writing to
/sys/fs/smackfs/cipso2.

In addition to explicit mappings Smack supports direct CIPSO mappings. One
CIPSO level is used to indicate that the category set passed in the packet is
in fact an encoding of the Smack label. The level used is 250 by default. The
value can be read from /sys/fs/smackfs/direct and changed by writing to
/sys/fs/smackfs/direct.

Socket Attributes

There are two attributes that are associated with sockets. These attributes
can only be set by privileged tasks, but any task can read them for their own
sockets.

	SMACK64IPIN:

	The Smack label of the task object. A privileged
program that will enforce policy may set this to the star label.

	SMACK64IPOUT:

	The Smack label transmitted with outgoing packets.
A privileged program may set this to match the label of another
task with which it hopes to communicate.

Smack Netlabel Exceptions

You will often find that your labeled application has to talk to the outside,
unlabeled world. To do this there’s a special file /sys/fs/smackfs/netlabel
where you can add some exceptions in the form of:

@IP1 LABEL1 or
@IP2/MASK LABEL2

It means that your application will have unlabeled access to @IP1 if it has
write access on LABEL1, and access to the subnet @IP2/MASK if it has write
access on LABEL2.

Entries in the /sys/fs/smackfs/netlabel file are matched by longest mask
first, like in classless IPv4 routing.

A special label ‘@’ and an option ‘-CIPSO’ can be used there:

@ means Internet, any application with any label has access to it
-CIPSO means standard CIPSO networking

If you don’t know what CIPSO is and don’t plan to use it, you can just do:

echo 127.0.0.1 -CIPSO > /sys/fs/smackfs/netlabel
echo 0.0.0.0/0 @ > /sys/fs/smackfs/netlabel

If you use CIPSO on your 192.168.0.0/16 local network and need also unlabeled
Internet access, you can have:

echo 127.0.0.1 -CIPSO > /sys/fs/smackfs/netlabel
echo 192.168.0.0/16 -CIPSO > /sys/fs/smackfs/netlabel
echo 0.0.0.0/0 @ > /sys/fs/smackfs/netlabel

Writing Applications for Smack

There are three sorts of applications that will run on a Smack system. How an
application interacts with Smack will determine what it will have to do to
work properly under Smack.

Smack Ignorant Applications

By far the majority of applications have no reason whatever to care about the
unique properties of Smack. Since invoking a program has no impact on the
Smack label associated with the process the only concern likely to arise is
whether the process has execute access to the program.

Smack Relevant Applications

Some programs can be improved by teaching them about Smack, but do not make
any security decisions themselves. The utility ls(1) is one example of such a
program.

Smack Enforcing Applications

These are special programs that not only know about Smack, but participate in
the enforcement of system policy. In most cases these are the programs that
set up user sessions. There are also network services that provide information
to processes running with various labels.

File System Interfaces

Smack maintains labels on file system objects using extended attributes. The
Smack label of a file, directory, or other file system object can be obtained
using getxattr(2):

len = getxattr("/", "security.SMACK64", value, sizeof (value));

will put the Smack label of the root directory into value. A privileged
process can set the Smack label of a file system object with setxattr(2):

len = strlen("Rubble");
rc = setxattr("/foo", "security.SMACK64", "Rubble", len, 0);

will set the Smack label of /foo to “Rubble” if the program has appropriate
privilege.

Socket Interfaces

The socket attributes can be read using fgetxattr(2).

A privileged process can set the Smack label of outgoing packets with
fsetxattr(2):

len = strlen("Rubble");
rc = fsetxattr(fd, "security.SMACK64IPOUT", "Rubble", len, 0);

will set the Smack label “Rubble” on packets going out from the socket if the
program has appropriate privilege:

rc = fsetxattr(fd, "security.SMACK64IPIN, "*", strlen("*"), 0);

will set the Smack label “*” as the object label against which incoming
packets will be checked if the program has appropriate privilege.

Administration

Smack supports some mount options:

	smackfsdef=label:

	specifies the label to give files that lack
the Smack label extended attribute.

	smackfsroot=label:

	specifies the label to assign the root of the
file system if it lacks the Smack extended attribute.

	smackfshat=label:

	specifies a label that must have read access to
all labels set on the filesystem. Not yet enforced.

	smackfsfloor=label:

	specifies a label to which all labels set on the
filesystem must have read access. Not yet enforced.

These mount options apply to all file system types.

Smack auditing

If you want Smack auditing of security events, you need to set CONFIG_AUDIT
in your kernel configuration.
By default, all denied events will be audited. You can change this behavior by
writing a single character to the /sys/fs/smackfs/logging file:

0 : no logging
1 : log denied (default)
2 : log accepted
3 : log denied & accepted

Events are logged as ‘key=value’ pairs, for each event you at least will get
the subject, the object, the rights requested, the action, the kernel function
that triggered the event, plus other pairs depending on the type of event
audited.

Bringup Mode

Bringup mode provides logging features that can make application
configuration and system bringup easier. Configure the kernel with
CONFIG_SECURITY_SMACK_BRINGUP to enable these features. When bringup
mode is enabled accesses that succeed due to rules marked with the “b”
access mode will logged. When a new label is introduced for processes
rules can be added aggressively, marked with the “b”. The logging allows
tracking of which rules actual get used for that label.

Another feature of bringup mode is the “unconfined” option. Writing
a label to /sys/fs/smackfs/unconfined makes subjects with that label
able to access any object, and objects with that label accessible to
all subjects. Any access that is granted because a label is unconfined
is logged. This feature is dangerous, as files and directories may
be created in places they couldn’t if the policy were being enforced.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Linux Security Module Usage »

TOMOYO

What is TOMOYO?

TOMOYO is a name-based MAC extension (LSM module) for the Linux kernel.

LiveCD-based tutorials are available at

http://tomoyo.sourceforge.jp/1.8/ubuntu12.04-live.html
http://tomoyo.sourceforge.jp/1.8/centos6-live.html

Though these tutorials use non-LSM version of TOMOYO, they are useful for you
to know what TOMOYO is.

How to enable TOMOYO?

Build the kernel with CONFIG_SECURITY_TOMOYO=y and pass security=tomoyo on
kernel’s command line.

Please see http://tomoyo.osdn.jp/2.5/ for details.

Where is documentation?

User <-> Kernel interface documentation is available at
http://tomoyo.osdn.jp/2.5/policy-specification/index.html .

Materials we prepared for seminars and symposiums are available at
http://osdn.jp/projects/tomoyo/docs/?category_id=532&language_id=1 .
Below lists are chosen from three aspects.

	What is TOMOYO?

	
	TOMOYO Linux Overview

	http://osdn.jp/projects/tomoyo/docs/lca2009-takeda.pdf

	TOMOYO Linux: pragmatic and manageable security for Linux

	http://osdn.jp/projects/tomoyo/docs/freedomhectaipei-tomoyo.pdf

	TOMOYO Linux: A Practical Method to Understand and Protect Your Own Linux Box

	http://osdn.jp/projects/tomoyo/docs/PacSec2007-en-no-demo.pdf

	What can TOMOYO do?

	
	Deep inside TOMOYO Linux

	http://osdn.jp/projects/tomoyo/docs/lca2009-kumaneko.pdf

	The role of “pathname based access control” in security.

	http://osdn.jp/projects/tomoyo/docs/lfj2008-bof.pdf

	History of TOMOYO?

	
	Realities of Mainlining

	http://osdn.jp/projects/tomoyo/docs/lfj2008.pdf

What is future plan?

We believe that inode based security and name based security are complementary
and both should be used together. But unfortunately, so far, we cannot enable
multiple LSM modules at the same time. We feel sorry that you have to give up
SELinux/SMACK/AppArmor etc. when you want to use TOMOYO.

We hope that LSM becomes stackable in future. Meanwhile, you can use non-LSM
version of TOMOYO, available at http://tomoyo.osdn.jp/1.8/ .
LSM version of TOMOYO is a subset of non-LSM version of TOMOYO. We are planning
to port non-LSM version’s functionalities to LSM versions.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Linux Security Module Usage »

Yama

Yama is a Linux Security Module that collects system-wide DAC security
protections that are not handled by the core kernel itself. This is
selectable at build-time with CONFIG_SECURITY_YAMA, and can be controlled
at run-time through sysctls in /proc/sys/kernel/yama:

ptrace_scope

As Linux grows in popularity, it will become a larger target for
malware. One particularly troubling weakness of the Linux process
interfaces is that a single user is able to examine the memory and
running state of any of their processes. For example, if one application
(e.g. Pidgin) was compromised, it would be possible for an attacker to
attach to other running processes (e.g. Firefox, SSH sessions, GPG agent,
etc) to extract additional credentials and continue to expand the scope
of their attack without resorting to user-assisted phishing.

This is not a theoretical problem. SSH session hijacking
(http://www.storm.net.nz/projects/7) and arbitrary code injection
(http://c-skills.blogspot.com/2007/05/injectso.html) attacks already
exist and remain possible if ptrace is allowed to operate as before.
Since ptrace is not commonly used by non-developers and non-admins, system
builders should be allowed the option to disable this debugging system.

For a solution, some applications use prctl(PR_SET_DUMPABLE, ...) to
specifically disallow such ptrace attachment (e.g. ssh-agent), but many
do not. A more general solution is to only allow ptrace directly from a
parent to a child process (i.e. direct “gdb EXE” and “strace EXE” still
work), or with CAP_SYS_PTRACE (i.e. “gdb –pid=PID”, and “strace -p PID”
still work as root).

In mode 1, software that has defined application-specific relationships
between a debugging process and its inferior (crash handlers, etc),
prctl(PR_SET_PTRACER, pid, ...) can be used. An inferior can declare which
other process (and its descendants) are allowed to call PTRACE_ATTACH
against it. Only one such declared debugging process can exists for
each inferior at a time. For example, this is used by KDE, Chromium, and
Firefox’s crash handlers, and by Wine for allowing only Wine processes
to ptrace each other. If a process wishes to entirely disable these ptrace
restrictions, it can call prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY, ...)
so that any otherwise allowed process (even those in external pid namespaces)
may attach.

The sysctl settings (writable only with CAP_SYS_PTRACE) are:

	0 - classic ptrace permissions:

	a process can PTRACE_ATTACH to any other
process running under the same uid, as long as it is dumpable (i.e.
did not transition uids, start privileged, or have called
prctl(PR_SET_DUMPABLE...) already). Similarly, PTRACE_TRACEME is
unchanged.

	1 - restricted ptrace:

	a process must have a predefined relationship
with the inferior it wants to call PTRACE_ATTACH on. By default,
this relationship is that of only its descendants when the above
classic criteria is also met. To change the relationship, an
inferior can call prctl(PR_SET_PTRACER, debugger, ...) to declare
an allowed debugger PID to call PTRACE_ATTACH on the inferior.
Using PTRACE_TRACEME is unchanged.

	2 - admin-only attach:

	only processes with CAP_SYS_PTRACE may use ptrace, either with
PTRACE_ATTACH or through children calling PTRACE_TRACEME.

	3 - no attach:

	no processes may use ptrace with PTRACE_ATTACH nor via
PTRACE_TRACEME. Once set, this sysctl value cannot be changed.

The original children-only logic was based on the restrictions in grsecurity.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

Memory Management

Linux memory management subsystem is responsible, as the name implies,
for managing the memory in the system. This includes implemnetation of
virtual memory and demand paging, memory allocation both for kernel
internal structures and user space programms, mapping of files into
processes address space and many other cool things.

Linux memory management is a complex system with many configurable
settings. Most of these settings are available via /proc
filesystem and can be quired and adjusted using sysctl. These APIs
are described in Documentation/sysctl/vm.txt and in man 5 proc [http://man7.org/linux/man-pages/man5/proc.5.html].

Linux memory management has its own jargon and if you are not yet
familiar with it, consider reading
Documentation/admin-guide/mm/concepts.rst.

Here we document in detail how to interact with various mechanisms in
the Linux memory management.

	Concepts overview

	HugeTLB Pages

	Idle Page Tracking

	Kernel Samepage Merging

	Memory Hotplug

	NUMA Memory Policy

	Examining Process Page Tables

	Soft-Dirty PTEs

	Transparent Hugepage Support

	Userfaultfd

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Concepts overview

The memory management in Linux is complex system that evolved over the
years and included more and more functionality to support variety of
systems from MMU-less microcontrollers to supercomputers. The memory
management for systems without MMU is called nommu and it
definitely deserves a dedicated document, which hopefully will be
eventually written. Yet, although some of the concepts are the same,
here we assume that MMU is available and CPU can translate a virtual
address to a physical address.

	Virtual Memory Primer

	Huge Pages

	Zones

	Nodes

	Page cache

	Anonymous Memory

	Reclaim

	Compaction

	OOM killer

Virtual Memory Primer

The physical memory in a computer system is a limited resource and
even for systems that support memory hotplug there is a hard limit on
the amount of memory that can be installed. The physical memory is not
necessary contiguous, it might be accessible as a set of distinct
address ranges. Besides, different CPU architectures, and even
different implementations of the same architecture have different view
how these address ranges defined.

All this makes dealing directly with physical memory quite complex and
to avoid this complexity a concept of virtual memory was developed.

The virtual memory abstracts the details of physical memory from the
application software, allows to keep only needed information in the
physical memory (demand paging) and provides a mechanism for the
protection and controlled sharing of data between processes.

With virtual memory, each and every memory access uses a virtual
address. When the CPU decodes the an instruction that reads (or
writes) from (or to) the system memory, it translates the virtual
address encoded in that instruction to a physical address that the
memory controller can understand.

The physical system memory is divided into page frames, or pages. The
size of each page is architecture specific. Some architectures allow
selection of the page size from several supported values; this
selection is performed at the kernel build time by setting an
appropriate kernel configuration option.

Each physical memory page can be mapped as one or more virtual
pages. These mappings are described by page tables that allow
translation from virtual address used by programs to real address in
the physical memory. The page tables organized hierarchically.

The tables at the lowest level of the hierarchy contain physical
addresses of actual pages used by the software. The tables at higher
levels contain physical addresses of the pages belonging to the lower
levels. The pointer to the top level page table resides in a
register. When the CPU performs the address translation, it uses this
register to access the top level page table. The high bits of the
virtual address are used to index an entry in the top level page
table. That entry is then used to access the next level in the
hierarchy with the next bits of the virtual address as the index to
that level page table. The lowest bits in the virtual address define
the offset inside the actual page.

Huge Pages

The address translation requires several memory accesses and memory
accesses are slow relatively to CPU speed. To avoid spending precious
processor cycles on the address translation, CPUs maintain a cache of
such translations called Translation Lookaside Buffer (or
TLB). Usually TLB is pretty scarce resource and applications with
large memory working set will experience performance hit because of
TLB misses.

Many modern CPU architectures allow mapping of the memory pages
directly by the higher levels in the page table. For instance, on x86,
it is possible to map 2M and even 1G pages using entries in the second
and the third level page tables. In Linux such pages are called
huge. Usage of huge pages significantly reduces pressure on TLB,
improves TLB hit-rate and thus improves overall system performance.

There are two mechanisms in Linux that enable mapping of the physical
memory with the huge pages. The first one is HugeTLB filesystem, or
hugetlbfs. It is a pseudo filesystem that uses RAM as its backing
store. For the files created in this filesystem the data resides in
the memory and mapped using huge pages. The hugetlbfs is described at
Documentation/admin-guide/mm/hugetlbpage.rst.

Another, more recent, mechanism that enables use of the huge pages is
called Transparent HugePages, or THP. Unlike the hugetlbfs that
requires users and/or system administrators to configure what parts of
the system memory should and can be mapped by the huge pages, THP
manages such mappings transparently to the user and hence the
name. See
Documentation/admin-guide/mm/transhuge.rst
for more details about THP.

Zones

Often hardware poses restrictions on how different physical memory
ranges can be accessed. In some cases, devices cannot perform DMA to
all the addressable memory. In other cases, the size of the physical
memory exceeds the maximal addressable size of virtual memory and
special actions are required to access portions of the memory. Linux
groups memory pages into zones according to their possible
usage. For example, ZONE_DMA will contain memory that can be used by
devices for DMA, ZONE_HIGHMEM will contain memory that is not
permanently mapped into kernel’s address space and ZONE_NORMAL will
contain normally addressed pages.

The actual layout of the memory zones is hardware dependent as not all
architectures define all zones, and requirements for DMA are different
for different platforms.

Nodes

Many multi-processor machines are NUMA - Non-Uniform Memory Access -
systems. In such systems the memory is arranged into banks that have
different access latency depending on the “distance” from the
processor. Each bank is referred as node and for each node Linux
constructs an independent memory management subsystem. A node has it’s
own set of zones, lists of free and used pages and various statistics
counters. You can find more details about NUMA in
Documentation/vm/numa.rst and in
Documentation/admin-guide/mm/numa_memory_policy.rst.

Page cache

The physical memory is volatile and the common case for getting data
into the memory is to read it from files. Whenever a file is read, the
data is put into the page cache to avoid expensive disk access on
the subsequent reads. Similarly, when one writes to a file, the data
is placed in the page cache and eventually gets into the backing
storage device. The written pages are marked as dirty and when Linux
decides to reuse them for other purposes, it makes sure to synchronize
the file contents on the device with the updated data.

Anonymous Memory

The anonymous memory or anonymous mappings represent memory that
is not backed by a filesystem. Such mappings are implicitly created
for program’s stack and heap or by explicit calls to mmap(2) system
call. Usually, the anonymous mappings only define virtual memory areas
that the program is allowed to access. The read accesses will result
in creation of a page table entry that references a special physical
page filled with zeroes. When the program performs a write, regular
physical page will be allocated to hold the written data. The page
will be marked dirty and if the kernel will decide to repurpose it,
the dirty page will be swapped out.

Reclaim

Throughout the system lifetime, a physical page can be used for storing
different types of data. It can be kernel internal data structures,
DMA’able buffers for device drivers use, data read from a filesystem,
memory allocated by user space processes etc.

Depending on the page usage it is treated differently by the Linux
memory management. The pages that can be freed at any time, either
because they cache the data available elsewhere, for instance, on a
hard disk, or because they can be swapped out, again, to the hard
disk, are called reclaimable. The most notable categories of the
reclaimable pages are page cache and anonymous memory.

In most cases, the pages holding internal kernel data and used as DMA
buffers cannot be repurposed, and they remain pinned until freed by
their user. Such pages are called unreclaimable. However, in certain
circumstances, even pages occupied with kernel data structures can be
reclaimed. For instance, in-memory caches of filesystem metadata can
be re-read from the storage device and therefore it is possible to
discard them from the main memory when system is under memory
pressure.

The process of freeing the reclaimable physical memory pages and
repurposing them is called (surprise!) reclaim. Linux can reclaim
pages either asynchronously or synchronously, depending on the state
of the system. When system is not loaded, most of the memory is free
and allocation request will be satisfied immediately from the free
pages supply. As the load increases, the amount of the free pages goes
down and when it reaches a certain threshold (high watermark), an
allocation request will awaken the kswapd daemon. It will
asynchronously scan memory pages and either just free them if the data
they contain is available elsewhere, or evict to the backing storage
device (remember those dirty pages?). As memory usage increases even
more and reaches another threshold - min watermark - an allocation
will trigger the direct reclaim. In this case allocation is stalled
until enough memory pages are reclaimed to satisfy the request.

Compaction

As the system runs, tasks allocate and free the memory and it becomes
fragmented. Although with virtual memory it is possible to present
scattered physical pages as virtually contiguous range, sometimes it is
necessary to allocate large physically contiguous memory areas. Such
need may arise, for instance, when a device driver requires large
buffer for DMA, or when THP allocates a huge page. Memory compaction
addresses the fragmentation issue. This mechanism moves occupied pages
from the lower part of a memory zone to free pages in the upper part
of the zone. When a compaction scan is finished free pages are grouped
together at the beginning of the zone and allocations of large
physically contiguous areas become possible.

Like reclaim, the compaction may happen asynchronously in kcompactd
daemon or synchronously as a result of memory allocation request.

OOM killer

It may happen, that on a loaded machine memory will be exhausted. When
the kernel detects that the system runs out of memory (OOM) it invokes
OOM killer. Its mission is simple: all it has to do is to select a
task to sacrifice for the sake of the overall system health. The
selected task is killed in a hope that after it exits enough memory
will be freed to continue normal operation.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

HugeTLB Pages

Overview

The intent of this file is to give a brief summary of hugetlbpage support in
the Linux kernel. This support is built on top of multiple page size support
that is provided by most modern architectures. For example, x86 CPUs normally
support 4K and 2M (1G if architecturally supported) page sizes, ia64
architecture supports multiple page sizes 4K, 8K, 64K, 256K, 1M, 4M, 16M,
256M and ppc64 supports 4K and 16M. A TLB is a cache of virtual-to-physical
translations. Typically this is a very scarce resource on processor.
Operating systems try to make best use of limited number of TLB resources.
This optimization is more critical now as bigger and bigger physical memories
(several GBs) are more readily available.

Users can use the huge page support in Linux kernel by either using the mmap
system call or standard SYSV shared memory system calls (shmget, shmat).

First the Linux kernel needs to be built with the CONFIG_HUGETLBFS
(present under “File systems”) and CONFIG_HUGETLB_PAGE (selected
automatically when CONFIG_HUGETLBFS is selected) configuration
options.

The /proc/meminfo file provides information about the total number of
persistent hugetlb pages in the kernel’s huge page pool. It also displays
default huge page size and information about the number of free, reserved
and surplus huge pages in the pool of huge pages of default size.
The huge page size is needed for generating the proper alignment and
size of the arguments to system calls that map huge page regions.

The output of cat /proc/meminfo will include lines like:

HugePages_Total: uuu
HugePages_Free: vvv
HugePages_Rsvd: www
HugePages_Surp: xxx
Hugepagesize: yyy kB
Hugetlb: zzz kB

where:

	HugePages_Total

	is the size of the pool of huge pages.

	HugePages_Free

	is the number of huge pages in the pool that are not yet
allocated.

	HugePages_Rsvd

	is short for “reserved,” and is the number of huge pages for
which a commitment to allocate from the pool has been made,
but no allocation has yet been made. Reserved huge pages
guarantee that an application will be able to allocate a
huge page from the pool of huge pages at fault time.

	HugePages_Surp

	is short for “surplus,” and is the number of huge pages in
the pool above the value in /proc/sys/vm/nr_hugepages. The
maximum number of surplus huge pages is controlled by
/proc/sys/vm/nr_overcommit_hugepages.

	Hugepagesize

	is the default hugepage size (in Kb).

	Hugetlb

	is the total amount of memory (in kB), consumed by huge
pages of all sizes.
If huge pages of different sizes are in use, this number
will exceed HugePages_Total * Hugepagesize. To get more
detailed information, please, refer to
/sys/kernel/mm/hugepages (described below).

/proc/filesystems should also show a filesystem of type “hugetlbfs”
configured in the kernel.

/proc/sys/vm/nr_hugepages indicates the current number of “persistent” huge
pages in the kernel’s huge page pool. “Persistent” huge pages will be
returned to the huge page pool when freed by a task. A user with root
privileges can dynamically allocate more or free some persistent huge pages
by increasing or decreasing the value of nr_hugepages.

Pages that are used as huge pages are reserved inside the kernel and cannot
be used for other purposes. Huge pages cannot be swapped out under
memory pressure.

Once a number of huge pages have been pre-allocated to the kernel huge page
pool, a user with appropriate privilege can use either the mmap system call
or shared memory system calls to use the huge pages. See the discussion of
Using Huge Pages, below.

The administrator can allocate persistent huge pages on the kernel boot
command line by specifying the “hugepages=N” parameter, where ‘N’ = the
number of huge pages requested. This is the most reliable method of
allocating huge pages as memory has not yet become fragmented.

Some platforms support multiple huge page sizes. To allocate huge pages
of a specific size, one must precede the huge pages boot command parameters
with a huge page size selection parameter “hugepagesz=<size>”. <size> must
be specified in bytes with optional scale suffix [kKmMgG]. The default huge
page size may be selected with the “default_hugepagesz=<size>” boot parameter.

When multiple huge page sizes are supported, /proc/sys/vm/nr_hugepages
indicates the current number of pre-allocated huge pages of the default size.
Thus, one can use the following command to dynamically allocate/deallocate
default sized persistent huge pages:

echo 20 > /proc/sys/vm/nr_hugepages

This command will try to adjust the number of default sized huge pages in the
huge page pool to 20, allocating or freeing huge pages, as required.

On a NUMA platform, the kernel will attempt to distribute the huge page pool
over all the set of allowed nodes specified by the NUMA memory policy of the
task that modifies nr_hugepages. The default for the allowed nodes–when the
task has default memory policy–is all on-line nodes with memory. Allowed
nodes with insufficient available, contiguous memory for a huge page will be
silently skipped when allocating persistent huge pages. See the
discussion below
of the interaction of task memory policy, cpusets and per node attributes
with the allocation and freeing of persistent huge pages.

The success or failure of huge page allocation depends on the amount of
physically contiguous memory that is present in system at the time of the
allocation attempt. If the kernel is unable to allocate huge pages from
some nodes in a NUMA system, it will attempt to make up the difference by
allocating extra pages on other nodes with sufficient available contiguous
memory, if any.

System administrators may want to put this command in one of the local rc
init files. This will enable the kernel to allocate huge pages early in
the boot process when the possibility of getting physical contiguous pages
is still very high. Administrators can verify the number of huge pages
actually allocated by checking the sysctl or meminfo. To check the per node
distribution of huge pages in a NUMA system, use:

cat /sys/devices/system/node/node*/meminfo | fgrep Huge

/proc/sys/vm/nr_overcommit_hugepages specifies how large the pool of
huge pages can grow, if more huge pages than /proc/sys/vm/nr_hugepages are
requested by applications. Writing any non-zero value into this file
indicates that the hugetlb subsystem is allowed to try to obtain that
number of “surplus” huge pages from the kernel’s normal page pool, when the
persistent huge page pool is exhausted. As these surplus huge pages become
unused, they are freed back to the kernel’s normal page pool.

When increasing the huge page pool size via nr_hugepages, any existing
surplus pages will first be promoted to persistent huge pages. Then, additional
huge pages will be allocated, if necessary and if possible, to fulfill
the new persistent huge page pool size.

The administrator may shrink the pool of persistent huge pages for
the default huge page size by setting the nr_hugepages sysctl to a
smaller value. The kernel will attempt to balance the freeing of huge pages
across all nodes in the memory policy of the task modifying nr_hugepages.
Any free huge pages on the selected nodes will be freed back to the kernel’s
normal page pool.

Caveat: Shrinking the persistent huge page pool via nr_hugepages such that
it becomes less than the number of huge pages in use will convert the balance
of the in-use huge pages to surplus huge pages. This will occur even if
the number of surplus pages would exceed the overcommit value. As long as
this condition holds–that is, until nr_hugepages+nr_overcommit_hugepages is
increased sufficiently, or the surplus huge pages go out of use and are freed–
no more surplus huge pages will be allowed to be allocated.

With support for multiple huge page pools at run-time available, much of
the huge page userspace interface in /proc/sys/vm has been duplicated in
sysfs.
The /proc interfaces discussed above have been retained for backwards
compatibility. The root huge page control directory in sysfs is:

/sys/kernel/mm/hugepages

For each huge page size supported by the running kernel, a subdirectory
will exist, of the form:

hugepages-${size}kB

Inside each of these directories, the same set of files will exist:

nr_hugepages
nr_hugepages_mempolicy
nr_overcommit_hugepages
free_hugepages
resv_hugepages
surplus_hugepages

which function as described above for the default huge page-sized case.

Interaction of Task Memory Policy with Huge Page Allocation/Freeing

Whether huge pages are allocated and freed via the /proc interface or
the /sysfs interface using the nr_hugepages_mempolicy attribute, the
NUMA nodes from which huge pages are allocated or freed are controlled by the
NUMA memory policy of the task that modifies the nr_hugepages_mempolicy
sysctl or attribute. When the nr_hugepages attribute is used, mempolicy
is ignored.

The recommended method to allocate or free huge pages to/from the kernel
huge page pool, using the nr_hugepages example above, is:

numactl --interleave <node-list> echo 20 \
 >/proc/sys/vm/nr_hugepages_mempolicy

or, more succinctly:

numactl -m <node-list> echo 20 >/proc/sys/vm/nr_hugepages_mempolicy

This will allocate or free abs(20 - nr_hugepages) to or from the nodes
specified in <node-list>, depending on whether number of persistent huge pages
is initially less than or greater than 20, respectively. No huge pages will be
allocated nor freed on any node not included in the specified <node-list>.

When adjusting the persistent hugepage count via nr_hugepages_mempolicy, any
memory policy mode–bind, preferred, local or interleave–may be used. The
resulting effect on persistent huge page allocation is as follows:

	Regardless of mempolicy mode [see
Documentation/admin-guide/mm/numa_memory_policy.rst],
persistent huge pages will be distributed across the node or nodes
specified in the mempolicy as if “interleave” had been specified.
However, if a node in the policy does not contain sufficient contiguous
memory for a huge page, the allocation will not “fallback” to the nearest
neighbor node with sufficient contiguous memory. To do this would cause
undesirable imbalance in the distribution of the huge page pool, or
possibly, allocation of persistent huge pages on nodes not allowed by
the task’s memory policy.

	One or more nodes may be specified with the bind or interleave policy.
If more than one node is specified with the preferred policy, only the
lowest numeric id will be used. Local policy will select the node where
the task is running at the time the nodes_allowed mask is constructed.
For local policy to be deterministic, the task must be bound to a cpu or
cpus in a single node. Otherwise, the task could be migrated to some
other node at any time after launch and the resulting node will be
indeterminate. Thus, local policy is not very useful for this purpose.
Any of the other mempolicy modes may be used to specify a single node.

	The nodes allowed mask will be derived from any non-default task mempolicy,
whether this policy was set explicitly by the task itself or one of its
ancestors, such as numactl. This means that if the task is invoked from a
shell with non-default policy, that policy will be used. One can specify a
node list of “all” with numactl –interleave or –membind [-m] to achieve
interleaving over all nodes in the system or cpuset.

	Any task mempolicy specified–e.g., using numactl–will be constrained by
the resource limits of any cpuset in which the task runs. Thus, there will
be no way for a task with non-default policy running in a cpuset with a
subset of the system nodes to allocate huge pages outside the cpuset
without first moving to a cpuset that contains all of the desired nodes.

	Boot-time huge page allocation attempts to distribute the requested number
of huge pages over all on-lines nodes with memory.

Per Node Hugepages Attributes

A subset of the contents of the root huge page control directory in sysfs,
described above, will be replicated under each the system device of each
NUMA node with memory in:

/sys/devices/system/node/node[0-9]*/hugepages/

Under this directory, the subdirectory for each supported huge page size
contains the following attribute files:

nr_hugepages
free_hugepages
surplus_hugepages

The free_’ and surplus_’ attribute files are read-only. They return the number
of free and surplus [overcommitted] huge pages, respectively, on the parent
node.

The nr_hugepages attribute returns the total number of huge pages on the
specified node. When this attribute is written, the number of persistent huge
pages on the parent node will be adjusted to the specified value, if sufficient
resources exist, regardless of the task’s mempolicy or cpuset constraints.

Note that the number of overcommit and reserve pages remain global quantities,
as we don’t know until fault time, when the faulting task’s mempolicy is
applied, from which node the huge page allocation will be attempted.

Using Huge Pages

If the user applications are going to request huge pages using mmap system
call, then it is required that system administrator mount a file system of
type hugetlbfs:

mount -t hugetlbfs \
 -o uid=<value>,gid=<value>,mode=<value>,pagesize=<value>,size=<value>,\
 min_size=<value>,nr_inodes=<value> none /mnt/huge

This command mounts a (pseudo) filesystem of type hugetlbfs on the directory
/mnt/huge. Any file created on /mnt/huge uses huge pages.

The uid and gid options sets the owner and group of the root of the
file system. By default the uid and gid of the current process
are taken.

The mode option sets the mode of root of file system to value & 01777.
This value is given in octal. By default the value 0755 is picked.

If the platform supports multiple huge page sizes, the pagesize option can
be used to specify the huge page size and associated pool. pagesize
is specified in bytes. If pagesize is not specified the platform’s
default huge page size and associated pool will be used.

The size option sets the maximum value of memory (huge pages) allowed
for that filesystem (/mnt/huge). The size option can be specified
in bytes, or as a percentage of the specified huge page pool (nr_hugepages).
The size is rounded down to HPAGE_SIZE boundary.

The min_size option sets the minimum value of memory (huge pages) allowed
for the filesystem. min_size can be specified in the same way as size,
either bytes or a percentage of the huge page pool.
At mount time, the number of huge pages specified by min_size are reserved
for use by the filesystem.
If there are not enough free huge pages available, the mount will fail.
As huge pages are allocated to the filesystem and freed, the reserve count
is adjusted so that the sum of allocated and reserved huge pages is always
at least min_size.

The option nr_inodes sets the maximum number of inodes that /mnt/huge
can use.

If the size, min_size or nr_inodes option is not provided on
command line then no limits are set.

For pagesize, size, min_size and nr_inodes options, you can
use [G|g]/[M|m]/[K|k] to represent giga/mega/kilo.
For example, size=2K has the same meaning as size=2048.

While read system calls are supported on files that reside on hugetlb
file systems, write system calls are not.

Regular chown, chgrp, and chmod commands (with right permissions) could be
used to change the file attributes on hugetlbfs.

Also, it is important to note that no such mount command is required if
applications are going to use only shmat/shmget system calls or mmap with
MAP_HUGETLB. For an example of how to use mmap with MAP_HUGETLB see
map_hugetlb below.

Users who wish to use hugetlb memory via shared memory segment should be
members of a supplementary group and system admin needs to configure that gid
into /proc/sys/vm/hugetlb_shm_group. It is possible for same or different
applications to use any combination of mmaps and shm* calls, though the mount of
filesystem will be required for using mmap calls without MAP_HUGETLB.

Syscalls that operate on memory backed by hugetlb pages only have their lengths
aligned to the native page size of the processor; they will normally fail with
errno set to EINVAL or exclude hugetlb pages that extend beyond the length if
not hugepage aligned. For example, munmap(2) will fail if memory is backed by
a hugetlb page and the length is smaller than the hugepage size.

Examples

	map_hugetlb

	see tools/testing/selftests/vm/map_hugetlb.c

	hugepage-shm

	see tools/testing/selftests/vm/hugepage-shm.c

	hugepage-mmap

	see tools/testing/selftests/vm/hugepage-mmap.c

The libhugetlbfs [https://github.com/libhugetlbfs/libhugetlbfs] library provides a wide range of userspace tools
to help with huge page usability, environment setup, and control.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Idle Page Tracking

Motivation

The idle page tracking feature allows to track which memory pages are being
accessed by a workload and which are idle. This information can be useful for
estimating the workload’s working set size, which, in turn, can be taken into
account when configuring the workload parameters, setting memory cgroup limits,
or deciding where to place the workload within a compute cluster.

It is enabled by CONFIG_IDLE_PAGE_TRACKING=y.

User API

The idle page tracking API is located at /sys/kernel/mm/page_idle.
Currently, it consists of the only read-write file,
/sys/kernel/mm/page_idle/bitmap.

The file implements a bitmap where each bit corresponds to a memory page. The
bitmap is represented by an array of 8-byte integers, and the page at PFN #i is
mapped to bit #i%64 of array element #i/64, byte order is native. When a bit is
set, the corresponding page is idle.

A page is considered idle if it has not been accessed since it was marked idle
(for more details on what “accessed” actually means see the Implementation
Details section).
To mark a page idle one has to set the bit corresponding to
the page by writing to the file. A value written to the file is OR-ed with the
current bitmap value.

Only accesses to user memory pages are tracked. These are pages mapped to a
process address space, page cache and buffer pages, swap cache pages. For other
page types (e.g. SLAB pages) an attempt to mark a page idle is silently ignored,
and hence such pages are never reported idle.

For huge pages the idle flag is set only on the head page, so one has to read
/proc/kpageflags in order to correctly count idle huge pages.

Reading from or writing to /sys/kernel/mm/page_idle/bitmap will return
-EINVAL if you are not starting the read/write on an 8-byte boundary, or
if the size of the read/write is not a multiple of 8 bytes. Writing to
this file beyond max PFN will return -ENXIO.

That said, in order to estimate the amount of pages that are not used by a
workload one should:

	Mark all the workload’s pages as idle by setting corresponding bits in
/sys/kernel/mm/page_idle/bitmap. The pages can be found by reading
/proc/pid/pagemap if the workload is represented by a process, or by
filtering out alien pages using /proc/kpagecgroup in case the workload
is placed in a memory cgroup.

	Wait until the workload accesses its working set.

	Read /sys/kernel/mm/page_idle/bitmap and count the number of bits set.
If one wants to ignore certain types of pages, e.g. mlocked pages since they
are not reclaimable, he or she can filter them out using
/proc/kpageflags.

The page-types tool in the tools/vm directory can be used to assist in this.
If the tool is run initially with the appropriate option, it will mark all the
queried pages as idle. Subsequent runs of the tool can then show which pages have
their idle flag cleared in the interim.

See Documentation/admin-guide/mm/pagemap.rst for more
information about /proc/pid/pagemap, /proc/kpageflags, and
/proc/kpagecgroup.

Implementation Details

The kernel internally keeps track of accesses to user memory pages in order to
reclaim unreferenced pages first on memory shortage conditions. A page is
considered referenced if it has been recently accessed via a process address
space, in which case one or more PTEs it is mapped to will have the Accessed bit
set, or marked accessed explicitly by the kernel (see mark_page_accessed()). The
latter happens when:

	a userspace process reads or writes a page using a system call (e.g. read(2)
or write(2))

	a page that is used for storing filesystem buffers is read or written,
because a process needs filesystem metadata stored in it (e.g. lists a
directory tree)

	a page is accessed by a device driver using get_user_pages()

When a dirty page is written to swap or disk as a result of memory reclaim or
exceeding the dirty memory limit, it is not marked referenced.

The idle memory tracking feature adds a new page flag, the Idle flag. This flag
is set manually, by writing to /sys/kernel/mm/page_idle/bitmap (see the
User API
section), and cleared automatically whenever a page is referenced as defined
above.

When a page is marked idle, the Accessed bit must be cleared in all PTEs it is
mapped to, otherwise we will not be able to detect accesses to the page coming
from a process address space. To avoid interference with the reclaimer, which,
as noted above, uses the Accessed bit to promote actively referenced pages, one
more page flag is introduced, the Young flag. When the PTE Accessed bit is
cleared as a result of setting or updating a page’s Idle flag, the Young flag
is set on the page. The reclaimer treats the Young flag as an extra PTE
Accessed bit and therefore will consider such a page as referenced.

Since the idle memory tracking feature is based on the memory reclaimer logic,
it only works with pages that are on an LRU list, other pages are silently
ignored. That means it will ignore a user memory page if it is isolated, but
since there are usually not many of them, it should not affect the overall
result noticeably. In order not to stall scanning of the idle page bitmap,
locked pages may be skipped too.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Kernel Samepage Merging

Overview

KSM is a memory-saving de-duplication feature, enabled by CONFIG_KSM=y,
added to the Linux kernel in 2.6.32. See mm/ksm.c for its implementation,
and http://lwn.net/Articles/306704/ and http://lwn.net/Articles/330589/

KSM was originally developed for use with KVM (where it was known as
Kernel Shared Memory), to fit more virtual machines into physical memory,
by sharing the data common between them. But it can be useful to any
application which generates many instances of the same data.

The KSM daemon ksmd periodically scans those areas of user memory
which have been registered with it, looking for pages of identical
content which can be replaced by a single write-protected page (which
is automatically copied if a process later wants to update its
content). The amount of pages that KSM daemon scans in a single pass
and the time between the passes are configured using sysfs
intraface

KSM only merges anonymous (private) pages, never pagecache (file) pages.
KSM’s merged pages were originally locked into kernel memory, but can now
be swapped out just like other user pages (but sharing is broken when they
are swapped back in: ksmd must rediscover their identity and merge again).

Controlling KSM with madvise

KSM only operates on those areas of address space which an application
has advised to be likely candidates for merging, by using the madvise(2)
system call:

int madvise(addr, length, MADV_MERGEABLE)

The app may call

int madvise(addr, length, MADV_UNMERGEABLE)

to cancel that advice and restore unshared pages: whereupon KSM
unmerges whatever it merged in that range. Note: this unmerging call
may suddenly require more memory than is available - possibly failing
with EAGAIN, but more probably arousing the Out-Of-Memory killer.

If KSM is not configured into the running kernel, madvise MADV_MERGEABLE
and MADV_UNMERGEABLE simply fail with EINVAL. If the running kernel was
built with CONFIG_KSM=y, those calls will normally succeed: even if the
the KSM daemon is not currently running, MADV_MERGEABLE still registers
the range for whenever the KSM daemon is started; even if the range
cannot contain any pages which KSM could actually merge; even if
MADV_UNMERGEABLE is applied to a range which was never MADV_MERGEABLE.

If a region of memory must be split into at least one new MADV_MERGEABLE
or MADV_UNMERGEABLE region, the madvise may return ENOMEM if the process
will exceed vm.max_map_count (see Documentation/sysctl/vm.txt).

Like other madvise calls, they are intended for use on mapped areas of
the user address space: they will report ENOMEM if the specified range
includes unmapped gaps (though working on the intervening mapped areas),
and might fail with EAGAIN if not enough memory for internal structures.

Applications should be considerate in their use of MADV_MERGEABLE,
restricting its use to areas likely to benefit. KSM’s scans may use a lot
of processing power: some installations will disable KSM for that reason.

KSM daemon sysfs interface

The KSM daemon is controlled by sysfs files in /sys/kernel/mm/ksm/,
readable by all but writable only by root:

	pages_to_scan

	how many pages to scan before ksmd goes to sleep
e.g. echo 100 > /sys/kernel/mm/ksm/pages_to_scan.

Default: 100 (chosen for demonstration purposes)

	sleep_millisecs

	how many milliseconds ksmd should sleep before next scan
e.g. echo 20 > /sys/kernel/mm/ksm/sleep_millisecs

Default: 20 (chosen for demonstration purposes)

	merge_across_nodes

	specifies if pages from different NUMA nodes can be merged.
When set to 0, ksm merges only pages which physically reside
in the memory area of same NUMA node. That brings lower
latency to access of shared pages. Systems with more nodes, at
significant NUMA distances, are likely to benefit from the
lower latency of setting 0. Smaller systems, which need to
minimize memory usage, are likely to benefit from the greater
sharing of setting 1 (default). You may wish to compare how
your system performs under each setting, before deciding on
which to use. merge_across_nodes setting can be changed only
when there are no ksm shared pages in the system: set run 2 to
unmerge pages first, then to 1 after changing
merge_across_nodes, to remerge according to the new setting.

Default: 1 (merging across nodes as in earlier releases)

	run

	
	set to 0 to stop ksmd from running but keep merged pages,

	set to 1 to run ksmd e.g. echo 1 > /sys/kernel/mm/ksm/run,

	set to 2 to stop ksmd and unmerge all pages currently merged, but
leave mergeable areas registered for next run.

Default: 0 (must be changed to 1 to activate KSM, except if
CONFIG_SYSFS is disabled)

	use_zero_pages

	specifies whether empty pages (i.e. allocated pages that only
contain zeroes) should be treated specially. When set to 1,
empty pages are merged with the kernel zero page(s) instead of
with each other as it would happen normally. This can improve
the performance on architectures with coloured zero pages,
depending on the workload. Care should be taken when enabling
this setting, as it can potentially degrade the performance of
KSM for some workloads, for example if the checksums of pages
candidate for merging match the checksum of an empty
page. This setting can be changed at any time, it is only
effective for pages merged after the change.

Default: 0 (normal KSM behaviour as in earlier releases)

	max_page_sharing

	Maximum sharing allowed for each KSM page. This enforces a
deduplication limit to avoid high latency for virtual memory
operations that involve traversal of the virtual mappings that
share the KSM page. The minimum value is 2 as a newly created
KSM page will have at least two sharers. The higher this value
the faster KSM will merge the memory and the higher the
deduplication factor will be, but the slower the worst case
virtual mappings traversal could be for any given KSM
page. Slowing down this traversal means there will be higher
latency for certain virtual memory operations happening during
swapping, compaction, NUMA balancing and page migration, in
turn decreasing responsiveness for the caller of those virtual
memory operations. The scheduler latency of other tasks not
involved with the VM operations doing the virtual mappings
traversal is not affected by this parameter as these
traversals are always schedule friendly themselves.

	stable_node_chains_prune_millisecs

	specifies how frequently KSM checks the metadata of the pages
that hit the deduplication limit for stale information.
Smaller milllisecs values will free up the KSM metadata with
lower latency, but they will make ksmd use more CPU during the
scan. It’s a noop if not a single KSM page hit the
max_page_sharing yet.

The effectiveness of KSM and MADV_MERGEABLE is shown in /sys/kernel/mm/ksm/:

	pages_shared

	how many shared pages are being used

	pages_sharing

	how many more sites are sharing them i.e. how much saved

	pages_unshared

	how many pages unique but repeatedly checked for merging

	pages_volatile

	how many pages changing too fast to be placed in a tree

	full_scans

	how many times all mergeable areas have been scanned

	stable_node_chains

	the number of KSM pages that hit the max_page_sharing limit

	stable_node_dups

	number of duplicated KSM pages

A high ratio of pages_sharing to pages_shared indicates good
sharing, but a high ratio of pages_unshared to pages_sharing
indicates wasted effort. pages_volatile embraces several
different kinds of activity, but a high proportion there would also
indicate poor use of madvise MADV_MERGEABLE.

The maximum possible pages_sharing/pages_shared ratio is limited by the
max_page_sharing tunable. To increase the ratio max_page_sharing must
be increased accordingly.

–
Izik Eidus,
Hugh Dickins, 17 Nov 2009

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Memory Hotplug

	Created:	Jul 28 2007

	Updated:	Add some details about locking internals: Aug 20 2018

This document is about memory hotplug including how-to-use and current status.
Because Memory Hotplug is still under development, contents of this text will
be changed often.

	Introduction
	Purpose of memory hotplug

	Phases of memory hotplug

	Unit of Memory online/offline operation

	Kernel Configuration

	sysfs files for memory hotplug

	Physical memory hot-add phase
	Hardware(Firmware) Support

	Notify memory hot-add event by hand

	Logical Memory hot-add phase
	State of memory

	How to online memory

	Logical memory remove
	Memory offline and ZONE_MOVABLE

	How to offline memory

	Physical memory remove

	Locking Internals

	Future Work

注解

	x86_64’s has special implementation for memory hotplug.
This text does not describe it.

	This text assumes that sysfs is mounted at /sys.

Introduction

Purpose of memory hotplug

Memory Hotplug allows users to increase/decrease the amount of memory.
Generally, there are two purposes.

	For changing the amount of memory.
This is to allow a feature like capacity on demand.

	For installing/removing DIMMs or NUMA-nodes physically.
This is to exchange DIMMs/NUMA-nodes, reduce power consumption, etc.

(A) is required by highly virtualized environments and (B) is required by
hardware which supports memory power management.

Linux memory hotplug is designed for both purpose.

Phases of memory hotplug

There are 2 phases in Memory Hotplug:

	Physical Memory Hotplug phase

	Logical Memory Hotplug phase.

The First phase is to communicate hardware/firmware and make/erase
environment for hotplugged memory. Basically, this phase is necessary
for the purpose (B), but this is good phase for communication between
highly virtualized environments too.

When memory is hotplugged, the kernel recognizes new memory, makes new memory
management tables, and makes sysfs files for new memory’s operation.

If firmware supports notification of connection of new memory to OS,
this phase is triggered automatically. ACPI can notify this event. If not,
“probe” operation by system administration is used instead.
(see Physical memory hot-add phase).

Logical Memory Hotplug phase is to change memory state into
available/unavailable for users. Amount of memory from user’s view is
changed by this phase. The kernel makes all memory in it as free pages
when a memory range is available.

In this document, this phase is described as online/offline.

Logical Memory Hotplug phase is triggered by write of sysfs file by system
administrator. For the hot-add case, it must be executed after Physical Hotplug
phase by hand.
(However, if you writes udev’s hotplug scripts for memory hotplug, these
phases can be execute in seamless way.)

Unit of Memory online/offline operation

Memory hotplug uses SPARSEMEM memory model which allows memory to be divided
into chunks of the same size. These chunks are called “sections”. The size of
a memory section is architecture dependent. For example, power uses 16MiB, ia64
uses 1GiB.

Memory sections are combined into chunks referred to as “memory blocks”. The
size of a memory block is architecture dependent and represents the logical
unit upon which memory online/offline operations are to be performed. The
default size of a memory block is the same as memory section size unless an
architecture specifies otherwise. (see sysfs files for memory hotplug.)

To determine the size (in bytes) of a memory block please read this file:

/sys/devices/system/memory/block_size_bytes

Kernel Configuration

To use memory hotplug feature, kernel must be compiled with following
config options.

	
	For all memory hotplug:

	
	Memory model -> Sparse Memory (CONFIG_SPARSEMEM)

	Allow for memory hot-add (CONFIG_MEMORY_HOTPLUG)

	
	To enable memory removal, the following are also necessary:

	
	Allow for memory hot remove (CONFIG_MEMORY_HOTREMOVE)

	Page Migration (CONFIG_MIGRATION)

	
	For ACPI memory hotplug, the following are also necessary:

	
	Memory hotplug (under ACPI Support menu) (CONFIG_ACPI_HOTPLUG_MEMORY)

	This option can be kernel module.

	As a related configuration, if your box has a feature of NUMA-node hotplug
via ACPI, then this option is necessary too.

	ACPI0004,PNP0A05 and PNP0A06 Container Driver (under ACPI Support menu)
(CONFIG_ACPI_CONTAINER).

This option can be kernel module too.

sysfs files for memory hotplug

All memory blocks have their device information in sysfs. Each memory block
is described under /sys/devices/system/memory as:

/sys/devices/system/memory/memoryXXX

where XXX is the memory block id.

For the memory block covered by the sysfs directory. It is expected that all
memory sections in this range are present and no memory holes exist in the
range. Currently there is no way to determine if there is a memory hole, but
the existence of one should not affect the hotplug capabilities of the memory
block.

For example, assume 1GiB memory block size. A device for a memory starting at
0x100000000 is /sys/device/system/memory/memory4:

(0x100000000 / 1Gib = 4)

This device covers address range [0x100000000 ... 0x140000000)

Under each memory block, you can see 5 files:

	/sys/devices/system/memory/memoryXXX/phys_index

	/sys/devices/system/memory/memoryXXX/phys_device

	/sys/devices/system/memory/memoryXXX/state

	/sys/devices/system/memory/memoryXXX/removable

	/sys/devices/system/memory/memoryXXX/valid_zones

	phys_index
	read-only and contains memory block id, same as XXX.

	state
	read-write

	at read: contains online/offline state of memory.

	at write: user can specify “online_kernel”,

“online_movable”, “online”, “offline” command
which will be performed on all sections in the block.

	phys_device
	read-only: designed to show the name of physical memory
device. This is not well implemented now.

	removable
	read-only: contains an integer value indicating
whether the memory block is removable or not
removable. A value of 1 indicates that the memory
block is removable and a value of 0 indicates that
it is not removable. A memory block is removable only if
every section in the block is removable.

	valid_zones
	read-only: designed to show which zones this memory block
can be onlined to.

The first column shows it`s default zone.

“memory6/valid_zones: Normal Movable” shows this memoryblock
can be onlined to ZONE_NORMAL by default and to ZONE_MOVABLE
by online_movable.

“memory7/valid_zones: Movable Normal” shows this memoryblock
can be onlined to ZONE_MOVABLE by default and to ZONE_NORMAL
by online_kernel.

注解

These directories/files appear after physical memory hotplug phase.

If CONFIG_NUMA is enabled the memoryXXX/ directories can also be accessed
via symbolic links located in the /sys/devices/system/node/node* directories.

For example:

/sys/devices/system/node/node0/memory9 -> ../../memory/memory9

A backlink will also be created:

/sys/devices/system/memory/memory9/node0 -> ../../node/node0

Physical memory hot-add phase

Hardware(Firmware) Support

On x86_64/ia64 platform, memory hotplug by ACPI is supported.

In general, the firmware (ACPI) which supports memory hotplug defines
memory class object of _HID “PNP0C80”. When a notify is asserted to PNP0C80,
Linux’s ACPI handler does hot-add memory to the system and calls a hotplug udev
script. This will be done automatically.

But scripts for memory hotplug are not contained in generic udev package(now).
You may have to write it by yourself or online/offline memory by hand.
Please see How to online memory and
How to offline memory.

If firmware supports NUMA-node hotplug, and defines an object _HID “ACPI0004”,
“PNP0A05”, or “PNP0A06”, notification is asserted to it, and ACPI handler
calls hotplug code for all of objects which are defined in it.
If memory device is found, memory hotplug code will be called.

Notify memory hot-add event by hand

On some architectures, the firmware may not notify the kernel of a memory
hotplug event. Therefore, the memory “probe” interface is supported to
explicitly notify the kernel. This interface depends on
CONFIG_ARCH_MEMORY_PROBE and can be configured on powerpc, sh, and x86
if hotplug is supported, although for x86 this should be handled by ACPI
notification.

Probe interface is located at:

/sys/devices/system/memory/probe

You can tell the physical address of new memory to the kernel by:

% echo start_address_of_new_memory > /sys/devices/system/memory/probe

Then, [start_address_of_new_memory, start_address_of_new_memory +
memory_block_size] memory range is hot-added. In this case, hotplug script is
not called (in current implementation). You’ll have to online memory by
yourself. Please see How to online memory.

Logical Memory hot-add phase

State of memory

To see (online/offline) state of a memory block, read ‘state’ file:

% cat /sys/device/system/memory/memoryXXX/state

	If the memory block is online, you’ll read “online”.

	If the memory block is offline, you’ll read “offline”.

How to online memory

When the memory is hot-added, the kernel decides whether or not to “online”
it according to the policy which can be read from “auto_online_blocks” file:

% cat /sys/devices/system/memory/auto_online_blocks

The default depends on the CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel config
option. If it is disabled the default is “offline” which means the newly added
memory is not in a ready-to-use state and you have to “online” the newly added
memory blocks manually. Automatic onlining can be requested by writing “online”
to “auto_online_blocks” file:

% echo online > /sys/devices/system/memory/auto_online_blocks

This sets a global policy and impacts all memory blocks that will subsequently
be hotplugged. Currently offline blocks keep their state. It is possible, under
certain circumstances, that some memory blocks will be added but will fail to
online. User space tools can check their “state” files
(/sys/devices/system/memory/memoryXXX/state) and try to online them manually.

If the automatic onlining wasn’t requested, failed, or some memory block was
offlined it is possible to change the individual block’s state by writing to the
“state” file:

% echo online > /sys/devices/system/memory/memoryXXX/state

This onlining will not change the ZONE type of the target memory block,
If the memory block doesn’t belong to any zone an appropriate kernel zone
(usually ZONE_NORMAL) will be used unless movable_node kernel command line
option is specified when ZONE_MOVABLE will be used.

You can explicitly request to associate it with ZONE_MOVABLE by:

% echo online_movable > /sys/devices/system/memory/memoryXXX/state

注解

current limit: this memory block must be adjacent to ZONE_MOVABLE

Or you can explicitly request a kernel zone (usually ZONE_NORMAL) by:

% echo online_kernel > /sys/devices/system/memory/memoryXXX/state

注解

current limit: this memory block must be adjacent to ZONE_NORMAL

An explicit zone onlining can fail (e.g. when the range is already within
and existing and incompatible zone already).

After this, memory block XXX’s state will be ‘online’ and the amount of
available memory will be increased.

This may be changed in future.

Logical memory remove

Memory offline and ZONE_MOVABLE

Memory offlining is more complicated than memory online. Because memory offline
has to make the whole memory block be unused, memory offline can fail if
the memory block includes memory which cannot be freed.

In general, memory offline can use 2 techniques.

	reclaim and free all memory in the memory block.

	migrate all pages in the memory block.

In the current implementation, Linux’s memory offline uses method (2), freeing
all pages in the memory block by page migration. But not all pages are
migratable. Under current Linux, migratable pages are anonymous pages and
page caches. For offlining a memory block by migration, the kernel has to
guarantee that the memory block contains only migratable pages.

Now, a boot option for making a memory block which consists of migratable pages
is supported. By specifying “kernelcore=” or “movablecore=” boot option, you can
create ZONE_MOVABLE...a zone which is just used for movable pages.
(See also Documentation/admin-guide/kernel-parameters.rst)

Assume the system has “TOTAL” amount of memory at boot time, this boot option
creates ZONE_MOVABLE as following.

	When kernelcore=YYYY boot option is used,
Size of memory not for movable pages (not for offline) is YYYY.
Size of memory for movable pages (for offline) is TOTAL-YYYY.

	When movablecore=ZZZZ boot option is used,
Size of memory not for movable pages (not for offline) is TOTAL - ZZZZ.
Size of memory for movable pages (for offline) is ZZZZ.

注解

Unfortunately, there is no information to show which memory block belongs
to ZONE_MOVABLE. This is TBD.

How to offline memory

You can offline a memory block by using the same sysfs interface that was used
in memory onlining:

% echo offline > /sys/devices/system/memory/memoryXXX/state

If offline succeeds, the state of the memory block is changed to be “offline”.
If it fails, some error core (like -EBUSY) will be returned by the kernel.
Even if a memory block does not belong to ZONE_MOVABLE, you can try to offline
it. If it doesn’t contain ‘unmovable’ memory, you’ll get success.

A memory block under ZONE_MOVABLE is considered to be able to be offlined
easily. But under some busy state, it may return -EBUSY. Even if a memory
block cannot be offlined due to -EBUSY, you can retry offlining it and may be
able to offline it (or not). (For example, a page is referred to by some kernel
internal call and released soon.)

	Consideration:

	Memory hotplug’s design direction is to make the possibility of memory
offlining higher and to guarantee unplugging memory under any situation. But
it needs more work. Returning -EBUSY under some situation may be good because
the user can decide to retry more or not by himself. Currently, memory
offlining code does some amount of retry with 120 seconds timeout.

Physical memory remove

	Need more implementation yet....

	
	Notification completion of remove works by OS to firmware.

	Guard from remove if not yet.

Locking Internals

When adding/removing memory that uses memory block devices (i.e. ordinary RAM),
the device_hotplug_lock should be held to:

	synchronize against online/offline requests (e.g. via sysfs). This way, memory
block devices can only be accessed (.online/.state attributes) by user
space once memory has been fully added. And when removing memory, we
know nobody is in critical sections.

	synchronize against CPU hotplug and similar (e.g. relevant for ACPI and PPC)

Especially, there is a possible lock inversion that is avoided using
device_hotplug_lock when adding memory and user space tries to online that
memory faster than expected:

	device_online() will first take the device_lock(), followed by
mem_hotplug_lock

	add_memory_resource() will first take the mem_hotplug_lock, followed by
the device_lock() (while creating the devices, during bus_add_device()).

As the device is visible to user space before taking the device_lock(), this
can result in a lock inversion.

onlining/offlining of memory should be done via device_online()/
device_offline() - to make sure it is properly synchronized to actions
via sysfs. Holding device_hotplug_lock is advised (to e.g. protect online_type)

When adding/removing/onlining/offlining memory or adding/removing
heterogeneous/device memory, we should always hold the mem_hotplug_lock in
write mode to serialise memory hotplug (e.g. access to global/zone
variables).

In addition, mem_hotplug_lock (in contrast to device_hotplug_lock) in read
mode allows for a quite efficient get_online_mems/put_online_mems
implementation, so code accessing memory can protect from that memory
vanishing.

Future Work

	allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like
sysctl or new control file.

	showing memory block and physical device relationship.

	test and make it better memory offlining.

	support HugeTLB page migration and offlining.

	memmap removing at memory offline.

	physical remove memory.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

NUMA Memory Policy

What is NUMA Memory Policy?

In the Linux kernel, “memory policy” determines from which node the kernel will
allocate memory in a NUMA system or in an emulated NUMA system. Linux has
supported platforms with Non-Uniform Memory Access architectures since 2.4.?.
The current memory policy support was added to Linux 2.6 around May 2004. This
document attempts to describe the concepts and APIs of the 2.6 memory policy
support.

Memory policies should not be confused with cpusets
(Documentation/cgroup-v1/cpusets.txt)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
both cpusets and policies are applied to a task, the restrictions of the cpuset
takes priority. See Memory Policies and cpusets
below for more details.

Memory Policy Concepts

Scope of Memory Policies

The Linux kernel supports _scopes_ of memory policy, described here from
most general to most specific:

	System Default Policy

	this policy is “hard coded” into the kernel. It is the policy
that governs all page allocations that aren’t controlled by
one of the more specific policy scopes discussed below. When
the system is “up and running”, the system default policy will
use “local allocation” described below. However, during boot
up, the system default policy will be set to interleave
allocations across all nodes with “sufficient” memory, so as
not to overload the initial boot node with boot-time
allocations.

	Task/Process Policy

	this is an optional, per-task policy. When defined for a
specific task, this policy controls all page allocations made
by or on behalf of the task that aren’t controlled by a more
specific scope. If a task does not define a task policy, then
all page allocations that would have been controlled by the
task policy “fall back” to the System Default Policy.

The task policy applies to the entire address space of a task. Thus,
it is inheritable, and indeed is inherited, across both fork()
[clone() w/o the CLONE_VM flag] and exec*(). This allows a parent task
to establish the task policy for a child task exec()’d from an
executable image that has no awareness of memory policy. See the
Memory Policy APIs section,
below, for an overview of the system call
that a task may use to set/change its task/process policy.

In a multi-threaded task, task policies apply only to the thread
[Linux kernel task] that installs the policy and any threads
subsequently created by that thread. Any sibling threads existing
at the time a new task policy is installed retain their current
policy.

A task policy applies only to pages allocated after the policy is
installed. Any pages already faulted in by the task when the task
changes its task policy remain where they were allocated based on
the policy at the time they were allocated.

	VMA Policy

	A “VMA” or “Virtual Memory Area” refers to a range of a task’s
virtual address space. A task may define a specific policy for a range
of its virtual address space. See the
Memory Policy APIs section,
below, for an overview of the mbind() system call used to set a VMA
policy.

A VMA policy will govern the allocation of pages that back
this region of the address space. Any regions of the task’s
address space that don’t have an explicit VMA policy will fall
back to the task policy, which may itself fall back to the
System Default Policy.

VMA policies have a few complicating details:

	VMA policy applies ONLY to anonymous pages. These include
pages allocated for anonymous segments, such as the task
stack and heap, and any regions of the address space
mmap()ed with the MAP_ANONYMOUS flag. If a VMA policy is
applied to a file mapping, it will be ignored if the mapping
used the MAP_SHARED flag. If the file mapping used the
MAP_PRIVATE flag, the VMA policy will only be applied when
an anonymous page is allocated on an attempt to write to the
mapping– i.e., at Copy-On-Write.

	VMA policies are shared between all tasks that share a
virtual address space–a.k.a. threads–independent of when
the policy is installed; and they are inherited across
fork(). However, because VMA policies refer to a specific
region of a task’s address space, and because the address
space is discarded and recreated on exec*(), VMA policies
are NOT inheritable across exec(). Thus, only NUMA-aware
applications may use VMA policies.

	A task may install a new VMA policy on a sub-range of a
previously mmap()ed region. When this happens, Linux splits
the existing virtual memory area into 2 or 3 VMAs, each with
it’s own policy.

	By default, VMA policy applies only to pages allocated after
the policy is installed. Any pages already faulted into the
VMA range remain where they were allocated based on the
policy at the time they were allocated. However, since
2.6.16, Linux supports page migration via the mbind() system
call, so that page contents can be moved to match a newly
installed policy.

	Shared Policy

	Conceptually, shared policies apply to “memory objects” mapped
shared into one or more tasks’ distinct address spaces. An
application installs shared policies the same way as VMA
policies–using the mbind() system call specifying a range of
virtual addresses that map the shared object. However, unlike
VMA policies, which can be considered to be an attribute of a
range of a task’s address space, shared policies apply
directly to the shared object. Thus, all tasks that attach to
the object share the policy, and all pages allocated for the
shared object, by any task, will obey the shared policy.

As of 2.6.22, only shared memory segments, created by shmget() or
mmap(MAP_ANONYMOUS|MAP_SHARED), support shared policy. When shared
policy support was added to Linux, the associated data structures were
added to hugetlbfs shmem segments. At the time, hugetlbfs did not
support allocation at fault time–a.k.a lazy allocation–so hugetlbfs
shmem segments were never “hooked up” to the shared policy support.
Although hugetlbfs segments now support lazy allocation, their support
for shared policy has not been completed.

As mentioned above in VMA policies section,
allocations of page cache pages for regular files mmap()ed
with MAP_SHARED ignore any VMA policy installed on the virtual
address range backed by the shared file mapping. Rather,
shared page cache pages, including pages backing private
mappings that have not yet been written by the task, follow
task policy, if any, else System Default Policy.

The shared policy infrastructure supports different policies on subset
ranges of the shared object. However, Linux still splits the VMA of
the task that installs the policy for each range of distinct policy.
Thus, different tasks that attach to a shared memory segment can have
different VMA configurations mapping that one shared object. This
can be seen by examining the /proc/<pid>/numa_maps of tasks sharing
a shared memory region, when one task has installed shared policy on
one or more ranges of the region.

Components of Memory Policies

A NUMA memory policy consists of a “mode”, optional mode flags, and
an optional set of nodes. The mode determines the behavior of the
policy, the optional mode flags determine the behavior of the mode,
and the optional set of nodes can be viewed as the arguments to the
policy behavior.

Internally, memory policies are implemented by a reference counted
structure, struct mempolicy. Details of this structure will be
discussed in context, below, as required to explain the behavior.

NUMA memory policy supports the following 4 behavioral modes:

	Default Mode–MPOL_DEFAULT

	This mode is only used in the memory policy APIs. Internally,
MPOL_DEFAULT is converted to the NULL memory policy in all
policy scopes. Any existing non-default policy will simply be
removed when MPOL_DEFAULT is specified. As a result,
MPOL_DEFAULT means “fall back to the next most specific policy
scope.”

For example, a NULL or default task policy will fall back to the
system default policy. A NULL or default vma policy will fall
back to the task policy.

When specified in one of the memory policy APIs, the Default mode
does not use the optional set of nodes.

It is an error for the set of nodes specified for this policy to
be non-empty.

	MPOL_BIND

	This mode specifies that memory must come from the set of
nodes specified by the policy. Memory will be allocated from
the node in the set with sufficient free memory that is
closest to the node where the allocation takes place.

	MPOL_PREFERRED

	This mode specifies that the allocation should be attempted
from the single node specified in the policy. If that
allocation fails, the kernel will search other nodes, in order
of increasing distance from the preferred node based on
information provided by the platform firmware.

Internally, the Preferred policy uses a single node–the
preferred_node member of struct mempolicy. When the internal
mode flag MPOL_F_LOCAL is set, the preferred_node is ignored
and the policy is interpreted as local allocation. “Local”
allocation policy can be viewed as a Preferred policy that
starts at the node containing the cpu where the allocation
takes place.

It is possible for the user to specify that local allocation
is always preferred by passing an empty nodemask with this
mode. If an empty nodemask is passed, the policy cannot use
the MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES flags
described below.

	MPOL_INTERLEAVED

	This mode specifies that page allocations be interleaved, on a
page granularity, across the nodes specified in the policy.
This mode also behaves slightly differently, based on the
context where it is used:

For allocation of anonymous pages and shared memory pages,
Interleave mode indexes the set of nodes specified by the
policy using the page offset of the faulting address into the
segment [VMA] containing the address modulo the number of
nodes specified by the policy. It then attempts to allocate a
page, starting at the selected node, as if the node had been
specified by a Preferred policy or had been selected by a
local allocation. That is, allocation will follow the per
node zonelist.

For allocation of page cache pages, Interleave mode indexes
the set of nodes specified by the policy using a node counter
maintained per task. This counter wraps around to the lowest
specified node after it reaches the highest specified node.
This will tend to spread the pages out over the nodes
specified by the policy based on the order in which they are
allocated, rather than based on any page offset into an
address range or file. During system boot up, the temporary
interleaved system default policy works in this mode.

NUMA memory policy supports the following optional mode flags:

	MPOL_F_STATIC_NODES

	This flag specifies that the nodemask passed by
the user should not be remapped if the task or VMA’s set of allowed
nodes changes after the memory policy has been defined.

Without this flag, any time a mempolicy is rebound because of a
change in the set of allowed nodes, the node (Preferred) or
nodemask (Bind, Interleave) is remapped to the new set of
allowed nodes. This may result in nodes being used that were
previously undesired.

With this flag, if the user-specified nodes overlap with the
nodes allowed by the task’s cpuset, then the memory policy is
applied to their intersection. If the two sets of nodes do not
overlap, the Default policy is used.

For example, consider a task that is attached to a cpuset with
mems 1-3 that sets an Interleave policy over the same set. If
the cpuset’s mems change to 3-5, the Interleave will now occur
over nodes 3, 4, and 5. With this flag, however, since only node
3 is allowed from the user’s nodemask, the “interleave” only
occurs over that node. If no nodes from the user’s nodemask are
now allowed, the Default behavior is used.

MPOL_F_STATIC_NODES cannot be combined with the
MPOL_F_RELATIVE_NODES flag. It also cannot be used for
MPOL_PREFERRED policies that were created with an empty nodemask
(local allocation).

	MPOL_F_RELATIVE_NODES

	This flag specifies that the nodemask passed
by the user will be mapped relative to the set of the task or VMA’s
set of allowed nodes. The kernel stores the user-passed nodemask,
and if the allowed nodes changes, then that original nodemask will
be remapped relative to the new set of allowed nodes.

Without this flag (and without MPOL_F_STATIC_NODES), anytime a
mempolicy is rebound because of a change in the set of allowed
nodes, the node (Preferred) or nodemask (Bind, Interleave) is
remapped to the new set of allowed nodes. That remap may not
preserve the relative nature of the user’s passed nodemask to its
set of allowed nodes upon successive rebinds: a nodemask of
1,3,5 may be remapped to 7-9 and then to 1-3 if the set of
allowed nodes is restored to its original state.

With this flag, the remap is done so that the node numbers from
the user’s passed nodemask are relative to the set of allowed
nodes. In other words, if nodes 0, 2, and 4 are set in the user’s
nodemask, the policy will be effected over the first (and in the
Bind or Interleave case, the third and fifth) nodes in the set of
allowed nodes. The nodemask passed by the user represents nodes
relative to task or VMA’s set of allowed nodes.

If the user’s nodemask includes nodes that are outside the range
of the new set of allowed nodes (for example, node 5 is set in
the user’s nodemask when the set of allowed nodes is only 0-3),
then the remap wraps around to the beginning of the nodemask and,
if not already set, sets the node in the mempolicy nodemask.

For example, consider a task that is attached to a cpuset with
mems 2-5 that sets an Interleave policy over the same set with
MPOL_F_RELATIVE_NODES. If the cpuset’s mems change to 3-7, the
interleave now occurs over nodes 3,5-7. If the cpuset’s mems
then change to 0,2-3,5, then the interleave occurs over nodes
0,2-3,5.

Thanks to the consistent remapping, applications preparing
nodemasks to specify memory policies using this flag should
disregard their current, actual cpuset imposed memory placement
and prepare the nodemask as if they were always located on
memory nodes 0 to N-1, where N is the number of memory nodes the
policy is intended to manage. Let the kernel then remap to the
set of memory nodes allowed by the task’s cpuset, as that may
change over time.

MPOL_F_RELATIVE_NODES cannot be combined with the
MPOL_F_STATIC_NODES flag. It also cannot be used for
MPOL_PREFERRED policies that were created with an empty nodemask
(local allocation).

Memory Policy Reference Counting

To resolve use/free races, struct mempolicy contains an atomic reference
count field. Internal interfaces, mpol_get()/mpol_put() increment and
decrement this reference count, respectively. mpol_put() will only free
the structure back to the mempolicy kmem cache when the reference count
goes to zero.

When a new memory policy is allocated, its reference count is initialized
to ‘1’, representing the reference held by the task that is installing the
new policy. When a pointer to a memory policy structure is stored in another
structure, another reference is added, as the task’s reference will be dropped
on completion of the policy installation.

During run-time “usage” of the policy, we attempt to minimize atomic operations
on the reference count, as this can lead to cache lines bouncing between cpus
and NUMA nodes. “Usage” here means one of the following:

	querying of the policy, either by the task itself [using the get_mempolicy()
API discussed below] or by another task using the /proc/<pid>/numa_maps
interface.

	examination of the policy to determine the policy mode and associated node
or node lists, if any, for page allocation. This is considered a “hot
path”. Note that for MPOL_BIND, the “usage” extends across the entire
allocation process, which may sleep during page reclaimation, because the
BIND policy nodemask is used, by reference, to filter ineligible nodes.

We can avoid taking an extra reference during the usages listed above as
follows:

	we never need to get/free the system default policy as this is never
changed nor freed, once the system is up and running.

	for querying the policy, we do not need to take an extra reference on the
target task’s task policy nor vma policies because we always acquire the
task’s mm’s mmap_sem for read during the query. The set_mempolicy() and
mbind() APIs [see below] always acquire the mmap_sem for write when
installing or replacing task or vma policies. Thus, there is no possibility
of a task or thread freeing a policy while another task or thread is
querying it.

	Page allocation usage of task or vma policy occurs in the fault path where
we hold them mmap_sem for read. Again, because replacing the task or vma
policy requires that the mmap_sem be held for write, the policy can’t be
freed out from under us while we’re using it for page allocation.

	Shared policies require special consideration. One task can replace a
shared memory policy while another task, with a distinct mmap_sem, is
querying or allocating a page based on the policy. To resolve this
potential race, the shared policy infrastructure adds an extra reference
to the shared policy during lookup while holding a spin lock on the shared
policy management structure. This requires that we drop this extra
reference when we’re finished “using” the policy. We must drop the
extra reference on shared policies in the same query/allocation paths
used for non-shared policies. For this reason, shared policies are marked
as such, and the extra reference is dropped “conditionally”–i.e., only
for shared policies.

Because of this extra reference counting, and because we must lookup
shared policies in a tree structure under spinlock, shared policies are
more expensive to use in the page allocation path. This is especially
true for shared policies on shared memory regions shared by tasks running
on different NUMA nodes. This extra overhead can be avoided by always
falling back to task or system default policy for shared memory regions,
or by prefaulting the entire shared memory region into memory and locking
it down. However, this might not be appropriate for all applications.

Memory Policy APIs

Linux supports 3 system calls for controlling memory policy. These APIS
always affect only the calling task, the calling task’s address space, or
some shared object mapped into the calling task’s address space.

注解

the headers that define these APIs and the parameter data types for
user space applications reside in a package that is not part of the
Linux kernel. The kernel system call interfaces, with the ‘sys_’
prefix, are defined in <linux/syscalls.h>; the mode and flag
definitions are defined in <linux/mempolicy.h>.

Set [Task] Memory Policy:

long set_mempolicy(int mode, const unsigned long *nmask,
 unsigned long maxnode);

Set’s the calling task’s “task/process memory policy” to mode
specified by the ‘mode’ argument and the set of nodes defined by
‘nmask’. ‘nmask’ points to a bit mask of node ids containing at least
‘maxnode’ ids. Optional mode flags may be passed by combining the
‘mode’ argument with the flag (for example: MPOL_INTERLEAVE |
MPOL_F_STATIC_NODES).

See the set_mempolicy(2) man page for more details

Get [Task] Memory Policy or Related Information:

long get_mempolicy(int *mode,
 const unsigned long *nmask, unsigned long maxnode,
 void *addr, int flags);

Queries the “task/process memory policy” of the calling task, or the
policy or location of a specified virtual address, depending on the
‘flags’ argument.

See the get_mempolicy(2) man page for more details

Install VMA/Shared Policy for a Range of Task’s Address Space:

long mbind(void *start, unsigned long len, int mode,
 const unsigned long *nmask, unsigned long maxnode,
 unsigned flags);

mbind() installs the policy specified by (mode, nmask, maxnodes) as a
VMA policy for the range of the calling task’s address space specified
by the ‘start’ and ‘len’ arguments. Additional actions may be
requested via the ‘flags’ argument.

See the mbind(2) man page for more details.

Memory Policy Command Line Interface

Although not strictly part of the Linux implementation of memory policy,
a command line tool, numactl(8), exists that allows one to:

	set the task policy for a specified program via set_mempolicy(2), fork(2) and
exec(2)

	set the shared policy for a shared memory segment via mbind(2)

The numactl(8) tool is packaged with the run-time version of the library
containing the memory policy system call wrappers. Some distributions
package the headers and compile-time libraries in a separate development
package.

Memory Policies and cpusets

Memory policies work within cpusets as described above. For memory policies
that require a node or set of nodes, the nodes are restricted to the set of
nodes whose memories are allowed by the cpuset constraints. If the nodemask
specified for the policy contains nodes that are not allowed by the cpuset and
MPOL_F_RELATIVE_NODES is not used, the intersection of the set of nodes
specified for the policy and the set of nodes with memory is used. If the
result is the empty set, the policy is considered invalid and cannot be
installed. If MPOL_F_RELATIVE_NODES is used, the policy’s nodes are mapped
onto and folded into the task’s set of allowed nodes as previously described.

The interaction of memory policies and cpusets can be problematic when tasks
in two cpusets share access to a memory region, such as shared memory segments
created by shmget() of mmap() with the MAP_ANONYMOUS and MAP_SHARED flags, and
any of the tasks install shared policy on the region, only nodes whose
memories are allowed in both cpusets may be used in the policies. Obtaining
this information requires “stepping outside” the memory policy APIs to use the
cpuset information and requires that one know in what cpusets other task might
be attaching to the shared region. Furthermore, if the cpusets’ allowed
memory sets are disjoint, “local” allocation is the only valid policy.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Examining Process Page Tables

pagemap is a new (as of 2.6.25) set of interfaces in the kernel that allow
userspace programs to examine the page tables and related information by
reading files in /proc.

There are four components to pagemap:

	/proc/pid/pagemap. This file lets a userspace process find out which
physical frame each virtual page is mapped to. It contains one 64-bit
value for each virtual page, containing the following data (from
fs/proc/task_mmu.c, above pagemap_read):

	Bits 0-54 page frame number (PFN) if present

	Bits 0-4 swap type if swapped

	Bits 5-54 swap offset if swapped

	Bit 55 pte is soft-dirty (see
Documentation/admin-guide/mm/soft-dirty.rst)

	Bit 56 page exclusively mapped (since 4.2)

	Bits 57-60 zero

	Bit 61 page is file-page or shared-anon (since 3.5)

	Bit 62 page swapped

	Bit 63 page present

Since Linux 4.0 only users with the CAP_SYS_ADMIN capability can get PFNs.
In 4.0 and 4.1 opens by unprivileged fail with -EPERM. Starting from
4.2 the PFN field is zeroed if the user does not have CAP_SYS_ADMIN.
Reason: information about PFNs helps in exploiting Rowhammer vulnerability.

If the page is not present but in swap, then the PFN contains an
encoding of the swap file number and the page’s offset into the
swap. Unmapped pages return a null PFN. This allows determining
precisely which pages are mapped (or in swap) and comparing mapped
pages between processes.

Efficient users of this interface will use /proc/pid/maps to
determine which areas of memory are actually mapped and llseek to
skip over unmapped regions.

	/proc/kpagecount. This file contains a 64-bit count of the number of
times each page is mapped, indexed by PFN.

The page-types tool in the tools/vm directory can be used to query the
number of times a page is mapped.

	/proc/kpageflags. This file contains a 64-bit set of flags for each
page, indexed by PFN.

The flags are (from fs/proc/page.c, above kpageflags_read):

	LOCKED

	ERROR

	REFERENCED

	UPTODATE

	DIRTY

	LRU

	ACTIVE

	SLAB

	WRITEBACK

	RECLAIM

	BUDDY

	MMAP

	ANON

	SWAPCACHE

	SWAPBACKED

	COMPOUND_HEAD

	COMPOUND_TAIL

	HUGE

	UNEVICTABLE

	HWPOISON

	NOPAGE

	KSM

	THP

	BALLOON

	ZERO_PAGE

	IDLE

	/proc/kpagecgroup. This file contains a 64-bit inode number of the
memory cgroup each page is charged to, indexed by PFN. Only available when
CONFIG_MEMCG is set.

Short descriptions to the page flags

	0 - LOCKED

	page is being locked for exclusive access, e.g. by undergoing read/write IO

	7 - SLAB

	page is managed by the SLAB/SLOB/SLUB/SLQB kernel memory allocator
When compound page is used, SLUB/SLQB will only set this flag on the head
page; SLOB will not flag it at all.

	10 - BUDDY

	a free memory block managed by the buddy system allocator
The buddy system organizes free memory in blocks of various orders.
An order N block has 2^N physically contiguous pages, with the BUDDY flag
set for and _only_ for the first page.

	15 - COMPOUND_HEAD

	A compound page with order N consists of 2^N physically contiguous pages.
A compound page with order 2 takes the form of “HTTT”, where H donates its
head page and T donates its tail page(s). The major consumers of compound
pages are hugeTLB pages
(Documentation/admin-guide/mm/hugetlbpage.rst),
the SLUB etc. memory allocators and various device drivers.
However in this interface, only huge/giga pages are made visible
to end users.

	16 - COMPOUND_TAIL

	A compound page tail (see description above).

	17 - HUGE

	this is an integral part of a HugeTLB page

	19 - HWPOISON

	hardware detected memory corruption on this page: don’t touch the data!

	20 - NOPAGE

	no page frame exists at the requested address

	21 - KSM

	identical memory pages dynamically shared between one or more processes

	22 - THP

	contiguous pages which construct transparent hugepages

	23 - BALLOON

	balloon compaction page

	24 - ZERO_PAGE

	zero page for pfn_zero or huge_zero page

	25 - IDLE

	page has not been accessed since it was marked idle (see
Documentation/admin-guide/mm/idle_page_tracking.rst).
Note that this flag may be stale in case the page was accessed via
a PTE. To make sure the flag is up-to-date one has to read
/sys/kernel/mm/page_idle/bitmap first.

IO related page flags

	1 - ERROR

	IO error occurred

	3 - UPTODATE

	page has up-to-date data
ie. for file backed page: (in-memory data revision >= on-disk one)

	4 - DIRTY

	page has been written to, hence contains new data
i.e. for file backed page: (in-memory data revision > on-disk one)

	8 - WRITEBACK

	page is being synced to disk

LRU related page flags

	5 - LRU

	page is in one of the LRU lists

	6 - ACTIVE

	page is in the active LRU list

	18 - UNEVICTABLE

	page is in the unevictable (non-)LRU list It is somehow pinned and
not a candidate for LRU page reclaims, e.g. ramfs pages,
shmctl(SHM_LOCK) and mlock() memory segments

	2 - REFERENCED

	page has been referenced since last LRU list enqueue/requeue

	9 - RECLAIM

	page will be reclaimed soon after its pageout IO completed

	11 - MMAP

	a memory mapped page

	12 - ANON

	a memory mapped page that is not part of a file

	13 - SWAPCACHE

	page is mapped to swap space, i.e. has an associated swap entry

	14 - SWAPBACKED

	page is backed by swap/RAM

The page-types tool in the tools/vm directory can be used to query the
above flags.

Using pagemap to do something useful

The general procedure for using pagemap to find out about a process’ memory
usage goes like this:

	Read /proc/pid/maps to determine which parts of the memory space are
mapped to what.

	Select the maps you are interested in – all of them, or a particular
library, or the stack or the heap, etc.

	Open /proc/pid/pagemap and seek to the pages you would like to examine.

	Read a u64 for each page from pagemap.

	Open /proc/kpagecount and/or /proc/kpageflags. For each PFN you
just read, seek to that entry in the file, and read the data you want.

For example, to find the “unique set size” (USS), which is the amount of
memory that a process is using that is not shared with any other process,
you can go through every map in the process, find the PFNs, look those up
in kpagecount, and tally up the number of pages that are only referenced
once.

Other notes

Reading from any of the files will return -EINVAL if you are not starting
the read on an 8-byte boundary (e.g., if you sought an odd number of bytes
into the file), or if the size of the read is not a multiple of 8 bytes.

Before Linux 3.11 pagemap bits 55-60 were used for “page-shift” (which is
always 12 at most architectures). Since Linux 3.11 their meaning changes
after first clear of soft-dirty bits. Since Linux 4.2 they are used for
flags unconditionally.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Soft-Dirty PTEs

The soft-dirty is a bit on a PTE which helps to track which pages a task
writes to. In order to do this tracking one should

	Clear soft-dirty bits from the task’s PTEs.

This is done by writing “4” into the /proc/PID/clear_refs file of the
task in question.

	Wait some time.

	Read soft-dirty bits from the PTEs.

This is done by reading from the /proc/PID/pagemap. The bit 55 of the
64-bit qword is the soft-dirty one. If set, the respective PTE was
written to since step 1.

Internally, to do this tracking, the writable bit is cleared from PTEs
when the soft-dirty bit is cleared. So, after this, when the task tries to
modify a page at some virtual address the #PF occurs and the kernel sets
the soft-dirty bit on the respective PTE.

Note, that although all the task’s address space is marked as r/o after the
soft-dirty bits clear, the #PF-s that occur after that are processed fast.
This is so, since the pages are still mapped to physical memory, and thus all
the kernel does is finds this fact out and puts both writable and soft-dirty
bits on the PTE.

While in most cases tracking memory changes by #PF-s is more than enough
there is still a scenario when we can lose soft dirty bits – a task
unmaps a previously mapped memory region and then maps a new one at exactly
the same place. When unmap is called, the kernel internally clears PTE values
including soft dirty bits. To notify user space application about such
memory region renewal the kernel always marks new memory regions (and
expanded regions) as soft dirty.

This feature is actively used by the checkpoint-restore project. You
can find more details about it on http://criu.org

– Pavel Emelyanov, Apr 9, 2013

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Transparent Hugepage Support

Objective

Performance critical computing applications dealing with large memory
working sets are already running on top of libhugetlbfs and in turn
hugetlbfs. Transparent HugePage Support (THP) is an alternative mean of
using huge pages for the backing of virtual memory with huge pages
that supports the automatic promotion and demotion of page sizes and
without the shortcomings of hugetlbfs.

Currently THP only works for anonymous memory mappings and tmpfs/shmem.
But in the future it can expand to other filesystems.

注解

in the examples below we presume that the basic page size is 4K and
the huge page size is 2M, although the actual numbers may vary
depending on the CPU architecture.

The reason applications are running faster is because of two
factors. The first factor is almost completely irrelevant and it’s not
of significant interest because it’ll also have the downside of
requiring larger clear-page copy-page in page faults which is a
potentially negative effect. The first factor consists in taking a
single page fault for each 2M virtual region touched by userland (so
reducing the enter/exit kernel frequency by a 512 times factor). This
only matters the first time the memory is accessed for the lifetime of
a memory mapping. The second long lasting and much more important
factor will affect all subsequent accesses to the memory for the whole
runtime of the application. The second factor consist of two
components:

	the TLB miss will run faster (especially with virtualization using
nested pagetables but almost always also on bare metal without
virtualization)

	a single TLB entry will be mapping a much larger amount of virtual
memory in turn reducing the number of TLB misses. With
virtualization and nested pagetables the TLB can be mapped of
larger size only if both KVM and the Linux guest are using
hugepages but a significant speedup already happens if only one of
the two is using hugepages just because of the fact the TLB miss is
going to run faster.

THP can be enabled system wide or restricted to certain tasks or even
memory ranges inside task’s address space. Unless THP is completely
disabled, there is khugepaged daemon that scans memory and
collapses sequences of basic pages into huge pages.

The THP behaviour is controlled via sysfs
interface and using madivse(2) and prctl(2) system calls.

Transparent Hugepage Support maximizes the usefulness of free memory
if compared to the reservation approach of hugetlbfs by allowing all
unused memory to be used as cache or other movable (or even unmovable
entities). It doesn’t require reservation to prevent hugepage
allocation failures to be noticeable from userland. It allows paging
and all other advanced VM features to be available on the
hugepages. It requires no modifications for applications to take
advantage of it.

Applications however can be further optimized to take advantage of
this feature, like for example they’ve been optimized before to avoid
a flood of mmap system calls for every malloc(4k). Optimizing userland
is by far not mandatory and khugepaged already can take care of long
lived page allocations even for hugepage unaware applications that
deals with large amounts of memory.

In certain cases when hugepages are enabled system wide, application
may end up allocating more memory resources. An application may mmap a
large region but only touch 1 byte of it, in that case a 2M page might
be allocated instead of a 4k page for no good. This is why it’s
possible to disable hugepages system-wide and to only have them inside
MADV_HUGEPAGE madvise regions.

Embedded systems should enable hugepages only inside madvise regions
to eliminate any risk of wasting any precious byte of memory and to
only run faster.

Applications that gets a lot of benefit from hugepages and that don’t
risk to lose memory by using hugepages, should use
madvise(MADV_HUGEPAGE) on their critical mmapped regions.

sysfs

Global THP controls

Transparent Hugepage Support for anonymous memory can be entirely disabled
(mostly for debugging purposes) or only enabled inside MADV_HUGEPAGE
regions (to avoid the risk of consuming more memory resources) or enabled
system wide. This can be achieved with one of:

echo always >/sys/kernel/mm/transparent_hugepage/enabled
echo madvise >/sys/kernel/mm/transparent_hugepage/enabled
echo never >/sys/kernel/mm/transparent_hugepage/enabled

It’s also possible to limit defrag efforts in the VM to generate
anonymous hugepages in case they’re not immediately free to madvise
regions or to never try to defrag memory and simply fallback to regular
pages unless hugepages are immediately available. Clearly if we spend CPU
time to defrag memory, we would expect to gain even more by the fact we
use hugepages later instead of regular pages. This isn’t always
guaranteed, but it may be more likely in case the allocation is for a
MADV_HUGEPAGE region.

echo always >/sys/kernel/mm/transparent_hugepage/defrag
echo defer >/sys/kernel/mm/transparent_hugepage/defrag
echo defer+madvise >/sys/kernel/mm/transparent_hugepage/defrag
echo madvise >/sys/kernel/mm/transparent_hugepage/defrag
echo never >/sys/kernel/mm/transparent_hugepage/defrag

	always

	means that an application requesting THP will stall on
allocation failure and directly reclaim pages and compact
memory in an effort to allocate a THP immediately. This may be
desirable for virtual machines that benefit heavily from THP
use and are willing to delay the VM start to utilise them.

	defer

	means that an application will wake kswapd in the background
to reclaim pages and wake kcompactd to compact memory so that
THP is available in the near future. It’s the responsibility
of khugepaged to then install the THP pages later.

	defer+madvise

	will enter direct reclaim and compaction like always, but
only for regions that have used madvise(MADV_HUGEPAGE); all
other regions will wake kswapd in the background to reclaim
pages and wake kcompactd to compact memory so that THP is
available in the near future.

	madvise

	will enter direct reclaim like always but only for regions
that are have used madvise(MADV_HUGEPAGE). This is the default
behaviour.

	never

	should be self-explanatory.

By default kernel tries to use huge zero page on read page fault to
anonymous mapping. It’s possible to disable huge zero page by writing 0
or enable it back by writing 1:

echo 0 >/sys/kernel/mm/transparent_hugepage/use_zero_page
echo 1 >/sys/kernel/mm/transparent_hugepage/use_zero_page

Some userspace (such as a test program, or an optimized memory allocation
library) may want to know the size (in bytes) of a transparent hugepage:

cat /sys/kernel/mm/transparent_hugepage/hpage_pmd_size

khugepaged will be automatically started when
transparent_hugepage/enabled is set to “always” or “madvise, and it’ll
be automatically shutdown if it’s set to “never”.

Khugepaged controls

khugepaged runs usually at low frequency so while one may not want to
invoke defrag algorithms synchronously during the page faults, it
should be worth invoking defrag at least in khugepaged. However it’s
also possible to disable defrag in khugepaged by writing 0 or enable
defrag in khugepaged by writing 1:

echo 0 >/sys/kernel/mm/transparent_hugepage/khugepaged/defrag
echo 1 >/sys/kernel/mm/transparent_hugepage/khugepaged/defrag

You can also control how many pages khugepaged should scan at each
pass:

/sys/kernel/mm/transparent_hugepage/khugepaged/pages_to_scan

and how many milliseconds to wait in khugepaged between each pass (you
can set this to 0 to run khugepaged at 100% utilization of one core):

/sys/kernel/mm/transparent_hugepage/khugepaged/scan_sleep_millisecs

and how many milliseconds to wait in khugepaged if there’s an hugepage
allocation failure to throttle the next allocation attempt:

/sys/kernel/mm/transparent_hugepage/khugepaged/alloc_sleep_millisecs

The khugepaged progress can be seen in the number of pages collapsed:

/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed

for each pass:

/sys/kernel/mm/transparent_hugepage/khugepaged/full_scans

max_ptes_none specifies how many extra small pages (that are
not already mapped) can be allocated when collapsing a group
of small pages into one large page:

/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none

A higher value leads to use additional memory for programs.
A lower value leads to gain less thp performance. Value of
max_ptes_none can waste cpu time very little, you can
ignore it.

max_ptes_swap specifies how many pages can be brought in from
swap when collapsing a group of pages into a transparent huge page:

/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_swap

A higher value can cause excessive swap IO and waste
memory. A lower value can prevent THPs from being
collapsed, resulting fewer pages being collapsed into
THPs, and lower memory access performance.

Boot parameter

You can change the sysfs boot time defaults of Transparent Hugepage
Support by passing the parameter transparent_hugepage=always or
transparent_hugepage=madvise or transparent_hugepage=never
to the kernel command line.

Hugepages in tmpfs/shmem

You can control hugepage allocation policy in tmpfs with mount option
huge=. It can have following values:

	always

	Attempt to allocate huge pages every time we need a new page;

	never

	Do not allocate huge pages;

	within_size

	Only allocate huge page if it will be fully within i_size.
Also respect fadvise()/madvise() hints;

	advise

	Only allocate huge pages if requested with fadvise()/madvise();

The default policy is never.

mount -o remount,huge= /mountpoint works fine after mount: remounting
huge=never will not attempt to break up huge pages at all, just stop more
from being allocated.

There’s also sysfs knob to control hugepage allocation policy for internal
shmem mount: /sys/kernel/mm/transparent_hugepage/shmem_enabled. The mount
is used for SysV SHM, memfds, shared anonymous mmaps (of /dev/zero or
MAP_ANONYMOUS), GPU drivers’ DRM objects, Ashmem.

In addition to policies listed above, shmem_enabled allows two further
values:

	deny

	For use in emergencies, to force the huge option off from
all mounts;

	force

	Force the huge option on for all - very useful for testing;

Need of application restart

The transparent_hugepage/enabled values and tmpfs mount option only affect
future behavior. So to make them effective you need to restart any
application that could have been using hugepages. This also applies to the
regions registered in khugepaged.

Monitoring usage

The number of anonymous transparent huge pages currently used by the
system is available by reading the AnonHugePages field in /proc/meminfo.
To identify what applications are using anonymous transparent huge pages,
it is necessary to read /proc/PID/smaps and count the AnonHugePages fields
for each mapping.

The number of file transparent huge pages mapped to userspace is available
by reading ShmemPmdMapped and ShmemHugePages fields in /proc/meminfo.
To identify what applications are mapping file transparent huge pages, it
is necessary to read /proc/PID/smaps and count the FileHugeMapped fields
for each mapping.

Note that reading the smaps file is expensive and reading it
frequently will incur overhead.

There are a number of counters in /proc/vmstat that may be used to
monitor how successfully the system is providing huge pages for use.

	thp_fault_alloc

	is incremented every time a huge page is successfully
allocated to handle a page fault. This applies to both the
first time a page is faulted and for COW faults.

	thp_collapse_alloc

	is incremented by khugepaged when it has found
a range of pages to collapse into one huge page and has
successfully allocated a new huge page to store the data.

	thp_fault_fallback

	is incremented if a page fault fails to allocate
a huge page and instead falls back to using small pages.

	thp_collapse_alloc_failed

	is incremented if khugepaged found a range
of pages that should be collapsed into one huge page but failed
the allocation.

	thp_file_alloc

	is incremented every time a file huge page is successfully
allocated.

	thp_file_mapped

	is incremented every time a file huge page is mapped into
user address space.

	thp_split_page

	is incremented every time a huge page is split into base
pages. This can happen for a variety of reasons but a common
reason is that a huge page is old and is being reclaimed.
This action implies splitting all PMD the page mapped with.

	thp_split_page_failed

	is incremented if kernel fails to split huge
page. This can happen if the page was pinned by somebody.

	thp_deferred_split_page

	is incremented when a huge page is put onto split
queue. This happens when a huge page is partially unmapped and
splitting it would free up some memory. Pages on split queue are
going to be split under memory pressure.

	thp_split_pmd

	is incremented every time a PMD split into table of PTEs.
This can happen, for instance, when application calls mprotect() or
munmap() on part of huge page. It doesn’t split huge page, only
page table entry.

	thp_zero_page_alloc

	is incremented every time a huge zero page is
successfully allocated. It includes allocations which where
dropped due race with other allocation. Note, it doesn’t count
every map of the huge zero page, only its allocation.

	thp_zero_page_alloc_failed

	is incremented if kernel fails to allocate
huge zero page and falls back to using small pages.

	thp_swpout

	is incremented every time a huge page is swapout in one
piece without splitting.

	thp_swpout_fallback

	is incremented if a huge page has to be split before swapout.
Usually because failed to allocate some continuous swap space
for the huge page.

As the system ages, allocating huge pages may be expensive as the
system uses memory compaction to copy data around memory to free a
huge page for use. There are some counters in /proc/vmstat to help
monitor this overhead.

	compact_stall

	is incremented every time a process stalls to run
memory compaction so that a huge page is free for use.

	compact_success

	is incremented if the system compacted memory and
freed a huge page for use.

	compact_fail

	is incremented if the system tries to compact memory
but failed.

	compact_pages_moved

	is incremented each time a page is moved. If
this value is increasing rapidly, it implies that the system
is copying a lot of data to satisfy the huge page allocation.
It is possible that the cost of copying exceeds any savings
from reduced TLB misses.

	compact_pagemigrate_failed

	is incremented when the underlying mechanism
for moving a page failed.

	compact_blocks_moved

	is incremented each time memory compaction examines
a huge page aligned range of pages.

It is possible to establish how long the stalls were using the function
tracer to record how long was spent in __alloc_pages_nodemask and
using the mm_page_alloc tracepoint to identify which allocations were
for huge pages.

Optimizing the applications

To be guaranteed that the kernel will map a 2M page immediately in any
memory region, the mmap region has to be hugepage naturally
aligned. posix_memalign() can provide that guarantee.

Hugetlbfs

You can use hugetlbfs on a kernel that has transparent hugepage
support enabled just fine as always. No difference can be noted in
hugetlbfs other than there will be less overall fragmentation. All
usual features belonging to hugetlbfs are preserved and
unaffected. libhugetlbfs will also work fine as usual.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	The Linux kernel user’s and administrator’s guide »

 	Memory Management »

Userfaultfd

Objective

Userfaults allow the implementation of on-demand paging from userland
and more generally they allow userland to take control of various
memory page faults, something otherwise only the kernel code could do.

For example userfaults allows a proper and more optimal implementation
of the PROT_NONE+SIGSEGV trick.

Design

Userfaults are delivered and resolved through the userfaultfd syscall.

The userfaultfd (aside from registering and unregistering virtual
memory ranges) provides two primary functionalities:

	read/POLLIN protocol to notify a userland thread of the faults
happening

	various UFFDIO_* ioctls that can manage the virtual memory regions
registered in the userfaultfd that allows userland to efficiently
resolve the userfaults it receives via 1) or to manage the virtual
memory in the background

The real advantage of userfaults if compared to regular virtual memory
management of mremap/mprotect is that the userfaults in all their
operations never involve heavyweight structures like vmas (in fact the
userfaultfd runtime load never takes the mmap_sem for writing).

Vmas are not suitable for page- (or hugepage) granular fault tracking
when dealing with virtual address spaces that could span
Terabytes. Too many vmas would be needed for that.

The userfaultfd once opened by invoking the syscall, can also be
passed using unix domain sockets to a manager process, so the same
manager process could handle the userfaults of a multitude of
different processes without them being aware about what is going on
(well of course unless they later try to use the userfaultfd
themselves on the same region the manager is already tracking, which
is a corner case that would currently return -EBUSY).

API

When first opened the userfaultfd must be enabled invoking the
UFFDIO_API ioctl specifying a uffdio_api.api value set to UFFD_API (or
a later API version) which will specify the read/POLLIN protocol
userland intends to speak on the UFFD and the uffdio_api.features
userland requires. The UFFDIO_API ioctl if successful (i.e. if the
requested uffdio_api.api is spoken also by the running kernel and the
requested features are going to be enabled) will return into
uffdio_api.features and uffdio_api.ioctls two 64bit bitmasks of
respectively all the available features of the read(2) protocol and
the generic ioctl available.

The uffdio_api.features bitmask returned by the UFFDIO_API ioctl
defines what memory types are supported by the userfaultfd and what
events, except page fault notifications, may be generated.

If the kernel supports registering userfaultfd ranges on hugetlbfs
virtual memory areas, UFFD_FEATURE_MISSING_HUGETLBFS will be set in
uffdio_api.features. Similarly, UFFD_FEATURE_MISSING_SHMEM will be
set if the kernel supports registering userfaultfd ranges on shared
memory (covering all shmem APIs, i.e. tmpfs, IPCSHM, /dev/zero
MAP_SHARED, memfd_create, etc).

The userland application that wants to use userfaultfd with hugetlbfs
or shared memory need to set the corresponding flag in
uffdio_api.features to enable those features.

If the userland desires to receive notifications for events other than
page faults, it has to verify that uffdio_api.features has appropriate
UFFD_FEATURE_EVENT_* bits set. These events are described in more
detail below in “Non-cooperative userfaultfd” section.

Once the userfaultfd has been enabled the UFFDIO_REGISTER ioctl should
be invoked (if present in the returned uffdio_api.ioctls bitmask) to
register a memory range in the userfaultfd by setting the
uffdio_register structure accordingly. The uffdio_register.mode
bitmask will specify to the kernel which kind of faults to track for
the range (UFFDIO_REGISTER_MODE_MISSING would track missing
pages). The UFFDIO_REGISTER ioctl will return the
uffdio_register.ioctls bitmask of ioctls that are suitable to resolve
userfaults on the range registered. Not all ioctls will necessarily be
supported for all memory types depending on the underlying virtual
memory backend (anonymous memory vs tmpfs vs real filebacked
mappings).

Userland can use the uffdio_register.ioctls to manage the virtual
address space in the background (to add or potentially also remove
memory from the userfaultfd registered range). This means a userfault
could be triggering just before userland maps in the background the
user-faulted page.

The primary ioctl to resolve userfaults is UFFDIO_COPY. That
atomically copies a page into the userfault registered range and wakes
up the blocked userfaults (unless uffdio_copy.mode &
UFFDIO_COPY_MODE_DONTWAKE is set). Other ioctl works similarly to
UFFDIO_COPY. They’re atomic as in guaranteeing that nothing can see an
half copied page since it’ll keep userfaulting until the copy has
finished.

QEMU/KVM

QEMU/KVM is using the userfaultfd syscall to implement postcopy live
migration. Postcopy live migration is one form of memory
externalization consisting of a virtual machine running with part or
all of its memory residing on a different node in the cloud. The
userfaultfd abstraction is generic enough that not a single line of
KVM kernel code had to be modified in order to add postcopy live
migration to QEMU.

Guest async page faults, FOLL_NOWAIT and all other GUP features work
just fine in combination with userfaults. Userfaults trigger async
page faults in the guest scheduler so those guest processes that
aren’t waiting for userfaults (i.e. network bound) can keep running in
the guest vcpus.

It is generally beneficial to run one pass of precopy live migration
just before starting postcopy live migration, in order to avoid
generating userfaults for readonly guest regions.

The implementation of postcopy live migration currently uses one
single bidirectional socket but in the future two different sockets
will be used (to reduce the latency of the userfaults to the minimum
possible without having to decrease /proc/sys/net/ipv4/tcp_wmem).

The QEMU in the source node writes all pages that it knows are missing
in the destination node, into the socket, and the migration thread of
the QEMU running in the destination node runs UFFDIO_COPY|ZEROPAGE
ioctls on the userfaultfd in order to map the received pages into the
guest (UFFDIO_ZEROCOPY is used if the source page was a zero page).

A different postcopy thread in the destination node listens with
poll() to the userfaultfd in parallel. When a POLLIN event is
generated after a userfault triggers, the postcopy thread read() from
the userfaultfd and receives the fault address (or -EAGAIN in case the
userfault was already resolved and waken by a UFFDIO_COPY|ZEROPAGE run
by the parallel QEMU migration thread).

After the QEMU postcopy thread (running in the destination node) gets
the userfault address it writes the information about the missing page
into the socket. The QEMU source node receives the information and
roughly “seeks” to that page address and continues sending all
remaining missing pages from that new page offset. Soon after that
(just the time to flush the tcp_wmem queue through the network) the
migration thread in the QEMU running in the destination node will
receive the page that triggered the userfault and it’ll map it as
usual with the UFFDIO_COPY|ZEROPAGE (without actually knowing if it
was spontaneously sent by the source or if it was an urgent page
requested through a userfault).

By the time the userfaults start, the QEMU in the destination node
doesn’t need to keep any per-page state bitmap relative to the live
migration around and a single per-page bitmap has to be maintained in
the QEMU running in the source node to know which pages are still
missing in the destination node. The bitmap in the source node is
checked to find which missing pages to send in round robin and we seek
over it when receiving incoming userfaults. After sending each page of
course the bitmap is updated accordingly. It’s also useful to avoid
sending the same page twice (in case the userfault is read by the
postcopy thread just before UFFDIO_COPY|ZEROPAGE runs in the migration
thread).

Non-cooperative userfaultfd

When the userfaultfd is monitored by an external manager, the manager
must be able to track changes in the process virtual memory
layout. Userfaultfd can notify the manager about such changes using
the same read(2) protocol as for the page fault notifications. The
manager has to explicitly enable these events by setting appropriate
bits in uffdio_api.features passed to UFFDIO_API ioctl:

	UFFD_FEATURE_EVENT_FORK

	enable userfaultfd hooks for fork(). When this feature is
enabled, the userfaultfd context of the parent process is
duplicated into the newly created process. The manager
receives UFFD_EVENT_FORK with file descriptor of the new
userfaultfd context in the uffd_msg.fork.

	UFFD_FEATURE_EVENT_REMAP

	enable notifications about mremap() calls. When the
non-cooperative process moves a virtual memory area to a
different location, the manager will receive
UFFD_EVENT_REMAP. The uffd_msg.remap will contain the old and
new addresses of the area and its original length.

	UFFD_FEATURE_EVENT_REMOVE

	enable notifications about madvise(MADV_REMOVE) and
madvise(MADV_DONTNEED) calls. The event UFFD_EVENT_REMOVE will
be generated upon these calls to madvise. The uffd_msg.remove
will contain start and end addresses of the removed area.

	UFFD_FEATURE_EVENT_UNMAP

	enable notifications about memory unmapping. The manager will
get UFFD_EVENT_UNMAP with uffd_msg.remove containing start and
end addresses of the unmapped area.

Although the UFFD_FEATURE_EVENT_REMOVE and UFFD_FEATURE_EVENT_UNMAP
are pretty similar, they quite differ in the action expected from the
userfaultfd manager. In the former case, the virtual memory is
removed, but the area is not, the area remains monitored by the
userfaultfd, and if a page fault occurs in that area it will be
delivered to the manager. The proper resolution for such page fault is
to zeromap the faulting address. However, in the latter case, when an
area is unmapped, either explicitly (with munmap() system call), or
implicitly (e.g. during mremap()), the area is removed and in turn the
userfaultfd context for such area disappears too and the manager will
not get further userland page faults from the removed area. Still, the
notification is required in order to prevent manager from using
UFFDIO_COPY on the unmapped area.

Unlike userland page faults which have to be synchronous and require
explicit or implicit wakeup, all the events are delivered
asynchronously and the non-cooperative process resumes execution as
soon as manager executes read(). The userfaultfd manager should
carefully synchronize calls to UFFDIO_COPY with the events
processing. To aid the synchronization, the UFFDIO_COPY ioctl will
return -ENOSPC when the monitored process exits at the time of
UFFDIO_COPY, and -ENOENT, when the non-cooperative process has changed
its virtual memory layout simultaneously with outstanding UFFDIO_COPY
operation.

The current asynchronous model of the event delivery is optimal for
single threaded non-cooperative userfaultfd manager implementations. A
synchronous event delivery model can be added later as a new
userfaultfd feature to facilitate multithreading enhancements of the
non cooperative manager, for example to allow UFFDIO_COPY ioctls to
run in parallel to the event reception. Single threaded
implementations should continue to use the current async event
delivery model instead.

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

如何撰写内核文档

	介绍

	Sphinx Install

	Sphinx Build

	Writing Documentation

	Figures & Images

	Writing kernel-doc comments

	Including kernel-doc comments

	Including uAPI header files

 © Copyright The kernel development community.
 由 Sphinx 1.4.9 创建。

 导航

 	
 索引

 	
 下一页 |

 	
 上一页 |

 	The Linux Kernel v4.20.0 文档 »

 	如何撰写内核文档 »

介绍

The Linux kernel 使用 `Shpinx`_ 从 Documentation 目录中的 reStructuredText [http://docutils.sourceforge.net/rst.html] 文件来生成美观的文档。为了创建HTML或PDF格式的文档，使用 make htmldocs 或 make pdfdocs 命令。生成的文档存放在 Documentation/output 目录下。

The reStructuredText files may contain directives to include structured
documentation comments, or kernel-doc comments, from source files. Usually these
are used to describe the functions and types and design of the code. The
kernel-doc comments have some special structure and formatting, but beyond that
they are also treated as reStructuredText.

Finally, there are thousands of plain text documentation files scattered around
Documentation. Some of these will likely be converted to reStructuredText
over time, but the bulk of them will remain in plain text.

Sphinx Install

The ReST markups currently used by the Documentation/ files are meant to be
built with Sphinx version 1.3 or upper. If you’re desiring to build
PDF outputs, it is recommended to use version 1.4.6 or upper.

There’s a script that checks for the Sphinx requirements. Please see
Checking for Sphinx dependencies for further details.

Most distributions are shipped with Sphinx, but its toolchain is fragile,
and it is not uncommon that upgrading it or some other Python packages
on your machine would cause the documentation build to break.

A way to get rid of that is to use a different version than the one shipped
on your distributions. In order to do that, it is recommended to install
Sphinx inside a virtual environment, using virtualenv-3
or virtualenv, depending on how your distribution packaged Python 3.

注解

	Sphinx versions below 1.5 don’t work properly with Python’s
docutils version 0.13.1 or upper. So, if you’re willing to use
those versions, you should run pip install 'docutils==0.12'.

	It is recommended to use the RTD theme for html output. Depending
on the Sphinx version, it should be installed in separate,
with pip install sphinx_rtd_theme.

	Some ReST pages contain math expressions. Due to the way Sphinx work,
those expressions are written using LaTeX notation. It needs texlive
installed with amdfonts and amsmath in order to evaluate them.

In summary, if you want to install Sphinx version 1.4.9, you should do:

$ virtualenv sphinx_1.4
$. sphinx_1.4/bin/activate
(sphinx_1.4) $ pip install -r Documentation/sphinx/requirements.txt

After running . sphinx_1.4/bin/activate, the prompt will change,
in order to indicate that you’re using the new environment. If you
open a new shell, you need to rerun this command to enter again at
the virtual environment before building the documentation.

Image output

The kernel documentation build system contains an extension that
handles images on both GraphViz and SVG formats (see
Figures & Images).

For it to work, you need to install both GraphViz and ImageMagick
packages. If those packages are not installed, the build system will
still build the documentation, but won’t include any images at the
output.

PDF and LaTeX builds

Such builds are currently supported only with Sphinx versions 1.4 and upper.

For PDF and LaTeX output, you’ll also need XeLaTeX version 3.14159265.

Depending on the distribution, you may also need to install a series of
texlive packages that provide the minimal set of functionalities
required for XeLaTeX to work.

Checking for Sphinx dependencies

There’s a script that automatically check for Sphinx dependencies. If it can
recognize your distribution, it will also give a hint about the install
command line options for your distro:

$./scripts/sphinx-pre-install
Checking if the needed tools for Fedora release 26 (Twenty Six) are available
Warning: better to also install "texlive-luatex85".
You should run:

 sudo dnf install -y texlive-luatex85
 /usr/bin/virtualenv sphinx_1.4
 . sphinx_1.4/bin/activate
 pip install -r Documentation/sphinx/requirements.txt

Can't build as 1 mandatory dependency is missing at ./scripts/sphinx-pre-install line 468.

By default, it checks all the requirements for both html and PDF, including
the requirements for images, math expressions and LaTeX build, and assumes
that a virtual Python environment will be used. The ones needed for html
builds are assumed to be mandatory; the others to be optional.

It supports two optional parameters:

	--no-pdf

	Disable checks for PDF;

	--no-virtualenv

	Use OS packaging for Sphinx instead of Python virtual environment.

Sphinx Build

The usual way to generate the documentation is to run make htmldocs or
make pdfdocs. There are also other formats available, see the documentation
section of make help. The generated documentation is placed in
format-specific subdirectories under Documentation/output.

To generate documentation, Sphinx (sphinx-build) must obviously be
installed. For prettier HTML output, the Read the Docs Sphinx theme
(sphinx_rtd_theme) is used if available. For PDF output you’ll also need
XeLaTeX and convert(1) from ImageMagick (https://www.imagemagick.org).
All of these are widely available and packaged in distributions.

To pass extra options to Sphinx, you can use the SPHINXOPTS make
variable. For example, use make SPHINXOPTS=-v htmldocs to get more verbose
output.

To remove the generated documentation, run make cleandocs.

Writing Documentation

Adding new documentation can be as simple as:

	Add a new .rst file somewhere under Documentation.

	Refer to it from the Sphinx main TOC tree [http://www.sphinx-doc.org/en/stable/markup/toctree.html] in Documentation/index.rst.

This is usually good enough for simple documentation (like the one you’re
reading right now), but for larger documents it may be advisable to create a
subdirectory (or use an existing one). For example, the graphics subsystem
documentation is under Documentation/gpu, split to several .rst files,
and has a separate index.rst (with a toctree of its own) referenced from
the main index.

See the documentation for Sphinx [http://www.sphinx-doc.org/] and reStructuredText [http://docutils.sourceforge.net/rst.html] on what you can do
with them. In particular, the Sphinx reStructuredText Primer [http://www.sphinx-doc.org/en/stable/rest.html] is a good place
to get started with reStructuredText. There are also some Sphinx specific
markup constructs [http://www.sphinx-doc.org/en/stable/markup/index.html].

Specific guidelines for the kernel documentation

Here are some specific guidelines for the kernel documentation:

	Please don’t go overboard with reStructuredText markup. Keep it
simple. For the most part the documentation should be plain text with
just enough consistency in formatting that it can be converted to
other formats.

	Please keep the formatting changes minimal when converting existing
documentation to reStructuredText.

	Also update the content, not just the formatting, when converting
documentation.

	Please stick to this order of heading adornments:

	= with overline for document title:

==============
Document title
==============

	= for chapters:

Chapters
========

	- for sections:

Section

	~ for subsections:

Subsection
~~~~~~~~~~









Although RST doesn’t mandate a specific order (“Rather than imposing a fixed
number and order of section title adornment styles, the order enforced will be
the order as encountered.”), having the higher levels the same overall makes
it easier to follow the documents.



	For inserting fixed width text blocks (for code examples, use case
examples, etc.), use :: for anything that doesn’t really benefit
from syntax highlighting, especially short snippets. Use
.. code-block:: <language> for longer code blocks that benefit
from highlighting.








the C domain

The Sphinx C Domain (name c) is suited for documentation of C API. E.g. a
function prototype:

.. c:function:: int ioctl( int fd, int request )





The C domain of the kernel-doc has some additional features. E.g. you can
rename the reference name of a function with a common name like open or
ioctl:

.. c:function:: int ioctl( int fd, int request )
   :name: VIDIOC_LOG_STATUS





The func-name (e.g. ioctl) remains in the output but the ref-name changed from
ioctl to VIDIOC_LOG_STATUS. The index entry for this function is also
changed to VIDIOC_LOG_STATUS and the function can now referenced by:

:c:func:`VIDIOC_LOG_STATUS`








list tables

We recommend the use of list table formats. The list table formats are
double-stage lists. Compared to the ASCII-art they might not be as
comfortable for
readers of the text files. Their advantage is that they are easy to
create or modify and that the diff of a modification is much more meaningful,
because it is limited to the modified content.

The flat-table is a double-stage list similar to the list-table with
some additional features:


	column-span: with the role cspan a cell can be extended through
additional columns

	row-span: with the role rspan a cell can be extended through
additional rows

	auto span rightmost cell of a table row over the missing cells on the right
side of that table-row.  With Option :fill-cells: this behavior can
changed from auto span to auto fill, which automatically inserts (empty)
cells instead of spanning the last cell.



options:


	:header-rows:   [int] count of header rows

	:stub-columns:  [int] count of stub columns

	:widths:        [[int] [int] ... ] widths of columns

	:fill-cells:    instead of auto-spanning missing cells, insert missing cells



roles:


	:cspan: [int] additional columns (morecols)

	:rspan: [int] additional rows (morerows)



The example below shows how to use this markup.  The first level of the staged
list is the table-row. In the table-row there is only one markup allowed,
the list of the cells in this table-row. Exceptions are comments ( .. )
and targets (e.g. a ref to :ref:`last row <last row>` / last row).

.. flat-table:: table title
   :widths: 2 1 1 3

   * - head col 1
     - head col 2
     - head col 3
     - head col 4

   * - column 1
     - field 1.1
     - field 1.2 with autospan

   * - column 2
     - field 2.1
     - :rspan:`1` :cspan:`1` field 2.2 - 3.3

   * .. _`last row`:

     - column 3





Rendered as:



table title
  
    
    
    Writing kernel-doc comments
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	如何撰写内核文档 »
 
      

    


    
      
          
            
  
Writing kernel-doc comments

The Linux kernel source files may contain structured documentation
comments in the kernel-doc format to describe the functions, types
and design of the code. It is easier to keep documentation up-to-date
when it is embedded in source files.


注解

The kernel-doc format is deceptively similar to javadoc,
gtk-doc or Doxygen, yet distinctively different, for historical
reasons. The kernel source contains tens of thousands of kernel-doc
comments. Please stick to the style described here.



The kernel-doc structure is extracted from the comments, and proper
Sphinx C Domain [http://www.sphinx-doc.org/en/stable/domains.html] function and type descriptions with anchors are
generated from them. The descriptions are filtered for special kernel-doc
highlights and cross-references. See below for details.

Every function that is exported to loadable modules using
EXPORT_SYMBOL or EXPORT_SYMBOL_GPL should have a kernel-doc
comment. Functions and data structures in header files which are intended
to be used by modules should also have kernel-doc comments.

It is good practice to also provide kernel-doc formatted documentation
for functions externally visible to other kernel files (not marked
static). We also recommend providing kernel-doc formatted
documentation for private (file static) routines, for consistency of
kernel source code layout. This is lower priority and at the discretion
of the maintainer of that kernel source file.


How to format kernel-doc comments

The opening comment mark /** is used for kernel-doc comments. The
kernel-doc tool will extract comments marked this way. The rest of
the comment is formatted like a normal multi-line comment with a column
of asterisks on the left side, closing with */ on a line by itself.

The function and type kernel-doc comments should be placed just before
the function or type being described in order to maximise the chance
that somebody changing the code will also change the documentation. The
overview kernel-doc comments may be placed anywhere at the top indentation
level.

Running the kernel-doc tool with increased verbosity and without actual
output generation may be used to verify proper formatting of the
documentation comments. For example:

scripts/kernel-doc -v -none drivers/foo/bar.c





The documentation format is verified by the kernel build when it is
requested to perform extra gcc checks:

make W=n








Function documentation

The general format of a function and function-like macro kernel-doc comment is:

/**
 * function_name() - Brief description of function.
 * @arg1: Describe the first argument.
 * @arg2: Describe the second argument.
 *        One can provide multiple line descriptions
 *        for arguments.
 *
 * A longer description, with more discussion of the function function_name()
 * that might be useful to those using or modifying it. Begins with an
 * empty comment line, and may include additional embedded empty
 * comment lines.
 *
 * The longer description may have multiple paragraphs.
 *
 * Context: Describes whether the function can sleep, what locks it takes,
 *          releases, or expects to be held. It can extend over multiple
 *          lines.
 * Return: Describe the return value of foobar.
 *
 * The return value description can also have multiple paragraphs, and should
 * be placed at the end of the comment block.
 */





The brief description following the function name may span multiple lines, and
ends with an argument description, a blank comment line, or the end of the
comment block.


Function parameters

Each function argument should be described in order, immediately following
the short function description.  Do not leave a blank line between the
function description and the arguments, nor between the arguments.

Each @argument: description may span multiple lines.


注解

If the @argument description has multiple lines, the continuation
of the description should start at the same column as the previous line:

* @argument: some long description
*            that continues on next lines





or:

* @argument:
*         some long description
*         that continues on next lines







If a function has a variable number of arguments, its description should
be written in kernel-doc notation as:

* @...: description








Function context

The context in which a function can be called should be described in a
section named Context. This should include whether the function
sleeps or can be called from interrupt context, as well as what locks
it takes, releases and expects to be held by its caller.

Examples:

* Context: Any context.
* Context: Any context. Takes and releases the RCU lock.
* Context: Any context. Expects <lock> to be held by caller.
* Context: Process context. May sleep if @gfp flags permit.
* Context: Process context. Takes and releases <mutex>.
* Context: Softirq or process context. Takes and releases <lock>, BH-safe.
* Context: Interrupt context.








Return values

The return value, if any, should be described in a dedicated section
named Return.


注解


	The multi-line descriptive text you provide does not recognize
line breaks, so if you try to format some text nicely, as in:

* Return:
* 0 - OK
* -EINVAL - invalid argument
* -ENOMEM - out of memory





this will all run together and produce:

Return: 0 - OK -EINVAL - invalid argument -ENOMEM - out of memory





So, in order to produce the desired line breaks, you need to use a
ReST list, e. g.:

* Return:
* * 0             - OK to runtime suspend the device
* * -EBUSY        - Device should not be runtime suspended







	If the descriptive text you provide has lines that begin with
some phrase followed by a colon, each of those phrases will be taken
as a new section heading, which probably won’t produce the desired
effect.












Structure, union, and enumeration documentation

The general format of a struct, union, and enum kernel-doc comment is:

/**
 * struct struct_name - Brief description.
 * @member1: Description of member1.
 * @member2: Description of member2.
 *           One can provide multiple line descriptions
 *           for members.
 *
 * Description of the structure.
 */





You can replace the struct in the above example with union or
enum  to describe unions or enums. member is used to mean struct
and union member names as well as enumerations in an enum.

The brief description following the structure name may span multiple
lines, and ends with a member description, a blank comment line, or the
end of the comment block.


Members

Members of structs, unions and enums should be documented the same way
as function parameters; they immediately succeed the short description
and may be multi-line.

Inside a struct or union description, you can use the private: and
public: comment tags. Structure fields that are inside a private:
area are not listed in the generated output documentation.

The private: and public: tags must begin immediately following a
/* comment marker. They may optionally include comments between the
: and the ending */ marker.

Example:

/**
 * struct my_struct - short description
 * @a: first member
 * @b: second member
 * @d: fourth member
 *
 * Longer description
 */
struct my_struct {
    int a;
    int b;
/* private: internal use only */
    int c;
/* public: the next one is public */
    int d;
};








Nested structs/unions

It is possible to document nested structs and unions, like:

/**
 * struct nested_foobar - a struct with nested unions and structs
 * @memb1: first member of anonymous union/anonymous struct
 * @memb2: second member of anonymous union/anonymous struct
 * @memb3: third member of anonymous union/anonymous struct
 * @memb4: fourth member of anonymous union/anonymous struct
 * @bar: non-anonymous union
 * @bar.st1: struct st1 inside @bar
 * @bar.st2: struct st2 inside @bar
 * @bar.st1.memb1: first member of struct st1 on union bar
 * @bar.st1.memb2: second member of struct st1 on union bar
 * @bar.st2.memb1: first member of struct st2 on union bar
 * @bar.st2.memb2: second member of struct st2 on union bar
 */
struct nested_foobar {
  /* Anonymous union/struct*/
  union {
    struct {
      int memb1;
      int memb2;
  }
    struct {
      void *memb3;
      int memb4;
    }
  }
  union {
    struct {
      int memb1;
      int memb2;
    } st1;
    struct {
      void *memb1;
      int memb2;
    } st2;
  } bar;
};






注解


	When documenting nested structs or unions, if the struct/union foo
is named, the member bar inside it should be documented as
@foo.bar:

	When the nested struct/union is anonymous, the member bar in it
should be documented as @bar:








In-line member documentation comments

The structure members may also be documented in-line within the definition.
There are two styles, single-line comments where both the opening /** and
closing */ are on the same line, and multi-line comments where they are each
on a line of their own, like all other kernel-doc comments:

/**
 * struct foo - Brief description.
 * @foo: The Foo member.
 */
struct foo {
      int foo;
      /**
       * @bar: The Bar member.
       */
      int bar;
      /**
       * @baz: The Baz member.
       *
       * Here, the member description may contain several paragraphs.
       */
      int baz;
      union {
              /** @foobar: Single line description. */
              int foobar;
      };
      /** @bar2: Description for struct @bar2 inside @foo */
      struct {
              /**
               * @bar2.barbar: Description for @barbar inside @foo.bar2
               */
              int barbar;
      } bar2;
};










Typedef documentation

The general format of a typedef kernel-doc comment is:

/**
 * typedef type_name - Brief description.
 *
 * Description of the type.
 */





Typedefs with function prototypes can also be documented:

/**
 * typedef type_name - Brief description.
 * @arg1: description of arg1
 * @arg2: description of arg2
 *
 * Description of the type.
 *
 * Context: Locking context.
 * Return: Meaning of the return value.
 */
 typedef void (*type_name)(struct v4l2_ctrl *arg1, void *arg2);








Highlights and cross-references

The following special patterns are recognized in the kernel-doc comment
descriptive text and converted to proper reStructuredText markup and Sphinx C
Domain [http://www.sphinx-doc.org/en/stable/domains.html] references.


注意

The below are only recognized within kernel-doc comments,
not within normal reStructuredText documents.




	funcname()

	Function reference.

	@parameter

	Name of a function parameter. (No cross-referencing, just formatting.)

	%CONST

	Name of a constant. (No cross-referencing, just formatting.)

	``literal``

	A literal block that should be handled as-is. The output will use a
monospaced font.

Useful if you need to use special characters that would otherwise have some
meaning either by kernel-doc script of by reStructuredText.

This is particularly useful if you need to use things like %ph inside
a function description.



	$ENVVAR

	Name of an environment variable. (No cross-referencing, just formatting.)

	&struct name

	Structure reference.

	&enum name

	Enum reference.

	&typedef name

	Typedef reference.

	&struct_name->member or &struct_name.member

	Structure or union member reference. The cross-reference will be to the struct
or union definition, not the member directly.

	&name

	A generic type reference. Prefer using the full reference described above
instead. This is mostly for legacy comments.




Cross-referencing from reStructuredText

To cross-reference the functions and types defined in the kernel-doc comments
from reStructuredText documents, please use the Sphinx C Domain [http://www.sphinx-doc.org/en/stable/domains.html]
references. For example:

See function :c:func:`foo` and struct/union/enum/typedef :c:type:`bar`.





While the type reference works with just the type name, without the
struct/union/enum/typedef part in front, you may want to use:

See :c:type:`struct foo <foo>`.
See :c:type:`union bar <bar>`.
See :c:type:`enum baz <baz>`.
See :c:type:`typedef meh <meh>`.





This will produce prettier links, and is in line with how kernel-doc does the
cross-references.

For further details, please refer to the Sphinx C Domain [http://www.sphinx-doc.org/en/stable/domains.html] documentation.






Overview documentation comments

To facilitate having source code and comments close together, you can include
kernel-doc documentation blocks that are free-form comments instead of being
kernel-doc for functions, structures, unions, enums, or typedefs. This could be
used for something like a theory of operation for a driver or library code, for
example.

This is done by using a DOC: section keyword with a section title.

The general format of an overview or high-level documentation comment is:

/**
 * DOC: Theory of Operation
 *
 * The whizbang foobar is a dilly of a gizmo. It can do whatever you
 * want it to do, at any time. It reads your mind. Here's how it works.
 *
 * foo bar splat
 *
 * The only drawback to this gizmo is that is can sometimes damage
 * hardware, software, or its subject(s).
 */





The title following DOC: acts as a heading within the source file, but also
as an identifier for extracting the documentation comment. Thus, the title must
be unique within the file.






Including kernel-doc comments

The documentation comments may be included in any of the reStructuredText
documents using a dedicated kernel-doc Sphinx directive extension.

The kernel-doc directive is of the format:

.. kernel-doc:: source
   :option:





The source is the path to a source file, relative to the kernel source
tree. The following directive options are supported:


	export: [source-pattern ...]

	Include documentation for all functions in source that have been exported
using EXPORT_SYMBOL or EXPORT_SYMBOL_GPL either in source or in any
of the files specified by source-pattern.

The source-pattern is useful when the kernel-doc comments have been placed
in header files, while EXPORT_SYMBOL and EXPORT_SYMBOL_GPL are next to
the function definitions.

Examples:

.. kernel-doc:: lib/bitmap.c
   :export:

.. kernel-doc:: include/net/mac80211.h
   :export: net/mac80211/*.c







	internal: [source-pattern ...]

	Include documentation for all functions and types in source that have
not been exported using EXPORT_SYMBOL or EXPORT_SYMBOL_GPL either
in source or in any of the files specified by source-pattern.

Example:

.. kernel-doc:: drivers/gpu/drm/i915/intel_audio.c
   :internal:







	doc: title

	Include documentation for the DOC: paragraph identified by title in
source. Spaces are allowed in title; do not quote the title. The title
is only used as an identifier for the paragraph, and is not included in the
output. Please make sure to have an appropriate heading in the enclosing
reStructuredText document.

Example:

.. kernel-doc:: drivers/gpu/drm/i915/intel_audio.c
   :doc: High Definition Audio over HDMI and Display Port







	functions: [ function ...]

	Include documentation for each function in source.
If no function if specified, the documentaion for all functions
and types in the source will be included.

Examples:

.. kernel-doc:: lib/bitmap.c
   :functions: bitmap_parselist bitmap_parselist_user

.. kernel-doc:: lib/idr.c
   :functions:









Without options, the kernel-doc directive includes all documentation comments
from the source file.

The kernel-doc extension is included in the kernel source tree, at
Documentation/sphinx/kerneldoc.py. Internally, it uses the
scripts/kernel-doc script to extract the documentation comments from the
source.


How to use kernel-doc to generate man pages

If you just want to use kernel-doc to generate man pages you can do this
from the kernel git tree:

$ scripts/kernel-doc -man $(git grep -l '/\*\*' -- :^Documentation :^tools) | scripts/split-man.pl /tmp/man











          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Including uAPI header files
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	如何撰写内核文档 »
 
      

    


    
      
          
            
  
Including uAPI header files

Sometimes, it is useful to include header files and C example codes in
order to describe the userspace API and to generate cross-references
between the code and the documentation. Adding cross-references for
userspace API files has an additional vantage: Sphinx will generate warnings
if a symbol is not found at the documentation. That helps to keep the
uAPI documentation in sync with the Kernel changes.
The parse_headers.pl provide a way to generate such
cross-references. It has to be called via Makefile, while building the
documentation. Please see Documentation/media/Makefile for an example
about how to use it inside the Kernel tree.


parse_headers.pl


NAME

parse_headers.pl - parse a C file, in order to identify functions, structs,
enums and defines and create cross-references to a Sphinx book.




SYNOPSIS

parse_headers.pl [<options>] <C_FILE> <OUT_FILE> [<EXCEPTIONS_FILE>]

Where <options> can be: –debug, –help or –usage.




OPTIONS

–debug


Put the script in verbose mode, useful for debugging.


–usage


Prints a brief help message and exits.


–help


Prints a more detailed help message and exits.





DESCRIPTION

Convert a C header or source file (C_FILE), into a ReStructured Text
included via ..parsed-literal block with cross-references for the
documentation files that describe the API. It accepts an optional
EXCEPTIONS_FILE with describes what elements will be either ignored or
be pointed to a non-default reference.

The output is written at the (OUT_FILE).

It is capable of identifying defines, functions, structs, typedefs,
enums and enum symbols and create cross-references for all of them.
It is also capable of distinguish #define used for specifying a Linux
ioctl.

The EXCEPTIONS_FILE contain two types of statements: ignore or replace.

The syntax for the ignore tag is:

ignore type name

The ignore means that it won’t generate cross references for a
name symbol of type type.

The syntax for the replace tag is:

replace type name new_value

The replace means that it will generate cross references for a
name symbol of type type, but, instead of using the default
replacement rule, it will use new_value.

For both statements, type can be either one of the following:

ioctl


The ignore or replace statement will apply to ioctl definitions like:

#define        VIDIOC_DBG_S_REGISTER    _IOW(‘V’, 79, struct v4l2_dbg_register)




define


The ignore or replace statement will apply to any other #define found
at C_FILE.


typedef


The ignore or replace statement will apply to typedef statements at C_FILE.


struct


The ignore or replace statement will apply to the name of struct statements
at C_FILE.


enum


The ignore or replace statement will apply to the name of enum statements
at C_FILE.


symbol


The ignore or replace statement will apply to the name of enum value
at C_FILE.

For replace statements, new_value will automatically use :c:type:
references for typedef, enum and struct types. It will use :ref:
for ioctl, define and symbol types. The type of reference can
also be explicitly defined at the replace statement.







EXAMPLES

ignore define _VIDEODEV2_H

Ignore a #define _VIDEODEV2_H at the C_FILE.

ignore symbol PRIVATE

On a struct like:

enum foo { BAR1, BAR2, PRIVATE };

It won’t generate cross-references for PRIVATE.

replace symbol BAR1 :c:type:`foo`
replace symbol BAR2 :c:type:`foo`

On a struct like:

enum foo { BAR1, BAR2, PRIVATE };

It will make the BAR1 and BAR2 enum symbols to cross reference the foo
symbol at the C domain.




BUGS

Report bugs to Mauro Carvalho Chehab <mchehab@kernel.org>




COPYRIGHT

Copyright (c) 2016 by Mauro Carvalho Chehab <mchehab+samsung@kernel.org>.

License GPLv2: GNU GPL version 2 <http://gnu.org/licenses/gpl.html>.

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Kernel Hacking Guides
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »
 
      

    


    
      
          
            
  
Kernel Hacking Guides



	Unreliable Guide To Hacking The Linux Kernel
	Introduction

	The Players

	Some Basic Rules

	ioctls: Not writing a new system call

	Recipes for Deadlock

	Common Routines

	Wait Queues include/linux/wait.h

	Atomic Operations

	Symbols

	Routines and Conventions

	Putting Your Stuff in the Kernel

	Kernel Cantrips

	Thanks





	Unreliable Guide To Locking
	Introduction

	The Problem With Concurrency

	Locking in the Linux Kernel

	Hard IRQ Context

	Cheat Sheet For Locking

	The trylock Functions

	Common Examples

	Common Problems

	Locking Speed

	What Functions Are Safe To Call From Interrupts?

	Mutex API reference

	Futex API reference

	Further reading

	Thanks

	Glossary













          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Unreliable Guide To Hacking The Linux Kernel
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Kernel Hacking Guides »
 
      

    


    
      
          
            
  
Unreliable Guide To Hacking The Linux Kernel





	Author:	Rusty Russell






Introduction

Welcome, gentle reader, to Rusty’s Remarkably Unreliable Guide to Linux
Kernel Hacking. This document describes the common routines and general
requirements for kernel code: its goal is to serve as a primer for Linux
kernel development for experienced C programmers. I avoid implementation
details: that’s what the code is for, and I ignore whole tracts of
useful routines.

Before you read this, please understand that I never wanted to write
this document, being grossly under-qualified, but I always wanted to
read it, and this was the only way. I hope it will grow into a
compendium of best practice, common starting points and random
information.




The Players

At any time each of the CPUs in a system can be:


	not associated with any process, serving a hardware interrupt;

	not associated with any process, serving a softirq or tasklet;

	running in kernel space, associated with a process (user context);

	running a process in user space.



There is an ordering between these. The bottom two can preempt each
other, but above that is a strict hierarchy: each can only be preempted
by the ones above it. For example, while a softirq is running on a CPU,
no other softirq will preempt it, but a hardware interrupt can. However,
any other CPUs in the system execute independently.

We’ll see a number of ways that the user context can block interrupts,
to become truly non-preemptable.


User Context

User context is when you are coming in from a system call or other trap:
like userspace, you can be preempted by more important tasks and by
interrupts. You can sleep, by calling schedule().


注解

You are always in user context on module load and unload, and on
operations on the block device layer.



In user context, the current pointer (indicating the task we are
currently executing) is valid, and in_interrupt()
(include/linux/preempt.h) is false.


警告

Beware that if you have preemption or softirqs disabled (see below),
in_interrupt() will return a false positive.






Hardware Interrupts (Hard IRQs)

Timer ticks, network cards and keyboard are examples of real hardware
which produce interrupts at any time. The kernel runs interrupt
handlers, which services the hardware. The kernel guarantees that this
handler is never re-entered: if the same interrupt arrives, it is queued
(or dropped). Because it disables interrupts, this handler has to be
fast: frequently it simply acknowledges the interrupt, marks a ‘software
interrupt’ for execution and exits.

You can tell you are in a hardware interrupt, because
in_irq() returns true.


警告

Beware that this will return a false positive if interrupts are
disabled (see below).






Software Interrupt Context: Softirqs and Tasklets

Whenever a system call is about to return to userspace, or a hardware
interrupt handler exits, any ‘software interrupts’ which are marked
pending (usually by hardware interrupts) are run (kernel/softirq.c).

Much of the real interrupt handling work is done here. Early in the
transition to SMP, there were only ‘bottom halves’ (BHs), which didn’t
take advantage of multiple CPUs. Shortly after we switched from wind-up
computers made of match-sticks and snot, we abandoned this limitation
and switched to ‘softirqs’.

include/linux/interrupt.h lists the different softirqs. A very
important softirq is the timer softirq (include/linux/timer.h): you
can register to have it call functions for you in a given length of
time.

Softirqs are often a pain to deal with, since the same softirq will run
simultaneously on more than one CPU. For this reason, tasklets
(include/linux/interrupt.h) are more often used: they are
dynamically-registrable (meaning you can have as many as you want), and
they also guarantee that any tasklet will only run on one CPU at any
time, although different tasklets can run simultaneously.


警告

The name ‘tasklet’ is misleading: they have nothing to do with
‘tasks’, and probably more to do with some bad vodka Alexey
Kuznetsov had at the time.



You can tell you are in a softirq (or tasklet) using the
in_softirq() macro (include/linux/preempt.h).


警告

Beware that this will return a false positive if a
botton half lock is held.








Some Basic Rules


	No memory protection

	If you corrupt memory, whether in user context or interrupt context,
the whole machine will crash. Are you sure you can’t do what you
want in userspace?

	No floating point or MMX

	The FPU context is not saved; even in user context the FPU state
probably won’t correspond with the current process: you would mess
with some user process’ FPU state. If you really want to do this,
you would have to explicitly save/restore the full FPU state (and
avoid context switches). It is generally a bad idea; use fixed point
arithmetic first.

	A rigid stack limit

	Depending on configuration options the kernel stack is about 3K to
6K for most 32-bit architectures: it’s about 14K on most 64-bit
archs, and often shared with interrupts so you can’t use it all.
Avoid deep recursion and huge local arrays on the stack (allocate
them dynamically instead).

	The Linux kernel is portable

	Let’s keep it that way. Your code should be 64-bit clean, and
endian-independent. You should also minimize CPU specific stuff,
e.g. inline assembly should be cleanly encapsulated and minimized to
ease porting. Generally it should be restricted to the
architecture-dependent part of the kernel tree.






ioctls: Not writing a new system call

A system call generally looks like this:

asmlinkage long sys_mycall(int arg)
{
        return 0;
}





First, in most cases you don’t want to create a new system call. You
create a character device and implement an appropriate ioctl for it.
This is much more flexible than system calls, doesn’t have to be entered
in every architecture’s include/asm/unistd.h and
arch/kernel/entry.S file, and is much more likely to be accepted by
Linus.

If all your routine does is read or write some parameter, consider
implementing a sysfs() interface instead.

Inside the ioctl you’re in user context to a process. When a error
occurs you return a negated errno (see
include/uapi/asm-generic/errno-base.h,
include/uapi/asm-generic/errno.h and include/linux/errno.h),
otherwise you return 0.

After you slept you should check if a signal occurred: the Unix/Linux
way of handling signals is to temporarily exit the system call with the
-ERESTARTSYS error. The system call entry code will switch back to
user context, process the signal handler and then your system call will
be restarted (unless the user disabled that). So you should be prepared
to process the restart, e.g. if you’re in the middle of manipulating
some data structure.

if (signal_pending(current))
        return -ERESTARTSYS;





If you’re doing longer computations: first think userspace. If you
really want to do it in kernel you should regularly check if you need
to give up the CPU (remember there is cooperative multitasking per CPU).
Idiom:

cond_resched(); /* Will sleep */





A short note on interface design: the UNIX system call motto is “Provide
mechanism not policy”.




Recipes for Deadlock

You cannot call any routines which may sleep, unless:


	You are in user context.

	You do not own any spinlocks.

	You have interrupts enabled (actually, Andi Kleen says that the
scheduling code will enable them for you, but that’s probably not
what you wanted).



Note that some functions may sleep implicitly: common ones are the user
space access functions (*_user) and memory allocation functions
without GFP_ATOMIC.

You should always compile your kernel CONFIG_DEBUG_ATOMIC_SLEEP on,
and it will warn you if you break these rules. If you do break the
rules, you will eventually lock up your box.

Really.




Common Routines


printk()

Defined in include/linux/printk.h

printk() feeds kernel messages to the console, dmesg, and
the syslog daemon. It is useful for debugging and reporting errors, and
can be used inside interrupt context, but use with caution: a machine
which has its console flooded with printk messages is unusable. It uses
a format string mostly compatible with ANSI C printf, and C string
concatenation to give it a first “priority” argument:

printk(KERN_INFO "i = %u\n", i);





See include/linux/kern_levels.h; for other KERN_ values; these are
interpreted by syslog as the level. Special case: for printing an IP
address use:

__be32 ipaddress;
printk(KERN_INFO "my ip: %pI4\n", &ipaddress);





printk() internally uses a 1K buffer and does not catch
overruns. Make sure that will be enough.


注解

You will know when you are a real kernel hacker when you start
typoing printf as printk in your user programs :)




注解

Another sidenote: the original Unix Version 6 sources had a comment
on top of its printf function: “Printf should not be used for
chit-chat”. You should follow that advice.






copy_to_user() / copy_from_user() / get_user() / put_user()

Defined in include/linux/uaccess.h / asm/uaccess.h

[SLEEPS]

put_user() and get_user() are used to get
and put single values (such as an int, char, or long) from and to
userspace. A pointer into userspace should never be simply dereferenced:
data should be copied using these routines. Both return -EFAULT or
0.

copy_to_user() and copy_from_user() are
more general: they copy an arbitrary amount of data to and from
userspace.


警告

Unlike put_user() and get_user(), they
return the amount of uncopied data (ie. 0 still means success).



[Yes, this moronic interface makes me cringe. The flamewar comes up
every year or so. –RR.]

The functions may sleep implicitly. This should never be called outside
user context (it makes no sense), with interrupts disabled, or a
spinlock held.




kmalloc()/kfree()

Defined in include/linux/slab.h

[MAY SLEEP: SEE BELOW]

These routines are used to dynamically request pointer-aligned chunks of
memory, like malloc and free do in userspace, but
kmalloc() takes an extra flag word. Important values:


	GFP_KERNEL

	May sleep and swap to free memory. Only allowed in user context, but
is the most reliable way to allocate memory.

	GFP_ATOMIC

	Don’t sleep. Less reliable than GFP_KERNEL, but may be called
from interrupt context. You should really have a good
out-of-memory error-handling strategy.

	GFP_DMA

	Allocate ISA DMA lower than 16MB. If you don’t know what that is you
don’t need it. Very unreliable.



If you see a sleeping function called from invalid context warning
message, then maybe you called a sleeping allocation function from
interrupt context without GFP_ATOMIC. You should really fix that.
Run, don’t walk.

If you are allocating at least PAGE_SIZE (asm/page.h or
asm/page_types.h) bytes, consider using __get_free_pages()
(include/linux/gfp.h). It takes an order argument (0 for page sized,
1 for double page, 2 for four pages etc.) and the same memory priority
flag word as above.

If you are allocating more than a page worth of bytes you can use
vmalloc(). It’ll allocate virtual memory in the kernel
map. This block is not contiguous in physical memory, but the MMU makes
it look like it is for you (so it’ll only look contiguous to the CPUs,
not to external device drivers). If you really need large physically
contiguous memory for some weird device, you have a problem: it is
poorly supported in Linux because after some time memory fragmentation
in a running kernel makes it hard. The best way is to allocate the block
early in the boot process via the alloc_bootmem()
routine.

Before inventing your own cache of often-used objects consider using a
slab cache in include/linux/slab.h




current()

Defined in include/asm/current.h

This global variable (really a macro) contains a pointer to the current
task structure, so is only valid in user context. For example, when a
process makes a system call, this will point to the task structure of
the calling process. It is not NULL in interrupt context.




mdelay()/udelay()

Defined in include/asm/delay.h / include/linux/delay.h

The udelay() and ndelay() functions can be
used for small pauses. Do not use large values with them as you risk
overflow - the helper function mdelay() is useful here, or
consider msleep().




cpu_to_be32()/be32_to_cpu()/cpu_to_le32()/le32_to_cpu()

Defined in include/asm/byteorder.h

The cpu_to_be32() family (where the “32” can be replaced
by 64 or 16, and the “be” can be replaced by “le”) are the general way
to do endian conversions in the kernel: they return the converted value.
All variations supply the reverse as well:
be32_to_cpu(), etc.

There are two major variations of these functions: the pointer
variation, such as cpu_to_be32p(), which take a pointer
to the given type, and return the converted value. The other variation
is the “in-situ” family, such as cpu_to_be32s(), which
convert value referred to by the pointer, and return void.




local_irq_save()/local_irq_restore()

Defined in include/linux/irqflags.h

These routines disable hard interrupts on the local CPU, and restore
them. They are reentrant; saving the previous state in their one
unsigned long flags argument. If you know that interrupts are
enabled, you can simply use local_irq_disable() and
local_irq_enable().




local_bh_disable()/local_bh_enable()

Defined in include/linux/bottom_half.h

These routines disable soft interrupts on the local CPU, and restore
them. They are reentrant; if soft interrupts were disabled before, they
will still be disabled after this pair of functions has been called.
They prevent softirqs and tasklets from running on the current CPU.




smp_processor_id()

Defined in include/linux/smp.h

get_cpu() disables preemption (so you won’t suddenly get
moved to another CPU) and returns the current processor number, between
0 and NR_CPUS. Note that the CPU numbers are not necessarily
continuous. You return it again with put_cpu() when you
are done.

If you know you cannot be preempted by another task (ie. you are in
interrupt context, or have preemption disabled) you can use
smp_processor_id().




__init/__exit/__initdata

Defined in  include/linux/init.h

After boot, the kernel frees up a special section; functions marked with
__init and data structures marked with __initdata are dropped
after boot is complete: similarly modules discard this memory after
initialization. __exit is used to declare a function which is only
required on exit: the function will be dropped if this file is not
compiled as a module. See the header file for use. Note that it makes no
sense for a function marked with __init to be exported to modules
with EXPORT_SYMBOL() or EXPORT_SYMBOL_GPL()- this
will break.




__initcall()/module_init()

Defined in  include/linux/init.h / include/linux/module.h

Many parts of the kernel are well served as a module
(dynamically-loadable parts of the kernel). Using the
module_init() and module_exit() macros it
is easy to write code without #ifdefs which can operate both as a module
or built into the kernel.

The module_init() macro defines which function is to be
called at module insertion time (if the file is compiled as a module),
or at boot time: if the file is not compiled as a module the
module_init() macro becomes equivalent to
__initcall(), which through linker magic ensures that
the function is called on boot.

The function can return a negative error number to cause module loading
to fail (unfortunately, this has no effect if the module is compiled
into the kernel). This function is called in user context with
interrupts enabled, so it can sleep.




module_exit()

Defined in  include/linux/module.h

This macro defines the function to be called at module removal time (or
never, in the case of the file compiled into the kernel). It will only
be called if the module usage count has reached zero. This function can
also sleep, but cannot fail: everything must be cleaned up by the time
it returns.

Note that this macro is optional: if it is not present, your module will
not be removable (except for ‘rmmod -f’).




try_module_get()/module_put()

Defined in include/linux/module.h

These manipulate the module usage count, to protect against removal (a
module also can’t be removed if another module uses one of its exported
symbols: see below). Before calling into module code, you should call
try_module_get() on that module: if it fails, then the
module is being removed and you should act as if it wasn’t there.
Otherwise, you can safely enter the module, and call
module_put() when you’re finished.

Most registerable structures have an owner field, such as in the
struct file_operations structure.
Set this field to the macro THIS_MODULE.






Wait Queues include/linux/wait.h

[SLEEPS]

A wait queue is used to wait for someone to wake you up when a certain
condition is true. They must be used carefully to ensure there is no
race condition. You declare a wait_queue_head_t, and then processes
which want to wait for that condition declare a wait_queue_entry_t
referring to themselves, and place that in the queue.


Declaring

You declare a wait_queue_head_t using the
DECLARE_WAIT_QUEUE_HEAD() macro, or using the
init_waitqueue_head() routine in your initialization
code.




Queuing

Placing yourself in the waitqueue is fairly complex, because you must
put yourself in the queue before checking the condition. There is a
macro to do this: wait_event_interruptible()
(include/linux/wait.h) The first argument is the wait queue head, and
the second is an expression which is evaluated; the macro returns 0 when
this expression is true, or -ERESTARTSYS if a signal is received. The
wait_event() version ignores signals.




Waking Up Queued Tasks

Call wake_up() (include/linux/wait.h), which will wake
up every process in the queue. The exception is if one has
TASK_EXCLUSIVE set, in which case the remainder of the queue will
not be woken. There are other variants of this basic function available
in the same header.






Atomic Operations

Certain operations are guaranteed atomic on all platforms. The first
class of operations work on atomic_t (include/asm/atomic.h);
this contains a signed integer (at least 32 bits long), and you must use
these functions to manipulate or read atomic_t variables.
atomic_read() and atomic_set() get and set
the counter, atomic_add(), atomic_sub(),
atomic_inc(), atomic_dec(), and
atomic_dec_and_test() (returns true if it was
decremented to zero).

Yes. It returns true (i.e. != 0) if the atomic variable is zero.

Note that these functions are slower than normal arithmetic, and so
should not be used unnecessarily.

The second class of atomic operations is atomic bit operations on an
unsigned long, defined in include/linux/bitops.h. These
operations generally take a pointer to the bit pattern, and a bit
number: 0 is the least significant bit. set_bit(),
clear_bit() and change_bit() set, clear,
and flip the given bit. test_and_set_bit(),
test_and_clear_bit() and
test_and_change_bit() do the same thing, except return
true if the bit was previously set; these are particularly useful for
atomically setting flags.

It is possible to call these operations with bit indices greater than
BITS_PER_LONG. The resulting behavior is strange on big-endian
platforms though so it is a good idea not to do this.




Symbols

Within the kernel proper, the normal linking rules apply (ie. unless a
symbol is declared to be file scope with the static keyword, it can
be used anywhere in the kernel). However, for modules, a special
exported symbol table is kept which limits the entry points to the
kernel proper. Modules can also export symbols.


EXPORT_SYMBOL()

Defined in include/linux/export.h

This is the classic method of exporting a symbol: dynamically loaded
modules will be able to use the symbol as normal.




EXPORT_SYMBOL_GPL()

Defined in include/linux/export.h

Similar to EXPORT_SYMBOL() except that the symbols
exported by EXPORT_SYMBOL_GPL() can only be seen by
modules with a MODULE_LICENSE() that specifies a GPL
compatible license. It implies that the function is considered an
internal implementation issue, and not really an interface. Some
maintainers and developers may however require EXPORT_SYMBOL_GPL()
when adding any new APIs or functionality.






Routines and Conventions


Double-linked lists include/linux/list.h

There used to be three sets of linked-list routines in the kernel
headers, but this one is the winner. If you don’t have some particular
pressing need for a single list, it’s a good choice.

In particular, list_for_each_entry() is useful.




Return Conventions

For code called in user context, it’s very common to defy C convention,
and return 0 for success, and a negative error number (eg. -EFAULT) for
failure. This can be unintuitive at first, but it’s fairly widespread in
the kernel.

Using ERR_PTR() (include/linux/err.h) to encode a
negative error number into a pointer, and IS_ERR() and
PTR_ERR() to get it back out again: avoids a separate
pointer parameter for the error number. Icky, but in a good way.




Breaking Compilation

Linus and the other developers sometimes change function or structure
names in development kernels; this is not done just to keep everyone on
their toes: it reflects a fundamental change (eg. can no longer be
called with interrupts on, or does extra checks, or doesn’t do checks
which were caught before). Usually this is accompanied by a fairly
complete note to the linux-kernel mailing list; search the archive.
Simply doing a global replace on the file usually makes things worse.




Initializing structure members

The preferred method of initializing structures is to use designated
initialisers, as defined by ISO C99, eg:

static struct block_device_operations opt_fops = {
        .open               = opt_open,
        .release            = opt_release,
        .ioctl              = opt_ioctl,
        .check_media_change = opt_media_change,
};





This makes it easy to grep for, and makes it clear which structure
fields are set. You should do this because it looks cool.




GNU Extensions

GNU Extensions are explicitly allowed in the Linux kernel. Note that
some of the more complex ones are not very well supported, due to lack
of general use, but the following are considered standard (see the GCC
info page section “C Extensions” for more details - Yes, really the info
page, the man page is only a short summary of the stuff in info).


	Inline functions

	Statement expressions (ie. the ({ and }) constructs).

	Declaring attributes of a function / variable / type
(__attribute__)

	typeof

	Zero length arrays

	Macro varargs

	Arithmetic on void pointers

	Non-Constant initializers

	Assembler Instructions (not outside arch/ and include/asm/)

	Function names as strings (__func__).

	__builtin_constant_p()



Be wary when using long long in the kernel, the code gcc generates for
it is horrible and worse: division and multiplication does not work on
i386 because the GCC runtime functions for it are missing from the
kernel environment.




C++

Using C++ in the kernel is usually a bad idea, because the kernel does
not provide the necessary runtime environment and the include files are
not tested for it. It is still possible, but not recommended. If you
really want to do this, forget about exceptions at least.




#if

It is generally considered cleaner to use macros in header files (or at
the top of .c files) to abstract away functions rather than using `#if’
pre-processor statements throughout the source code.






Putting Your Stuff in the Kernel

In order to get your stuff into shape for official inclusion, or even to
make a neat patch, there’s administrative work to be done:


	Figure out whose pond you’ve been pissing in. Look at the top of the
source files, inside the MAINTAINERS file, and last of all in the
CREDITS file. You should coordinate with this person to make sure
you’re not duplicating effort, or trying something that’s already
been rejected.

Make sure you put your name and EMail address at the top of any files
you create or mangle significantly. This is the first place people
will look when they find a bug, or when they want to make a change.



	Usually you want a configuration option for your kernel hack. Edit
Kconfig in the appropriate directory. The Config language is
simple to use by cut and paste, and there’s complete documentation in
Documentation/kbuild/kconfig-language.txt.

In your description of the option, make sure you address both the
expert user and the user who knows nothing about your feature.
Mention incompatibilities and issues here. Definitely end your
description with “if in doubt, say N” (or, occasionally, `Y’); this
is for people who have no idea what you are talking about.



	Edit the Makefile: the CONFIG variables are exported here so you
can usually just add a “obj-$(CONFIG_xxx) += xxx.o” line. The syntax
is documented in Documentation/kbuild/makefiles.txt.



	Put yourself in CREDITS if you’ve done something noteworthy,
usually beyond a single file (your name should be at the top of the
source files anyway). MAINTAINERS means you want to be consulted
when changes are made to a subsystem, and hear about bugs; it implies
a more-than-passing commitment to some part of the code.



	Finally, don’t forget to read
Documentation/process/submitting-patches.rst and possibly
Documentation/process/submitting-drivers.rst.








Kernel Cantrips

Some favorites from browsing the source. Feel free to add to this list.

arch/x86/include/asm/delay.h:

#define ndelay(n) (__builtin_constant_p(n) ? \
        ((n) > 20000 ? __bad_ndelay() : __const_udelay((n) * 5ul)) : \
        __ndelay(n))





include/linux/fs.h:

/*
 * Kernel pointers have redundant information, so we can use a
 * scheme where we can return either an error code or a dentry
 * pointer with the same return value.
 *
 * This should be a per-architecture thing, to allow different
 * error and pointer decisions.
 */
 #define ERR_PTR(err)    ((void *)((long)(err)))
 #define PTR_ERR(ptr)    ((long)(ptr))
 #define IS_ERR(ptr)     ((unsigned long)(ptr) > (unsigned long)(-1000))





arch/x86/include/asm/uaccess_32.h::

#define copy_to_user(to,from,n)                         \
        (__builtin_constant_p(n) ?                      \
         __constant_copy_to_user((to),(from),(n)) :     \
         __generic_copy_to_user((to),(from),(n)))





arch/sparc/kernel/head.S::

/*
 * Sun people can't spell worth damn. "compatability" indeed.
 * At least we *know* we can't spell, and use a spell-checker.
 */

/* Uh, actually Linus it is I who cannot spell. Too much murky
 * Sparc assembly will do this to ya.
 */
C_LABEL(cputypvar):
        .asciz "compatibility"

/* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
        .align 4
C_LABEL(cputypvar_sun4m):
        .asciz "compatible"





arch/sparc/lib/checksum.S::

/* Sun, you just can't beat me, you just can't.  Stop trying,
 * give up.  I'm serious, I am going to kick the living shit
 * out of you, game over, lights out.
 */








Thanks

Thanks to Andi Kleen for the idea, answering my questions, fixing my
mistakes, filling content, etc. Philipp Rumpf for more spelling and
clarity fixes, and some excellent non-obvious points. Werner Almesberger
for giving me a great summary of disable_irq(), and Jes
Sorensen and Andrea Arcangeli added caveats. Michael Elizabeth Chastain
for checking and adding to the Configure section. Telsa Gwynne for
teaching me DocBook.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Unreliable Guide To Locking
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Kernel Hacking Guides »
 
      

    


    
      
          
            
  
Unreliable Guide To Locking





	Author:	Rusty Russell






Introduction

Welcome, to Rusty’s Remarkably Unreliable Guide to Kernel Locking
issues. This document describes the locking systems in the Linux Kernel
in 2.6.

With the wide availability of HyperThreading, and preemption in the
Linux Kernel, everyone hacking on the kernel needs to know the
fundamentals of concurrency and locking for SMP.




The Problem With Concurrency

(Skip this if you know what a Race Condition is).

In a normal program, you can increment a counter like so:

very_important_count++;





This is what they would expect to happen:


Expected Results
  
    
    
    Linux Tracing Technologies
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »
 
      

    


    
      
          
            
  
Linux Tracing Technologies



	Function Tracer Design
	Introduction

	Prerequisites

	HAVE_FUNCTION_TRACER

	HAVE_FUNCTION_GRAPH_TRACER

	HAVE_FUNCTION_GRAPH_FP_TEST

	HAVE_FUNCTION_GRAPH_RET_ADDR_PTR

	HAVE_FTRACE_NMI_ENTER

	HAVE_SYSCALL_TRACEPOINTS

	HAVE_FTRACE_MCOUNT_RECORD

	HAVE_DYNAMIC_FTRACE

	HAVE_DYNAMIC_FTRACE + HAVE_FUNCTION_GRAPH_TRACER





	Notes on Analysing Behaviour Using Events and Tracepoints
	1. Introduction

	2. Listing Available Events

	3. Enabling Events

	4. Event Filtering

	5. Analysing Event Variances with PCL

	6. Higher-Level Analysis with Helper Scripts

	7. Lower-Level Analysis with PCL





	ftrace - Function Tracer
	Introduction

	Implementation Details

	The File System

	The Tracers

	Examples of using the tracer

	Output format:

	Latency trace format

	trace_options

	irqsoff

	preemptoff

	preemptirqsoff

	wakeup

	wakeup_rt

	Latency tracing and events

	Hardware Latency Detector

	function

	Single thread tracing

	function graph tracer

	dynamic ftrace

	Dynamic ftrace with the function graph tracer

	ftrace_enabled

	Filter commands

	trace_pipe

	trace entries

	Snapshot

	Instances

	Stack trace

	More





	Using ftrace to hook to functions
	Introduction

	The ftrace context

	The ftrace_ops structure

	The callback function

	The ftrace FLAGS

	Filtering which functions to trace





	Kprobe-based Event Tracing
	Overview

	Synopsis of kprobe_events

	Types

	Per-Probe Event Filtering

	Event Profiling

	Usage examples





	Uprobe-tracer: Uprobe-based Event Tracing
	Overview

	Synopsis of uprobe_tracer

	Types

	Event Profiling

	Usage examples





	Using the Linux Kernel Tracepoints
	Purpose of tracepoints

	Usage





	Event Tracing
	1. Introduction

	2. Using Event Tracing

	3. Defining an event-enabled tracepoint

	4. Event formats

	5. Event filtering

	6. Event triggers





	Subsystem Trace Points: kmem
	1. Slab allocation of small objects of unknown type

	2. Slab allocation of small objects of known type

	3. Page allocation

	4. Per-CPU Allocator Activity

	5. External Fragmentation





	Subsystem Trace Points: power
	1. Power state switch events

	2. Clocks events

	3. Power domains events

	4. PM QoS events





	NMI Trace Events
	nmi_handler





	MSR Trace Events

	In-kernel memory-mapped I/O tracing
	Preparation

	Usage Quick Reference

	Usage

	How Mmiotrace Works

	Trace Log Format

	Explanation     Keyword Space-separated arguments

	Tools for Developers





	Event Histograms
	1. Introduction

	2. Histogram Trigger Command





	Hardware Latency Detector
	Introduction

	Usage





	Intel(R) Trace Hub (TH)
	Overview

	Bus and Subdevices

	Quick example

	Host Debugger Mode





	System Trace Module
	stm_source

	stm_console

	stm_ftrace













          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Function Tracer Design
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Function Tracer Design





	Author:	Mike Frysinger






警告

This document is out of date. Some of the description below doesn’t
match current implementation now.




Introduction

Here we will cover the architecture pieces that the common function tracing
code relies on for proper functioning.  Things are broken down into increasing
complexity so that you can start simple and at least get basic functionality.

Note that this focuses on architecture implementation details only.  If you
want more explanation of a feature in terms of common code, review the common
ftrace.txt file.

Ideally, everyone who wishes to retain performance while supporting tracing in
their kernel should make it all the way to dynamic ftrace support.




Prerequisites


	Ftrace relies on these features being implemented:

	
	STACKTRACE_SUPPORT - implement save_stack_trace()

	TRACE_IRQFLAGS_SUPPORT - implement include/asm/irqflags.h










HAVE_FUNCTION_TRACER

You will need to implement the mcount and the ftrace_stub functions.

The exact mcount symbol name will depend on your toolchain.  Some call it
“mcount”, “_mcount”, or even “__mcount”.  You can probably figure it out by
running something like:

$ echo 'main(){}' | gcc -x c -S -o - - -pg | grep mcount
        call    mcount





We’ll make the assumption below that the symbol is “mcount” just to keep things
nice and simple in the examples.

Keep in mind that the ABI that is in effect inside of the mcount function is
highly architecture/toolchain specific.  We cannot help you in this regard,
sorry.  Dig up some old documentation and/or find someone more familiar than
you to bang ideas off of.  Typically, register usage (argument/scratch/etc...)
is a major issue at this point, especially in relation to the location of the
mcount call (before/after function prologue).  You might also want to look at
how glibc has implemented the mcount function for your architecture.  It might
be (semi-)relevant.

The mcount function should check the function pointer ftrace_trace_function
to see if it is set to ftrace_stub.  If it is, there is nothing for you to do,
so return immediately.  If it isn’t, then call that function in the same way
the mcount function normally calls __mcount_internal – the first argument is
the “frompc” while the second argument is the “selfpc” (adjusted to remove the
size of the mcount call that is embedded in the function).

For example, if the function foo() calls bar(), when the bar() function calls
mcount(), the arguments mcount() will pass to the tracer are:



	“frompc” - the address bar() will use to return to foo()

	“selfpc” - the address bar() (with mcount() size adjustment)






Also keep in mind that this mcount function will be called a lot, so
optimizing for the default case of no tracer will help the smooth running of
your system when tracing is disabled.  So the start of the mcount function is
typically the bare minimum with checking things before returning.  That also
means the code flow should usually be kept linear (i.e. no branching in the nop
case).  This is of course an optimization and not a hard requirement.

Here is some pseudo code that should help (these functions should actually be
implemented in assembly):

void ftrace_stub(void)
{
        return;
}

void mcount(void)
{
        /* save any bare state needed in order to do initial checking */

        extern void (*ftrace_trace_function)(unsigned long, unsigned long);
        if (ftrace_trace_function != ftrace_stub)
                goto do_trace;

        /* restore any bare state */

        return;

do_trace:

        /* save all state needed by the ABI (see paragraph above) */

        unsigned long frompc = ...;
        unsigned long selfpc = <return address> - MCOUNT_INSN_SIZE;
        ftrace_trace_function(frompc, selfpc);

        /* restore all state needed by the ABI */
}





Don’t forget to export mcount for modules !

extern void mcount(void);
EXPORT_SYMBOL(mcount);








HAVE_FUNCTION_GRAPH_TRACER

Deep breath ... time to do some real work.  Here you will need to update the
mcount function to check ftrace graph function pointers, as well as implement
some functions to save (hijack) and restore the return address.

The mcount function should check the function pointers ftrace_graph_return
(compare to ftrace_stub) and ftrace_graph_entry (compare to
ftrace_graph_entry_stub).  If either of those is not set to the relevant stub
function, call the arch-specific function ftrace_graph_caller which in turn
calls the arch-specific function prepare_ftrace_return.  Neither of these
function names is strictly required, but you should use them anyway to stay
consistent across the architecture ports – easier to compare & contrast
things.

The arguments to prepare_ftrace_return are slightly different than what are
passed to ftrace_trace_function.  The second argument “selfpc” is the same,
but the first argument should be a pointer to the “frompc”.  Typically this is
located on the stack.  This allows the function to hijack the return address
temporarily to have it point to the arch-specific function return_to_handler.
That function will simply call the common ftrace_return_to_handler function and
that will return the original return address with which you can return to the
original call site.

Here is the updated mcount pseudo code:

void mcount(void)
{
...
        if (ftrace_trace_function != ftrace_stub)
                goto do_trace;

+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+       extern void (*ftrace_graph_return)(...);
+       extern void (*ftrace_graph_entry)(...);
+       if (ftrace_graph_return != ftrace_stub ||
+           ftrace_graph_entry != ftrace_graph_entry_stub)
+               ftrace_graph_caller();
+#endif

        /* restore any bare state */
...





Here is the pseudo code for the new ftrace_graph_caller assembly function:

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
void ftrace_graph_caller(void)
{
        /* save all state needed by the ABI */

        unsigned long *frompc = &...;
        unsigned long selfpc = <return address> - MCOUNT_INSN_SIZE;
        /* passing frame pointer up is optional -- see below */
        prepare_ftrace_return(frompc, selfpc, frame_pointer);

        /* restore all state needed by the ABI */
}
#endif





For information on how to implement prepare_ftrace_return(), simply look at the
x86 version (the frame pointer passing is optional; see the next section for
more information).  The only architecture-specific piece in it is the setup of
the fault recovery table (the asm(...) code).  The rest should be the same
across architectures.

Here is the pseudo code for the new return_to_handler assembly function.  Note
that the ABI that applies here is different from what applies to the mcount
code.  Since you are returning from a function (after the epilogue), you might
be able to skimp on things saved/restored (usually just registers used to pass
return values).

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
void return_to_handler(void)
{
        /* save all state needed by the ABI (see paragraph above) */

        void (*original_return_point)(void) = ftrace_return_to_handler();

        /* restore all state needed by the ABI */

        /* this is usually either a return or a jump */
        original_return_point();
}
#endif








HAVE_FUNCTION_GRAPH_FP_TEST

An arch may pass in a unique value (frame pointer) to both the entering and
exiting of a function.  On exit, the value is compared and if it does not
match, then it will panic the kernel.  This is largely a sanity check for bad
code generation with gcc.  If gcc for your port sanely updates the frame
pointer under different optimization levels, then ignore this option.

However, adding support for it isn’t terribly difficult.  In your assembly code
that calls prepare_ftrace_return(), pass the frame pointer as the 3rd argument.
Then in the C version of that function, do what the x86 port does and pass it
along to ftrace_push_return_trace() instead of a stub value of 0.

Similarly, when you call ftrace_return_to_handler(), pass it the frame pointer.




HAVE_FUNCTION_GRAPH_RET_ADDR_PTR

An arch may pass in a pointer to the return address on the stack.  This
prevents potential stack unwinding issues where the unwinder gets out of
sync with ret_stack and the wrong addresses are reported by
ftrace_graph_ret_addr().

Adding support for it is easy: just define the macro in asm/ftrace.h and
pass the return address pointer as the ‘retp’ argument to
ftrace_push_return_trace().




HAVE_FTRACE_NMI_ENTER

If you can’t trace NMI functions, then skip this option.

<details to be filled>




HAVE_SYSCALL_TRACEPOINTS

You need very few things to get the syscalls tracing in an arch.



	Support HAVE_ARCH_TRACEHOOK (see arch/Kconfig).

	Have a NR_syscalls variable in <asm/unistd.h> that provides the number
of syscalls supported by the arch.

	Support the TIF_SYSCALL_TRACEPOINT thread flags.

	Put the trace_sys_enter() and trace_sys_exit() tracepoints calls from ptrace
in the ptrace syscalls tracing path.

	If the system call table on this arch is more complicated than a simple array
of addresses of the system calls, implement an arch_syscall_addr to return
the address of a given system call.

	If the symbol names of the system calls do not match the function names on
this arch, define ARCH_HAS_SYSCALL_MATCH_SYM_NAME in asm/ftrace.h and
implement arch_syscall_match_sym_name with the appropriate logic to return
true if the function name corresponds with the symbol name.

	Tag this arch as HAVE_SYSCALL_TRACEPOINTS.









HAVE_FTRACE_MCOUNT_RECORD

See scripts/recordmcount.pl for more info.  Just fill in the arch-specific
details for how to locate the addresses of mcount call sites via objdump.
This option doesn’t make much sense without also implementing dynamic ftrace.




HAVE_DYNAMIC_FTRACE

You will first need HAVE_FTRACE_MCOUNT_RECORD and HAVE_FUNCTION_TRACER, so
scroll your reader back up if you got over eager.


	Once those are out of the way, you will need to implement:

	
	
	asm/ftrace.h:

	
	MCOUNT_ADDR

	ftrace_call_adjust()

	struct dyn_arch_ftrace{}









	
	asm code:

	
	mcount() (new stub)

	ftrace_caller()

	ftrace_call()

	ftrace_stub()









	
	C code:

	
	ftrace_dyn_arch_init()

	ftrace_make_nop()

	ftrace_make_call()

	ftrace_update_ftrace_func()















First you will need to fill out some arch details in your asm/ftrace.h.

Define MCOUNT_ADDR as the address of your mcount symbol similar to:

#define MCOUNT_ADDR ((unsigned long)mcount)





Since no one else will have a decl for that function, you will need to:

extern void mcount(void);





You will also need the helper function ftrace_call_adjust().  Most people
will be able to stub it out like so:

static inline unsigned long ftrace_call_adjust(unsigned long addr)
{
        return addr;
}





<details to be filled>

Lastly you will need the custom dyn_arch_ftrace structure.  If you need
some extra state when runtime patching arbitrary call sites, this is the
place.  For now though, create an empty struct:

struct dyn_arch_ftrace {
        /* No extra data needed */
};





With the header out of the way, we can fill out the assembly code.  While we
did already create a mcount() function earlier, dynamic ftrace only wants a
stub function.  This is because the mcount() will only be used during boot
and then all references to it will be patched out never to return.  Instead,
the guts of the old mcount() will be used to create a new ftrace_caller()
function.  Because the two are hard to merge, it will most likely be a lot
easier to have two separate definitions split up by #ifdefs.  Same goes for
the ftrace_stub() as that will now be inlined in ftrace_caller().

Before we get confused anymore, let’s check out some pseudo code so you can
implement your own stuff in assembly:

void mcount(void)
{
        return;
}

void ftrace_caller(void)
{
        /* save all state needed by the ABI (see paragraph above) */

        unsigned long frompc = ...;
        unsigned long selfpc = <return address> - MCOUNT_INSN_SIZE;

ftrace_call:
        ftrace_stub(frompc, selfpc);

        /* restore all state needed by the ABI */

ftrace_stub:
        return;
}





This might look a little odd at first, but keep in mind that we will be runtime
patching multiple things.  First, only functions that we actually want to trace
will be patched to call ftrace_caller().  Second, since we only have one tracer
active at a time, we will patch the ftrace_caller() function itself to call the
specific tracer in question.  That is the point of the ftrace_call label.

With that in mind, let’s move on to the C code that will actually be doing the
runtime patching.  You’ll need a little knowledge of your arch’s opcodes in
order to make it through the next section.

Every arch has an init callback function.  If you need to do something early on
to initialize some state, this is the time to do that.  Otherwise, this simple
function below should be sufficient for most people:

int __init ftrace_dyn_arch_init(void)
{
        return 0;
}





There are two functions that are used to do runtime patching of arbitrary
functions.  The first is used to turn the mcount call site into a nop (which
is what helps us retain runtime performance when not tracing).  The second is
used to turn the mcount call site into a call to an arbitrary location (but
typically that is ftracer_caller()).  See the general function definition in
linux/ftrace.h for the functions:

ftrace_make_nop()
ftrace_make_call()





The rec->ip value is the address of the mcount call site that was collected
by the scripts/recordmcount.pl during build time.

The last function is used to do runtime patching of the active tracer.  This
will be modifying the assembly code at the location of the ftrace_call symbol
inside of the ftrace_caller() function.  So you should have sufficient padding
at that location to support the new function calls you’ll be inserting.  Some
people will be using a “call” type instruction while others will be using a
“branch” type instruction.  Specifically, the function is:

ftrace_update_ftrace_func()








HAVE_DYNAMIC_FTRACE + HAVE_FUNCTION_GRAPH_TRACER

The function grapher needs a few tweaks in order to work with dynamic ftrace.
Basically, you will need to:



	
	update:

	
	ftrace_caller()

	ftrace_graph_call()

	ftrace_graph_caller()









	
	implement:

	
	ftrace_enable_ftrace_graph_caller()

	ftrace_disable_ftrace_graph_caller()














<details to be filled>

Quick notes:



	add a nop stub after the ftrace_call location named ftrace_graph_call;
stub needs to be large enough to support a call to ftrace_graph_caller()

	update ftrace_graph_caller() to work with being called by the new
ftrace_caller() since some semantics may have changed

	ftrace_enable_ftrace_graph_caller() will runtime patch the
ftrace_graph_call location with a call to ftrace_graph_caller()

	ftrace_disable_ftrace_graph_caller() will runtime patch the
ftrace_graph_call location with nops












          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Notes on Analysing Behaviour Using Events and Tracepoints
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Notes on Analysing Behaviour Using Events and Tracepoints





	Author:	Mel Gorman (PCL information heavily based on email from Ingo Molnar)






1. Introduction

Tracepoints (see Documentation/trace/tracepoints.rst) can be used without
creating custom kernel modules to register probe functions using the event
tracing infrastructure.

Simplistically, tracepoints represent important events that can be
taken in conjunction with other tracepoints to build a “Big Picture” of
what is going on within the system. There are a large number of methods for
gathering and interpreting these events. Lacking any current Best Practises,
this document describes some of the methods that can be used.

This document assumes that debugfs is mounted on /sys/kernel/debug and that
the appropriate tracing options have been configured into the kernel. It is
assumed that the PCL tool tools/perf has been installed and is in your path.




2. Listing Available Events


2.1 Standard Utilities

All possible events are visible from /sys/kernel/debug/tracing/events. Simply
calling:

$ find /sys/kernel/debug/tracing/events -type d





will give a fair indication of the number of events available.




2.2 PCL (Performance Counters for Linux)

Discovery and enumeration of all counters and events, including tracepoints,
are available with the perf tool. Getting a list of available events is a
simple case of:

$ perf list 2>&1 | grep Tracepoint
ext4:ext4_free_inode                     [Tracepoint event]
ext4:ext4_request_inode                  [Tracepoint event]
ext4:ext4_allocate_inode                 [Tracepoint event]
ext4:ext4_write_begin                    [Tracepoint event]
ext4:ext4_ordered_write_end              [Tracepoint event]
[ .... remaining output snipped .... ]










3. Enabling Events


3.1 System-Wide Event Enabling

See Documentation/trace/events.rst for a proper description on how events
can be enabled system-wide. A short example of enabling all events related
to page allocation would look something like:

$ for i in `find /sys/kernel/debug/tracing/events -name "enable" | grep mm_`; do echo 1 > $i; done








3.2 System-Wide Event Enabling with SystemTap

In SystemTap, tracepoints are accessible using the kernel.trace() function
call. The following is an example that reports every 5 seconds what processes
were allocating the pages.

global page_allocs

probe kernel.trace("mm_page_alloc") {
      page_allocs[execname()]++
}

function print_count() {
      printf ("%-25s %-s\n", "#Pages Allocated", "Process Name")
      foreach (proc in page_allocs-)
              printf("%-25d %s\n", page_allocs[proc], proc)
      printf ("\n")
      delete page_allocs
}

probe timer.s(5) {
        print_count()
}








3.3 System-Wide Event Enabling with PCL

By specifying the -a switch and analysing sleep, the system-wide events
for a duration of time can be examined.

$ perf stat -a \
       -e kmem:mm_page_alloc -e kmem:mm_page_free \
       -e kmem:mm_page_free_batched \
       sleep 10
Performance counter stats for 'sleep 10':

          9630  kmem:mm_page_alloc
          2143  kmem:mm_page_free
          7424  kmem:mm_page_free_batched

  10.002577764  seconds time elapsed





Similarly, one could execute a shell and exit it as desired to get a report
at that point.




3.4 Local Event Enabling

Documentation/trace/ftrace.rst describes how to enable events on a per-thread
basis using set_ftrace_pid.




3.5 Local Event Enablement with PCL

Events can be activated and tracked for the duration of a process on a local
basis using PCL such as follows.

$ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free \
               -e kmem:mm_page_free_batched ./hackbench 10
Time: 0.909

  Performance counter stats for './hackbench 10':

        17803  kmem:mm_page_alloc
        12398  kmem:mm_page_free
         4827  kmem:mm_page_free_batched

  0.973913387  seconds time elapsed










4. Event Filtering

Documentation/trace/ftrace.rst covers in-depth how to filter events in
ftrace.  Obviously using grep and awk of trace_pipe is an option as well
as any script reading trace_pipe.




5. Analysing Event Variances with PCL

Any workload can exhibit variances between runs and it can be important
to know what the standard deviation is. By and large, this is left to the
performance analyst to do it by hand. In the event that the discrete event
occurrences are useful to the performance analyst, then perf can be used.

$ perf stat --repeat 5 -e kmem:mm_page_alloc -e kmem:mm_page_free
                      -e kmem:mm_page_free_batched ./hackbench 10
Time: 0.890
Time: 0.895
Time: 0.915
Time: 1.001
Time: 0.899

 Performance counter stats for './hackbench 10' (5 runs):

        16630  kmem:mm_page_alloc         ( +-   3.542% )
        11486  kmem:mm_page_free          ( +-   4.771% )
         4730  kmem:mm_page_free_batched  ( +-   2.325% )

  0.982653002  seconds time elapsed   ( +-   1.448% )





In the event that some higher-level event is required that depends on some
aggregation of discrete events, then a script would need to be developed.

Using –repeat, it is also possible to view how events are fluctuating over
time on a system-wide basis using -a and sleep.

$ perf stat -e kmem:mm_page_alloc -e kmem:mm_page_free \
              -e kmem:mm_page_free_batched \
              -a --repeat 10 \
              sleep 1
Performance counter stats for 'sleep 1' (10 runs):

         1066  kmem:mm_page_alloc         ( +-  26.148% )
          182  kmem:mm_page_free          ( +-   5.464% )
          890  kmem:mm_page_free_batched  ( +-  30.079% )

  1.002251757  seconds time elapsed   ( +-   0.005% )








6. Higher-Level Analysis with Helper Scripts

When events are enabled the events that are triggering can be read from
/sys/kernel/debug/tracing/trace_pipe in human-readable format although binary
options exist as well. By post-processing the output, further information can
be gathered on-line as appropriate. Examples of post-processing might include



	Reading information from /proc for the PID that triggered the event

	Deriving a higher-level event from a series of lower-level events.

	Calculating latencies between two events






Documentation/trace/postprocess/trace-pagealloc-postprocess.pl is an example
script that can read trace_pipe from STDIN or a copy of a trace. When used
on-line, it can be interrupted once to generate a report without exiting
and twice to exit.

Simplistically, the script just reads STDIN and counts up events but it
also can do more such as



	Derive high-level events from many low-level events. If a number of pages
are freed to the main allocator from the per-CPU lists, it recognises
that as one per-CPU drain even though there is no specific tracepoint
for that event

	It can aggregate based on PID or individual process number

	In the event memory is getting externally fragmented, it reports
on whether the fragmentation event was severe or moderate.

	When receiving an event about a PID, it can record who the parent was so
that if large numbers of events are coming from very short-lived
processes, the parent process responsible for creating all the helpers
can be identified









7. Lower-Level Analysis with PCL

There may also be a requirement to identify what functions within a program
were generating events within the kernel. To begin this sort of analysis, the
data must be recorded. At the time of writing, this required root:

$ perf record -c 1 \
      -e kmem:mm_page_alloc -e kmem:mm_page_free \
      -e kmem:mm_page_free_batched \
      ./hackbench 10
Time: 0.894
[ perf record: Captured and wrote 0.733 MB perf.data (~32010 samples) ]





Note the use of ‘-c 1’ to set the event period to sample. The default sample
period is quite high to minimise overhead but the information collected can be
very coarse as a result.

This record outputted a file called perf.data which can be analysed using
perf report.

$ perf report
# Samples: 30922
#
# Overhead    Command                     Shared Object
# ........  .........  ................................
#
    87.27%  hackbench  [vdso]
     6.85%  hackbench  /lib/i686/cmov/libc-2.9.so
     2.62%  hackbench  /lib/ld-2.9.so
     1.52%       perf  [vdso]
     1.22%  hackbench  ./hackbench
     0.48%  hackbench  [kernel]
     0.02%       perf  /lib/i686/cmov/libc-2.9.so
     0.01%       perf  /usr/bin/perf
     0.01%       perf  /lib/ld-2.9.so
     0.00%  hackbench  /lib/i686/cmov/libpthread-2.9.so
#
# (For more details, try: perf report --sort comm,dso,symbol)
#





According to this, the vast majority of events triggered on events
within the VDSO. With simple binaries, this will often be the case so let’s
take a slightly different example. In the course of writing this, it was
noticed that X was generating an insane amount of page allocations so let’s look
at it:

$ perf record -c 1 -f \
              -e kmem:mm_page_alloc -e kmem:mm_page_free \
              -e kmem:mm_page_free_batched \
              -p `pidof X`





This was interrupted after a few seconds and

$ perf report
# Samples: 27666
#
# Overhead  Command                            Shared Object
# ........  .......  .......................................
#
    51.95%     Xorg  [vdso]
    47.95%     Xorg  /opt/gfx-test/lib/libpixman-1.so.0.13.1
     0.09%     Xorg  /lib/i686/cmov/libc-2.9.so
     0.01%     Xorg  [kernel]
#
# (For more details, try: perf report --sort comm,dso,symbol)
#





So, almost half of the events are occurring in a library. To get an idea which
symbol:

$ perf report --sort comm,dso,symbol
# Samples: 27666
#
# Overhead  Command                            Shared Object  Symbol
# ........  .......  .......................................  ......
#
    51.95%     Xorg  [vdso]                                   [.] 0x000000ffffe424
    47.93%     Xorg  /opt/gfx-test/lib/libpixman-1.so.0.13.1  [.] pixmanFillsse2
     0.09%     Xorg  /lib/i686/cmov/libc-2.9.so               [.] _int_malloc
     0.01%     Xorg  /opt/gfx-test/lib/libpixman-1.so.0.13.1  [.] pixman_region32_copy_f
     0.01%     Xorg  [kernel]                                 [k] read_hpet
     0.01%     Xorg  /opt/gfx-test/lib/libpixman-1.so.0.13.1  [.] get_fast_path
     0.00%     Xorg  [kernel]                                 [k] ftrace_trace_userstack





To see where within the function pixmanFillsse2 things are going wrong:

$ perf annotate pixmanFillsse2
[ ... ]
  0.00 :         34eeb:       0f 18 08                prefetcht0 (%eax)
       :      }
       :
       :      extern __inline void __attribute__((__gnu_inline__, __always_inline__, _
       :      _mm_store_si128 (__m128i *__P, __m128i __B) :      {
       :        *__P = __B;
 12.40 :         34eee:       66 0f 7f 80 40 ff ff    movdqa %xmm0,-0xc0(%eax)
  0.00 :         34ef5:       ff
 12.40 :         34ef6:       66 0f 7f 80 50 ff ff    movdqa %xmm0,-0xb0(%eax)
  0.00 :         34efd:       ff
 12.39 :         34efe:       66 0f 7f 80 60 ff ff    movdqa %xmm0,-0xa0(%eax)
  0.00 :         34f05:       ff
 12.67 :         34f06:       66 0f 7f 80 70 ff ff    movdqa %xmm0,-0x90(%eax)
  0.00 :         34f0d:       ff
 12.58 :         34f0e:       66 0f 7f 40 80          movdqa %xmm0,-0x80(%eax)
 12.31 :         34f13:       66 0f 7f 40 90          movdqa %xmm0,-0x70(%eax)
 12.40 :         34f18:       66 0f 7f 40 a0          movdqa %xmm0,-0x60(%eax)
 12.31 :         34f1d:       66 0f 7f 40 b0          movdqa %xmm0,-0x50(%eax)





At a glance, it looks like the time is being spent copying pixmaps to
the card.  Further investigation would be needed to determine why pixmaps
are being copied around so much but a starting point would be to take an
ancient build of libpixmap out of the library path where it was totally
forgotten about from months ago!







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    ftrace - Function Tracer
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
ftrace - Function Tracer

Copyright 2008 Red Hat Inc.





	Author:	Steven Rostedt <srostedt@redhat.com>


	License:	The GNU Free Documentation License, Version 1.2
(dual licensed under the GPL v2)


	Original Reviewers:

		Elias Oltmanns, Randy Dunlap, Andrew Morton,
John Kacur, and David Teigland.






	Written for: 2.6.28-rc2

	Updated for: 3.10

	Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt

	Converted to rst format - Changbin Du <changbin.du@intel.com>




Introduction

Ftrace is an internal tracer designed to help out developers and
designers of systems to find what is going on inside the kernel.
It can be used for debugging or analyzing latencies and
performance issues that take place outside of user-space.

Although ftrace is typically considered the function tracer, it
is really a frame work of several assorted tracing utilities.
There’s latency tracing to examine what occurs between interrupts
disabled and enabled, as well as for preemption and from a time
a task is woken to the task is actually scheduled in.

One of the most common uses of ftrace is the event tracing.
Through out the kernel is hundreds of static event points that
can be enabled via the tracefs file system to see what is
going on in certain parts of the kernel.

See events.txt for more information.




Implementation Details

See Function Tracer Design for details for arch porters and such.




The File System

Ftrace uses the tracefs file system to hold the control files as
well as the files to display output.

When tracefs is configured into the kernel (which selecting any ftrace
option will do) the directory /sys/kernel/tracing will be created. To mount
this directory, you can add to your /etc/fstab file:

tracefs       /sys/kernel/tracing       tracefs defaults        0       0





Or you can mount it at run time with:

mount -t tracefs nodev /sys/kernel/tracing





For quicker access to that directory you may want to make a soft link to
it:

ln -s /sys/kernel/tracing /tracing






注意

Before 4.1, all ftrace tracing control files were within the debugfs
file system, which is typically located at /sys/kernel/debug/tracing.
For backward compatibility, when mounting the debugfs file system,
the tracefs file system will be automatically mounted at:

/sys/kernel/debug/tracing

All files located in the tracefs file system will be located in that
debugfs file system directory as well.




注意

Any selected ftrace option will also create the tracefs file system.
The rest of the document will assume that you are in the ftrace directory
(cd /sys/kernel/tracing) and will only concentrate on the files within that
directory and not distract from the content with the extended
“/sys/kernel/tracing” path name.



That’s it! (assuming that you have ftrace configured into your kernel)

After mounting tracefs you will have access to the control and output files
of ftrace. Here is a list of some of the key files:


Note: all time values are in microseconds.


current_tracer:


This is used to set or display the current tracer
that is configured.


available_tracers:


This holds the different types of tracers that
have been compiled into the kernel. The
tracers listed here can be configured by
echoing their name into current_tracer.


tracing_on:


This sets or displays whether writing to the trace
ring buffer is enabled. Echo 0 into this file to disable
the tracer or 1 to enable it. Note, this only disables
writing to the ring buffer, the tracing overhead may
still be occurring.

The kernel function tracing_off() can be used within the
kernel to disable writing to the ring buffer, which will
set this file to “0”. User space can re-enable tracing by
echoing “1” into the file.

Note, the function and event trigger “traceoff” will also
set this file to zero and stop tracing. Which can also
be re-enabled by user space using this file.




trace:


This file holds the output of the trace in a human
readable format (described below). Note, tracing is temporarily
disabled while this file is being read (opened).


trace_pipe:


The output is the same as the “trace” file but this
file is meant to be streamed with live tracing.
Reads from this file will block until new data is
retrieved.  Unlike the “trace” file, this file is a
consumer. This means reading from this file causes
sequential reads to display more current data. Once
data is read from this file, it is consumed, and
will not be read again with a sequential read. The
“trace” file is static, and if the tracer is not
adding more data, it will display the same
information every time it is read. This file will not
disable tracing while being read.


trace_options:


This file lets the user control the amount of data
that is displayed in one of the above output
files. Options also exist to modify how a tracer
or events work (stack traces, timestamps, etc).


options:


This is a directory that has a file for every available
trace option (also in trace_options). Options may also be set
or cleared by writing a “1” or “0” respectively into the
corresponding file with the option name.


tracing_max_latency:


Some of the tracers record the max latency.
For example, the maximum time that interrupts are disabled.
The maximum time is saved in this file. The max trace will also be
stored, and displayed by “trace”. A new max trace will only be
recorded if the latency is greater than the value in this file
(in microseconds).

By echoing in a time into this file, no latency will be recorded
unless it is greater than the time in this file.




tracing_thresh:


Some latency tracers will record a trace whenever the
latency is greater than the number in this file.
Only active when the file contains a number greater than 0.
(in microseconds)


buffer_size_kb:


This sets or displays the number of kilobytes each CPU
buffer holds. By default, the trace buffers are the same size
for each CPU. The displayed number is the size of the
CPU buffer and not total size of all buffers. The
trace buffers are allocated in pages (blocks of memory
that the kernel uses for allocation, usually 4 KB in size).
If the last page allocated has room for more bytes
than requested, the rest of the page will be used,
making the actual allocation bigger than requested or shown.
( Note, the size may not be a multiple of the page size
due to buffer management meta-data. )

Buffer sizes for individual CPUs may vary
(see “per_cpu/cpu0/buffer_size_kb” below), and if they do
this file will show “X”.




buffer_total_size_kb:


This displays the total combined size of all the trace buffers.


free_buffer:


If a process is performing tracing, and the ring buffer should be
shrunk “freed” when the process is finished, even if it were to be
killed by a signal, this file can be used for that purpose. On close
of this file, the ring buffer will be resized to its minimum size.
Having a process that is tracing also open this file, when the process
exits its file descriptor for this file will be closed, and in doing so,
the ring buffer will be “freed”.

It may also stop tracing if disable_on_free option is set.




tracing_cpumask:


This is a mask that lets the user only trace on specified CPUs.
The format is a hex string representing the CPUs.


set_ftrace_filter:


When dynamic ftrace is configured in (see the
section below “dynamic ftrace”), the code is dynamically
modified (code text rewrite) to disable calling of the
function profiler (mcount). This lets tracing be configured
in with practically no overhead in performance.  This also
has a side effect of enabling or disabling specific functions
to be traced. Echoing names of functions into this file
will limit the trace to only those functions.
This influences the tracers “function” and “function_graph”
and thus also function profiling (see “function_profile_enabled”).

The functions listed in “available_filter_functions” are what
can be written into this file.

This interface also allows for commands to be used. See the
“Filter commands” section for more details.




set_ftrace_notrace:


This has an effect opposite to that of
set_ftrace_filter. Any function that is added here will not
be traced. If a function exists in both set_ftrace_filter
and set_ftrace_notrace, the function will _not_ be traced.


set_ftrace_pid:


Have the function tracer only trace the threads whose PID are
listed in this file.

If the “function-fork” option is set, then when a task whose
PID is listed in this file forks, the child’s PID will
automatically be added to this file, and the child will be
traced by the function tracer as well. This option will also
cause PIDs of tasks that exit to be removed from the file.




set_event_pid:


Have the events only trace a task with a PID listed in this file.
Note, sched_switch and sched_wake_up will also trace events
listed in this file.

To have the PIDs of children of tasks with their PID in this file
added on fork, enable the “event-fork” option. That option will also
cause the PIDs of tasks to be removed from this file when the task
exits.




set_graph_function:


Functions listed in this file will cause the function graph
tracer to only trace these functions and the functions that
they call. (See the section “dynamic ftrace” for more details).
Note, set_ftrace_filter and set_ftrace_notrace still affects
what functions are being traced.


set_graph_notrace:


Similar to set_graph_function, but will disable function graph
tracing when the function is hit until it exits the function.
This makes it possible to ignore tracing functions that are called
by a specific function.


available_filter_functions:


This lists the functions that ftrace has processed and can trace.
These are the function names that you can pass to
“set_ftrace_filter”, “set_ftrace_notrace”,
“set_graph_function”, or “set_graph_notrace”.
(See the section “dynamic ftrace” below for more details.)


dyn_ftrace_total_info:


This file is for debugging purposes. The number of functions that
have been converted to nops and are available to be traced.


enabled_functions:


This file is more for debugging ftrace, but can also be useful
in seeing if any function has a callback attached to it.
Not only does the trace infrastructure use ftrace function
trace utility, but other subsystems might too. This file
displays all functions that have a callback attached to them
as well as the number of callbacks that have been attached.
Note, a callback may also call multiple functions which will
not be listed in this count.

If the callback registered to be traced by a function with
the “save regs” attribute (thus even more overhead), a ‘R’
will be displayed on the same line as the function that
is returning registers.

If the callback registered to be traced by a function with
the “ip modify” attribute (thus the regs->ip can be changed),
an ‘I’ will be displayed on the same line as the function that
can be overridden.

If the architecture supports it, it will also show what callback
is being directly called by the function. If the count is greater
than 1 it most likely will be ftrace_ops_list_func().

If the callback of the function jumps to a trampoline that is
specific to a the callback and not the standard trampoline,
its address will be printed as well as the function that the
trampoline calls.




function_profile_enabled:


When set it will enable all functions with either the function
tracer, or if configured, the function graph tracer. It will
keep a histogram of the number of functions that were called
and if the function graph tracer was configured, it will also keep
track of the time spent in those functions. The histogram
content can be displayed in the files:

trace_stat/function<cpu> ( function0, function1, etc).




trace_stat:


A directory that holds different tracing stats.


kprobe_events:


Enable dynamic trace points. See kprobetrace.txt.


kprobe_profile:


Dynamic trace points stats. See kprobetrace.txt.


max_graph_depth:


Used with the function graph tracer. This is the max depth
it will trace into a function. Setting this to a value of
one will show only the first kernel function that is called
from user space.


printk_formats:


This is for tools that read the raw format files. If an event in
the ring buffer references a string, only a pointer to the string
is recorded into the buffer and not the string itself. This prevents
tools from knowing what that string was. This file displays the string
and address for the string allowing tools to map the pointers to what
the strings were.


saved_cmdlines:


Only the pid of the task is recorded in a trace event unless
the event specifically saves the task comm as well. Ftrace
makes a cache of pid mappings to comms to try to display
comms for events. If a pid for a comm is not listed, then
“<...>” is displayed in the output.

If the option “record-cmd” is set to “0”, then comms of tasks
will not be saved during recording. By default, it is enabled.




saved_cmdlines_size:


By default, 128 comms are saved (see “saved_cmdlines” above). To
increase or decrease the amount of comms that are cached, echo
in a the number of comms to cache, into this file.


saved_tgids:


If the option “record-tgid” is set, on each scheduling context switch
the Task Group ID of a task is saved in a table mapping the PID of
the thread to its TGID. By default, the “record-tgid” option is
disabled.


snapshot:


This displays the “snapshot” buffer and also lets the user
take a snapshot of the current running trace.
See the “Snapshot” section below for more details.


stack_max_size:


When the stack tracer is activated, this will display the
maximum stack size it has encountered.
See the “Stack Trace” section below.


stack_trace:


This displays the stack back trace of the largest stack
that was encountered when the stack tracer is activated.
See the “Stack Trace” section below.


stack_trace_filter:


This is similar to “set_ftrace_filter” but it limits what
functions the stack tracer will check.


trace_clock:


Whenever an event is recorded into the ring buffer, a
“timestamp” is added. This stamp comes from a specified
clock. By default, ftrace uses the “local” clock. This
clock is very fast and strictly per cpu, but on some
systems it may not be monotonic with respect to other
CPUs. In other words, the local clocks may not be in sync
with local clocks on other CPUs.

Usual clocks for tracing:

# cat trace_clock
[local] global counter x86-tsc





The clock with the square brackets around it is the one in effect.


	local:

	Default clock, but may not be in sync across CPUs

	global:

	This clock is in sync with all CPUs but may
be a bit slower than the local clock.

	counter:

	This is not a clock at all, but literally an atomic
counter. It counts up one by one, but is in sync
with all CPUs. This is useful when you need to
know exactly the order events occurred with respect to
each other on different CPUs.

	uptime:

	This uses the jiffies counter and the time stamp
is relative to the time since boot up.

	perf:

	This makes ftrace use the same clock that perf uses.
Eventually perf will be able to read ftrace buffers
and this will help out in interleaving the data.

	x86-tsc:

	Architectures may define their own clocks. For
example, x86 uses its own TSC cycle clock here.

	ppc-tb:

	This uses the powerpc timebase register value.
This is in sync across CPUs and can also be used
to correlate events across hypervisor/guest if
tb_offset is known.

	mono:

	This uses the fast monotonic clock (CLOCK_MONOTONIC)
which is monotonic and is subject to NTP rate adjustments.

	mono_raw:

	This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
which is montonic but is not subject to any rate adjustments
and ticks at the same rate as the hardware clocksource.

	boot:

	This is the boot clock (CLOCK_BOOTTIME) and is based on the
fast monotonic clock, but also accounts for time spent in
suspend. Since the clock access is designed for use in
tracing in the suspend path, some side effects are possible
if clock is accessed after the suspend time is accounted before
the fast mono clock is updated. In this case, the clock update
appears to happen slightly sooner than it normally would have.
Also on 32-bit systems, it’s possible that the 64-bit boot offset
sees a partial update. These effects are rare and post
processing should be able to handle them. See comments in the
ktime_get_boot_fast_ns() function for more information.



To set a clock, simply echo the clock name into this file:

# echo global > trace_clock








trace_marker:


This is a very useful file for synchronizing user space
with events happening in the kernel. Writing strings into
this file will be written into the ftrace buffer.

It is useful in applications to open this file at the start
of the application and just reference the file descriptor
for the file:

void trace_write(const char *fmt, ...)
{
        va_list ap;
        char buf[256];
        int n;

        if (trace_fd < 0)
                return;

        va_start(ap, fmt);
        n = vsnprintf(buf, 256, fmt, ap);
        va_end(ap);

        write(trace_fd, buf, n);
}





start:

trace_fd = open("trace_marker", WR_ONLY);






	Note: Writing into the trace_marker file can also initiate triggers

	that are written into /sys/kernel/tracing/events/ftrace/print/trigger
See “Event triggers” in Documentation/trace/events.rst and an
example in Documentation/trace/histogram.rst (Section 3.)






trace_marker_raw:


This is similar to trace_marker above, but is meant for for binary data
to be written to it, where a tool can be used to parse the data
from trace_pipe_raw.


uprobe_events:


Add dynamic tracepoints in programs.
See uprobetracer.txt


uprobe_profile:


Uprobe statistics. See uprobetrace.txt


instances:


This is a way to make multiple trace buffers where different
events can be recorded in different buffers.
See “Instances” section below.


events:


This is the trace event directory. It holds event tracepoints
(also known as static tracepoints) that have been compiled
into the kernel. It shows what event tracepoints exist
and how they are grouped by system. There are “enable”
files at various levels that can enable the tracepoints
when a “1” is written to them.

See events.txt for more information.




set_event:


By echoing in the event into this file, will enable that event.

See events.txt for more information.




available_events:


A list of events that can be enabled in tracing.

See events.txt for more information.




timestamp_mode:


Certain tracers may change the timestamp mode used when
logging trace events into the event buffer.  Events with
different modes can coexist within a buffer but the mode in
effect when an event is logged determines which timestamp mode
is used for that event.  The default timestamp mode is
‘delta’.

Usual timestamp modes for tracing:


# cat timestamp_mode
[delta] absolute

The timestamp mode with the square brackets around it is the
one in effect.


	delta: Default timestamp mode - timestamp is a delta against

	a per-buffer timestamp.

	absolute: The timestamp is a full timestamp, not a delta

	against some other value.  As such it takes up more
space and is less efficient.









hwlat_detector:


Directory for the Hardware Latency Detector.
See “Hardware Latency Detector” section below.


per_cpu:


This is a directory that contains the trace per_cpu information.


per_cpu/cpu0/buffer_size_kb:


The ftrace buffer is defined per_cpu. That is, there’s a separate
buffer for each CPU to allow writes to be done atomically,
and free from cache bouncing. These buffers may have different
size buffers. This file is similar to the buffer_size_kb
file, but it only displays or sets the buffer size for the
specific CPU. (here cpu0).


per_cpu/cpu0/trace:


This is similar to the “trace” file, but it will only display
the data specific for the CPU. If written to, it only clears
the specific CPU buffer.


per_cpu/cpu0/trace_pipe


This is similar to the “trace_pipe” file, and is a consuming
read, but it will only display (and consume) the data specific
for the CPU.


per_cpu/cpu0/trace_pipe_raw


For tools that can parse the ftrace ring buffer binary format,
the trace_pipe_raw file can be used to extract the data
from the ring buffer directly. With the use of the splice()
system call, the buffer data can be quickly transferred to
a file or to the network where a server is collecting the
data.

Like trace_pipe, this is a consuming reader, where multiple
reads will always produce different data.




per_cpu/cpu0/snapshot:


This is similar to the main “snapshot” file, but will only
snapshot the current CPU (if supported). It only displays
the content of the snapshot for a given CPU, and if
written to, only clears this CPU buffer.


per_cpu/cpu0/snapshot_raw:


Similar to the trace_pipe_raw, but will read the binary format
from the snapshot buffer for the given CPU.


per_cpu/cpu0/stats:


This displays certain stats about the ring buffer:


	entries:

	The number of events that are still in the buffer.

	overrun:

	The number of lost events due to overwriting when
the buffer was full.

	commit overrun:

	Should always be zero.
This gets set if so many events happened within a nested
event (ring buffer is re-entrant), that it fills the
buffer and starts dropping events.

	bytes:

	Bytes actually read (not overwritten).

	oldest event ts:

	The oldest timestamp in the buffer

	now ts:

	The current timestamp

	dropped events:

	Events lost due to overwrite option being off.

	read events:

	The number of events read.















The Tracers

Here is the list of current tracers that may be configured.


“function”


Function call tracer to trace all kernel functions.


“function_graph”


Similar to the function tracer except that the
function tracer probes the functions on their entry
whereas the function graph tracer traces on both entry
and exit of the functions. It then provides the ability
to draw a graph of function calls similar to C code
source.


“blk”


The block tracer. The tracer used by the blktrace user
application.


“hwlat”


The Hardware Latency tracer is used to detect if the hardware
produces any latency. See “Hardware Latency Detector” section
below.


“irqsoff”


Traces the areas that disable interrupts and saves
the trace with the longest max latency.
See tracing_max_latency. When a new max is recorded,
it replaces the old trace. It is best to view this
trace with the latency-format option enabled, which
happens automatically when the tracer is selected.


“preemptoff”


Similar to irqsoff but traces and records the amount of
time for which preemption is disabled.


“preemptirqsoff”


Similar to irqsoff and preemptoff, but traces and
records the largest time for which irqs and/or preemption
is disabled.


“wakeup”


Traces and records the max latency that it takes for
the highest priority task to get scheduled after
it has been woken up.
Traces all tasks as an average developer would expect.


“wakeup_rt”


Traces and records the max latency that it takes for just
RT tasks (as the current “wakeup” does). This is useful
for those interested in wake up timings of RT tasks.


“wakeup_dl”


Traces and records the max latency that it takes for
a SCHED_DEADLINE task to be woken (as the “wakeup” and
“wakeup_rt” does).


“mmiotrace”


A special tracer that is used to trace binary module.
It will trace all the calls that a module makes to the
hardware. Everything it writes and reads from the I/O
as well.


“branch”


This tracer can be configured when tracing likely/unlikely
calls within the kernel. It will trace when a likely and
unlikely branch is hit and if it was correct in its prediction
of being correct.


“nop”


This is the “trace nothing” tracer. To remove all
tracers from tracing simply echo “nop” into
current_tracer.








Examples of using the tracer

Here are typical examples of using the tracers when controlling
them only with the tracefs interface (without using any
user-land utilities).




Output format:

Here is an example of the output format of the file “trace”:

# tracer: function
#
# entries-in-buffer/entries-written: 140080/250280   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
            bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
            bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
            sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
            bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
            bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
            bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
            bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
            bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
            sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
            ....





A header is printed with the tracer name that is represented by
the trace. In this case the tracer is “function”. Then it shows the
number of events in the buffer as well as the total number of entries
that were written. The difference is the number of entries that were
lost due to the buffer filling up (250280 - 140080 = 110200 events
lost).

The header explains the content of the events. Task name “bash”, the task
PID “1977”, the CPU that it was running on “000”, the latency format
(explained below), the timestamp in <secs>.<usecs> format, the
function name that was traced “sys_close” and the parent function that
called this function “system_call_fastpath”. The timestamp is the time
at which the function was entered.




Latency trace format

When the latency-format option is enabled or when one of the latency
tracers is set, the trace file gives somewhat more information to see
why a latency happened. Here is a typical trace:

# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: __lock_task_sighand
#  => ended at:   _raw_spin_unlock_irqrestore
#
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
      ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
      ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
      ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
      ps-6143    2d..1  306us : <stack trace>
 => trace_hardirqs_on_caller
 => trace_hardirqs_on
 => _raw_spin_unlock_irqrestore
 => do_task_stat
 => proc_tgid_stat
 => proc_single_show
 => seq_read
 => vfs_read
 => sys_read
 => system_call_fastpath





This shows that the current tracer is “irqsoff” tracing the time
for which interrupts were disabled. It gives the trace version (which
never changes) and the version of the kernel upon which this was executed on
(3.8). Then it displays the max latency in microseconds (259 us). The number
of trace entries displayed and the total number (both are four: #4/4).
VP, KP, SP, and HP are always zero and are reserved for later use.
#P is the number of online CPUs (#P:4).

The task is the process that was running when the latency
occurred. (ps pid: 6143).

The start and stop (the functions in which the interrupts were
disabled and enabled respectively) that caused the latencies:



	__lock_task_sighand is where the interrupts were disabled.

	_raw_spin_unlock_irqrestore is where they were enabled again.






The next lines after the header are the trace itself. The header
explains which is which.


cmd: The name of the process in the trace.

pid: The PID of that process.

CPU#: The CPU which the process was running on.


	irqs-off: ‘d’ interrupts are disabled. ‘.’ otherwise.

	
警告

If the architecture does not support a way to
read the irq flags variable, an ‘X’ will always
be printed here.





	need-resched:

	
	‘N’ both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,

	‘n’ only TIF_NEED_RESCHED is set,

	‘p’ only PREEMPT_NEED_RESCHED is set,

	‘.’ otherwise.





	hardirq/softirq:

	
	‘Z’ - NMI occurred inside a hardirq

	‘z’ - NMI is running

	‘H’ - hard irq occurred inside a softirq.

	‘h’ - hard irq is running

	‘s’ - soft irq is running

	‘.’ - normal context.







preempt-depth: The level of preempt_disabled




The above is mostly meaningful for kernel developers.



	time:

	When the latency-format option is enabled, the trace file
output includes a timestamp relative to the start of the
trace. This differs from the output when latency-format
is disabled, which includes an absolute timestamp.

	delay:

	This is just to help catch your eye a bit better. And
needs to be fixed to be only relative to the same CPU.
The marks are determined by the difference between this
current trace and the next trace.



	‘$’ - greater than 1 second

	‘@’ - greater than 100 milisecond

	‘*’ - greater than 10 milisecond

	‘#’ - greater than 1000 microsecond

	‘!’ - greater than 100 microsecond

	‘+’ - greater than 10 microsecond

	‘ ‘ - less than or equal to 10 microsecond.










The rest is the same as the ‘trace’ file.

Note, the latency tracers will usually end with a back trace
to easily find where the latency occurred.







trace_options

The trace_options file (or the options directory) is used to control
what gets printed in the trace output, or manipulate the tracers.
To see what is available, simply cat the file:

cat trace_options
      print-parent
      nosym-offset
      nosym-addr
      noverbose
      noraw
      nohex
      nobin
      noblock
      trace_printk
      annotate
      nouserstacktrace
      nosym-userobj
      noprintk-msg-only
      context-info
      nolatency-format
      record-cmd
      norecord-tgid
      overwrite
      nodisable_on_free
      irq-info
      markers
      noevent-fork
      function-trace
      nofunction-fork
      nodisplay-graph
      nostacktrace
      nobranch





To disable one of the options, echo in the option prepended with
“no”:

echo noprint-parent > trace_options





To enable an option, leave off the “no”:

echo sym-offset > trace_options





Here are the available options:



	print-parent

	On function traces, display the calling (parent)
function as well as the function being traced.

print-parent:
 bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul

noprint-parent:
 bash-4000  [01]  1477.606694: simple_strtoul







	sym-offset

	Display not only the function name, but also the
offset in the function. For example, instead of
seeing just “ktime_get”, you will see
“ktime_get+0xb/0x20”.

sym-offset:
 bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0







	sym-addr

	This will also display the function address as well
as the function name.

sym-addr:
 bash-4000  [01]  1477.606694: simple_strtoul <c0339346>







	verbose

	This deals with the trace file when the
latency-format option is enabled.

bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
(+0.000ms): simple_strtoul (kstrtoul)







	raw

	This will display raw numbers. This option is best for
use with user applications that can translate the raw
numbers better than having it done in the kernel.

	hex

	Similar to raw, but the numbers will be in a hexadecimal format.

	bin

	This will print out the formats in raw binary.

	block

	When set, reading trace_pipe will not block when polled.

	trace_printk

	Can disable trace_printk() from writing into the buffer.

	annotate

	It is sometimes confusing when the CPU buffers are full
and one CPU buffer had a lot of events recently, thus
a shorter time frame, were another CPU may have only had
a few events, which lets it have older events. When
the trace is reported, it shows the oldest events first,
and it may look like only one CPU ran (the one with the
oldest events). When the annotate option is set, it will
display when a new CPU buffer started:

          <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
          <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
          <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
##### CPU 2 buffer started ####
          <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
          <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
          <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock







	userstacktrace

	This option changes the trace. It records a
stacktrace of the current user space thread after
each trace event.

	sym-userobj

	when user stacktrace are enabled, look up which
object the address belongs to, and print a
relative address. This is especially useful when
ASLR is on, otherwise you don’t get a chance to
resolve the address to object/file/line after
the app is no longer running

The lookup is performed when you read
trace,trace_pipe. Example:

a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]







	printk-msg-only

	When set, trace_printk()s will only show the format
and not their parameters (if trace_bprintk() or
trace_bputs() was used to save the trace_printk()).

	context-info

	Show only the event data. Hides the comm, PID,
timestamp, CPU, and other useful data.

	latency-format

	This option changes the trace output. When it is enabled,
the trace displays additional information about the
latency, as described in “Latency trace format”.

	record-cmd

	When any event or tracer is enabled, a hook is enabled
in the sched_switch trace point to fill comm cache
with mapped pids and comms. But this may cause some
overhead, and if you only care about pids, and not the
name of the task, disabling this option can lower the
impact of tracing. See “saved_cmdlines”.

	record-tgid

	When any event or tracer is enabled, a hook is enabled
in the sched_switch trace point to fill the cache of
mapped Thread Group IDs (TGID) mapping to pids. See
“saved_tgids”.

	overwrite

	This controls what happens when the trace buffer is
full. If “1” (default), the oldest events are
discarded and overwritten. If “0”, then the newest
events are discarded.
(see per_cpu/cpu0/stats for overrun and dropped)

	disable_on_free

	When the free_buffer is closed, tracing will
stop (tracing_on set to 0).

	irq-info

	Shows the interrupt, preempt count, need resched data.
When disabled, the trace looks like:

# tracer: function
#
# entries-in-buffer/entries-written: 144405/9452052   #P:4
#
#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
#              | |       |          |         |
          <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
          <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
          <idle>-0     [002]  23636.756055: enqueue_task <-activate_task







	markers

	When set, the trace_marker is writable (only by root).
When disabled, the trace_marker will error with EINVAL
on write.

	event-fork

	When set, tasks with PIDs listed in set_event_pid will have
the PIDs of their children added to set_event_pid when those
tasks fork. Also, when tasks with PIDs in set_event_pid exit,
their PIDs will be removed from the file.

	function-trace

	The latency tracers will enable function tracing
if this option is enabled (default it is). When
it is disabled, the latency tracers do not trace
functions. This keeps the overhead of the tracer down
when performing latency tests.

	function-fork

	When set, tasks with PIDs listed in set_ftrace_pid will
have the PIDs of their children added to set_ftrace_pid
when those tasks fork. Also, when tasks with PIDs in
set_ftrace_pid exit, their PIDs will be removed from the
file.

	display-graph

	When set, the latency tracers (irqsoff, wakeup, etc) will
use function graph tracing instead of function tracing.

	stacktrace

	When set, a stack trace is recorded after any trace event
is recorded.

	branch

	Enable branch tracing with the tracer. This enables branch
tracer along with the currently set tracer. Enabling this
with the “nop” tracer is the same as just enabling the
“branch” tracer.







小技巧

Some tracers have their own options. They only appear in this
file when the tracer is active. They always appear in the
options directory.



Here are the per tracer options:

Options for function tracer:



	func_stack_trace

	When set, a stack trace is recorded after every
function that is recorded. NOTE! Limit the functions
that are recorded before enabling this, with
“set_ftrace_filter” otherwise the system performance
will be critically degraded. Remember to disable
this option before clearing the function filter.






Options for function_graph tracer:


Since the function_graph tracer has a slightly different output
it has its own options to control what is displayed.



	funcgraph-overrun

	When set, the “overrun” of the graph stack is
displayed after each function traced. The
overrun, is when the stack depth of the calls
is greater than what is reserved for each task.
Each task has a fixed array of functions to
trace in the call graph. If the depth of the
calls exceeds that, the function is not traced.
The overrun is the number of functions missed
due to exceeding this array.

	funcgraph-cpu

	When set, the CPU number of the CPU where the trace
occurred is displayed.

	funcgraph-overhead

	When set, if the function takes longer than
A certain amount, then a delay marker is
displayed. See “delay” above, under the
header description.

	funcgraph-proc

	Unlike other tracers, the process’ command line
is not displayed by default, but instead only
when a task is traced in and out during a context
switch. Enabling this options has the command
of each process displayed at every line.

	funcgraph-duration

	At the end of each function (the return)
the duration of the amount of time in the
function is displayed in microseconds.

	funcgraph-abstime

	When set, the timestamp is displayed at each line.

	funcgraph-irqs

	When disabled, functions that happen inside an
interrupt will not be traced.

	funcgraph-tail

	When set, the return event will include the function
that it represents. By default this is off, and
only a closing curly bracket “}” is displayed for
the return of a function.

	sleep-time

	When running function graph tracer, to include
the time a task schedules out in its function.
When enabled, it will account time the task has been
scheduled out as part of the function call.

	graph-time

	When running function profiler with function graph tracer,
to include the time to call nested functions. When this is
not set, the time reported for the function will only
include the time the function itself executed for, not the
time for functions that it called.









Options for blk tracer:



	blk_classic

	Shows a more minimalistic output.









irqsoff

When interrupts are disabled, the CPU can not react to any other
external event (besides NMIs and SMIs). This prevents the timer
interrupt from triggering or the mouse interrupt from letting
the kernel know of a new mouse event. The result is a latency
with the reaction time.

The irqsoff tracer tracks the time for which interrupts are
disabled. When a new maximum latency is hit, the tracer saves
the trace leading up to that latency point so that every time a
new maximum is reached, the old saved trace is discarded and the
new trace is saved.

To reset the maximum, echo 0 into tracing_max_latency. Here is
an example:

# echo 0 > options/function-trace
# echo irqsoff > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# ls -ltr
[...]
# echo 0 > tracing_on
# cat trace
# tracer: irqsoff
#
# irqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: run_timer_softirq
#  => ended at:   run_timer_softirq
#
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
  <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
  <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
  <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
  <idle>-0       0dNs3   25us : <stack trace>
 => _raw_spin_unlock_irq
 => run_timer_softirq
 => __do_softirq
 => call_softirq
 => do_softirq
 => irq_exit
 => smp_apic_timer_interrupt
 => apic_timer_interrupt
 => rcu_idle_exit
 => cpu_idle
 => rest_init
 => start_kernel
 => x86_64_start_reservations
 => x86_64_start_kernel





Here we see that that we had a latency of 16 microseconds (which is
very good). The _raw_spin_lock_irq in run_timer_softirq disabled
interrupts. The difference between the 16 and the displayed
timestamp 25us occurred because the clock was incremented
between the time of recording the max latency and the time of
recording the function that had that latency.

Note the above example had function-trace not set. If we set
function-trace, we get a much larger output:

with echo 1 > options/function-trace

 # tracer: irqsoff
 #
 # irqsoff latency trace v1.1.5 on 3.8.0-test+
 # --------------------------------------------------------------------
 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
 #    -----------------
 #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
 #    -----------------
 #  => started at: ata_scsi_queuecmd
 #  => ended at:   ata_scsi_queuecmd
 #
 #
 #                  _------=> CPU#
 #                 / _-----=> irqs-off
 #                | / _----=> need-resched
 #                || / _---=> hardirq/softirq
 #                ||| / _--=> preempt-depth
 #                |||| /     delay
 #  cmd     pid   ||||| time  |   caller
 #     \   /      |||||  \    |   /
     bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
     bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
     bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
     bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
     bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
     bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
     bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
     bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
     bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
 [...]
     bash-2042    3d..1   67us : delay_tsc <-__delay
     bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
     bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
     bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
     bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
     bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
     bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
     bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
     bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
     bash-2042    3d..1  120us : <stack trace>
  => _raw_spin_unlock_irqrestore
  => ata_scsi_queuecmd
  => scsi_dispatch_cmd
  => scsi_request_fn
  => __blk_run_queue_uncond
  => __blk_run_queue
  => blk_queue_bio
  => generic_make_request
  => submit_bio
  => submit_bh
  => __ext3_get_inode_loc
  => ext3_iget
  => ext3_lookup
  => lookup_real
  => __lookup_hash
  => walk_component
  => lookup_last
  => path_lookupat
  => filename_lookup
  => user_path_at_empty
  => user_path_at
  => vfs_fstatat
  => vfs_stat
  => sys_newstat
  => system_call_fastpath





Here we traced a 71 microsecond latency. But we also see all the
functions that were called during that time. Note that by
enabling function tracing, we incur an added overhead. This
overhead may extend the latency times. But nevertheless, this
trace has provided some very helpful debugging information.




preemptoff

When preemption is disabled, we may be able to receive
interrupts but the task cannot be preempted and a higher
priority task must wait for preemption to be enabled again
before it can preempt a lower priority task.

The preemptoff tracer traces the places that disable preemption.
Like the irqsoff tracer, it records the maximum latency for
which preemption was disabled. The control of preemptoff tracer
is much like the irqsoff tracer.

# echo 0 > options/function-trace
# echo preemptoff > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# ls -ltr
[...]
# echo 0 > tracing_on
# cat trace
# tracer: preemptoff
#
# preemptoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: do_IRQ
#  => ended at:   do_IRQ
#
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
    sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
    sshd-1991    1d..1   46us : irq_exit <-do_IRQ
    sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
    sshd-1991    1d..1   52us : <stack trace>
 => sub_preempt_count
 => irq_exit
 => do_IRQ
 => ret_from_intr





This has some more changes. Preemption was disabled when an
interrupt came in (notice the ‘h’), and was enabled on exit.
But we also see that interrupts have been disabled when entering
the preempt off section and leaving it (the ‘d’). We do not know if
interrupts were enabled in the mean time or shortly after this
was over.

# tracer: preemptoff
#
# preemptoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: wake_up_new_task
#  => ended at:   task_rq_unlock
#
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
    bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
    bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
    bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
    bash-1994    1d..1    1us : source_load <-select_task_rq_fair
[...]
    bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
    bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
    bash-1994    1d..1   13us : add_preempt_count <-irq_enter
    bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
    bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
    bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
    bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
    bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
[...]
    bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
    bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
    bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
    bash-1994    1d..2   36us : do_softirq <-irq_exit
    bash-1994    1d..2   36us : __do_softirq <-call_softirq
    bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
    bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
    bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
    bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
    bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
[...]
    bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
    bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
    bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
    bash-1994    1dN.2   82us : idle_cpu <-irq_exit
    bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
    bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
    bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
    bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
    bash-1994    1.N.1  104us : <stack trace>
 => sub_preempt_count
 => _raw_spin_unlock_irqrestore
 => task_rq_unlock
 => wake_up_new_task
 => do_fork
 => sys_clone
 => stub_clone





The above is an example of the preemptoff trace with
function-trace set. Here we see that interrupts were not disabled
the entire time. The irq_enter code lets us know that we entered
an interrupt ‘h’. Before that, the functions being traced still
show that it is not in an interrupt, but we can see from the
functions themselves that this is not the case.




preemptirqsoff

Knowing the locations that have interrupts disabled or
preemption disabled for the longest times is helpful. But
sometimes we would like to know when either preemption and/or
interrupts are disabled.

Consider the following code:

local_irq_disable();
call_function_with_irqs_off();
preempt_disable();
call_function_with_irqs_and_preemption_off();
local_irq_enable();
call_function_with_preemption_off();
preempt_enable();





The irqsoff tracer will record the total length of
call_function_with_irqs_off() and
call_function_with_irqs_and_preemption_off().

The preemptoff tracer will record the total length of
call_function_with_irqs_and_preemption_off() and
call_function_with_preemption_off().

But neither will trace the time that interrupts and/or
preemption is disabled. This total time is the time that we can
not schedule. To record this time, use the preemptirqsoff
tracer.

Again, using this trace is much like the irqsoff and preemptoff
tracers.

# echo 0 > options/function-trace
# echo preemptirqsoff > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# ls -ltr
[...]
# echo 0 > tracing_on
# cat trace
# tracer: preemptirqsoff
#
# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: ata_scsi_queuecmd
#  => ended at:   ata_scsi_queuecmd
#
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
      ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
      ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
      ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
      ls-2230    3...1  111us : <stack trace>
 => sub_preempt_count
 => _raw_spin_unlock_irqrestore
 => ata_scsi_queuecmd
 => scsi_dispatch_cmd
 => scsi_request_fn
 => __blk_run_queue_uncond
 => __blk_run_queue
 => blk_queue_bio
 => generic_make_request
 => submit_bio
 => submit_bh
 => ext3_bread
 => ext3_dir_bread
 => htree_dirblock_to_tree
 => ext3_htree_fill_tree
 => ext3_readdir
 => vfs_readdir
 => sys_getdents
 => system_call_fastpath





The trace_hardirqs_off_thunk is called from assembly on x86 when
interrupts are disabled in the assembly code. Without the
function tracing, we do not know if interrupts were enabled
within the preemption points. We do see that it started with
preemption enabled.

Here is a trace with function-trace set:

# tracer: preemptirqsoff
#
# preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
#    -----------------
#  => started at: schedule
#  => ended at:   mutex_unlock
#
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
kworker/-59      3...1    0us : __schedule <-schedule
kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
kworker/-59      3d..2    1us : deactivate_task <-__schedule
kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
      ls-2269    3d..2    7us : finish_task_switch <-__schedule
      ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
      ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
      ls-2269    3d..2    8us : irq_enter <-do_IRQ
      ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
      ls-2269    3d..2    9us : add_preempt_count <-irq_enter
      ls-2269    3d.h2    9us : exit_idle <-do_IRQ
[...]
      ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
      ls-2269    3d.h2   20us : irq_exit <-do_IRQ
      ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
      ls-2269    3d..3   21us : do_softirq <-irq_exit
      ls-2269    3d..3   21us : __do_softirq <-call_softirq
      ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
      ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
      ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
      ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
      ls-2269    3d.s5   31us : irq_enter <-do_IRQ
      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
[...]
      ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
      ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
      ls-2269    3d.H5   32us : exit_idle <-do_IRQ
      ls-2269    3d.H5   32us : handle_irq <-do_IRQ
      ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
      ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
[...]
      ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
      ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
      ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
      ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
      ls-2269    3d..3  159us : idle_cpu <-irq_exit
      ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
      ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
      ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
      ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
      ls-2269    3d...  186us : <stack trace>
 => __mutex_unlock_slowpath
 => mutex_unlock
 => process_output
 => n_tty_write
 => tty_write
 => vfs_write
 => sys_write
 => system_call_fastpath





This is an interesting trace. It started with kworker running and
scheduling out and ls taking over. But as soon as ls released the
rq lock and enabled interrupts (but not preemption) an interrupt
triggered. When the interrupt finished, it started running softirqs.
But while the softirq was running, another interrupt triggered.
When an interrupt is running inside a softirq, the annotation is ‘H’.




wakeup

One common case that people are interested in tracing is the
time it takes for a task that is woken to actually wake up.
Now for non Real-Time tasks, this can be arbitrary. But tracing
it none the less can be interesting.

Without function tracing:

# echo 0 > options/function-trace
# echo wakeup > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# chrt -f 5 sleep 1
# echo 0 > tracing_on
# cat trace
# tracer: wakeup
#
# wakeup latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
#    -----------------
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
  <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
  <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       3d..3   15us : __schedule <-schedule
  <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H





The tracer only traces the highest priority task in the system
to avoid tracing the normal circumstances. Here we see that
the kworker with a nice priority of -20 (not very nice), took
just 15 microseconds from the time it woke up, to the time it
ran.

Non Real-Time tasks are not that interesting. A more interesting
trace is to concentrate only on Real-Time tasks.




wakeup_rt

In a Real-Time environment it is very important to know the
wakeup time it takes for the highest priority task that is woken
up to the time that it executes. This is also known as “schedule
latency”. I stress the point that this is about RT tasks. It is
also important to know the scheduling latency of non-RT tasks,
but the average schedule latency is better for non-RT tasks.
Tools like LatencyTop are more appropriate for such
measurements.

Real-Time environments are interested in the worst case latency.
That is the longest latency it takes for something to happen,
and not the average. We can have a very fast scheduler that may
only have a large latency once in a while, but that would not
work well with Real-Time tasks.  The wakeup_rt tracer was designed
to record the worst case wakeups of RT tasks. Non-RT tasks are
not recorded because the tracer only records one worst case and
tracing non-RT tasks that are unpredictable will overwrite the
worst case latency of RT tasks (just run the normal wakeup
tracer for a while to see that effect).

Since this tracer only deals with RT tasks, we will run this
slightly differently than we did with the previous tracers.
Instead of performing an ‘ls’, we will run ‘sleep 1’ under
‘chrt’ which changes the priority of the task.

# echo 0 > options/function-trace
# echo wakeup_rt > current_tracer
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# chrt -f 5 sleep 1
# echo 0 > tracing_on
# cat trace
# tracer: wakeup
#
# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
#    -----------------
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
  <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
  <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       3d..3    5us : __schedule <-schedule
  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep





Running this on an idle system, we see that it only took 5 microseconds
to perform the task switch.  Note, since the trace point in the schedule
is before the actual “switch”, we stop the tracing when the recorded task
is about to schedule in. This may change if we add a new marker at the
end of the scheduler.

Notice that the recorded task is ‘sleep’ with the PID of 2389
and it has an rt_prio of 5. This priority is user-space priority
and not the internal kernel priority. The policy is 1 for
SCHED_FIFO and 2 for SCHED_RR.

Note, that the trace data shows the internal priority (99 - rtprio).

<idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep





The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
and in the running state ‘R’. The sleep task was scheduled in with
2389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
and it too is in the running state.

Doing the same with chrt -r 5 and function-trace set.

echo 1 > options/function-trace

# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
#    -----------------
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
  <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
  <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
  <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
  <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
  <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
  <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
  <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
  <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
  <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
  <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
  <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
  <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
  <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
  <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
  <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
  <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
  <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
  <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
  <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
  <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
  <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
  <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
  <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
  <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
  <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
  <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
  <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
  <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
  <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
  <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
  <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
  <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
  <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
  <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
  <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
  <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
  <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
  <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
  <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
  <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
  <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
  <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
  <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
  <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
  <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
  <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
  <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
  <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
  <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
  <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
  <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
  <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
  <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
  <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
  <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
  <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
  <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
  <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
  <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
  <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
  <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
  <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
  <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
  <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
  <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
  <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
  <idle>-0       3.N..   25us : schedule <-cpu_idle
  <idle>-0       3.N..   25us : __schedule <-preempt_schedule
  <idle>-0       3.N..   26us : add_preempt_count <-__schedule
  <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
  <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
  <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
  <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
  <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
  <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
  <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
  <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
  <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
  <idle>-0       3d..3   29us : __schedule <-preempt_schedule
  <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep





This isn’t that big of a trace, even with function tracing enabled,
so I included the entire trace.

The interrupt went off while when the system was idle. Somewhere
before task_woken_rt() was called, the NEED_RESCHED flag was set,
this is indicated by the first occurrence of the ‘N’ flag.




Latency tracing and events

As function tracing can induce a much larger latency, but without
seeing what happens within the latency it is hard to know what
caused it. There is a middle ground, and that is with enabling
events.

# echo 0 > options/function-trace
# echo wakeup_rt > current_tracer
# echo 1 > events/enable
# echo 1 > tracing_on
# echo 0 > tracing_max_latency
# chrt -f 5 sleep 1
# echo 0 > tracing_on
# cat trace
# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 3.8.0-test+
# --------------------------------------------------------------------
# latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
#    -----------------
#    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
#    -----------------
#
#                  _------=> CPU#
#                 / _-----=> irqs-off
#                | / _----=> need-resched
#                || / _---=> hardirq/softirq
#                ||| / _--=> preempt-depth
#                |||| /     delay
#  cmd     pid   ||||| time  |   caller
#     \   /      |||||  \    |   /
  <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
  <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
  <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
  <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
  <idle>-0       2.N.2    2us : power_end: cpu_id=2
  <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
  <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
  <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
  <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
  <idle>-0       2.N.2    5us : rcu_utilization: End context switch
  <idle>-0       2d..3    6us : __schedule <-schedule
  <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep








Hardware Latency Detector

The hardware latency detector is executed by enabling the “hwlat” tracer.

NOTE, this tracer will affect the performance of the system as it will
periodically make a CPU constantly busy with interrupts disabled.

# echo hwlat > current_tracer
# sleep 100
# cat trace
# tracer: hwlat
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
           <...>-3638  [001] d... 19452.055471: #1     inner/outer(us):   12/14    ts:1499801089.066141940
           <...>-3638  [003] d... 19454.071354: #2     inner/outer(us):   11/9     ts:1499801091.082164365
           <...>-3638  [002] dn.. 19461.126852: #3     inner/outer(us):   12/9     ts:1499801098.138150062
           <...>-3638  [001] d... 19488.340960: #4     inner/outer(us):    8/12    ts:1499801125.354139633
           <...>-3638  [003] d... 19494.388553: #5     inner/outer(us):    8/12    ts:1499801131.402150961
           <...>-3638  [003] d... 19501.283419: #6     inner/outer(us):    0/12    ts:1499801138.297435289 nmi-total:4 nmi-count:1





The above output is somewhat the same in the header. All events will have
interrupts disabled ‘d’. Under the FUNCTION title there is:



	#1

	This is the count of events recorded that were greater than the
tracing_threshold (See below).



inner/outer(us):   12/14


This shows two numbers as “inner latency” and “outer latency”. The test
runs in a loop checking a timestamp twice. The latency detected within
the two timestamps is the “inner latency” and the latency detected
after the previous timestamp and the next timestamp in the loop is
the “outer latency”.


ts:1499801089.066141940


The absolute timestamp that the event happened.


nmi-total:4 nmi-count:1


On architectures that support it, if an NMI comes in during the
test, the time spent in NMI is reported in “nmi-total” (in
microseconds).

All architectures that have NMIs will show the “nmi-count” if an
NMI comes in during the test.







hwlat files:



	tracing_threshold

	This gets automatically set to “10” to represent 10
microseconds. This is the threshold of latency that
needs to be detected before the trace will be recorded.

Note, when hwlat tracer is finished (another tracer is
written into “current_tracer”), the original value for
tracing_threshold is placed back into this file.



	hwlat_detector/width

	The length of time the test runs with interrupts disabled.

	hwlat_detector/window

	The length of time of the window which the test
runs. That is, the test will run for “width”
microseconds per “window” microseconds

	tracing_cpumask

	When the test is started. A kernel thread is created that
runs the test. This thread will alternate between CPUs
listed in the tracing_cpumask between each period
(one “window”). To limit the test to specific CPUs
set the mask in this file to only the CPUs that the test
should run on.









function

This tracer is the function tracer. Enabling the function tracer
can be done from the debug file system. Make sure the
ftrace_enabled is set; otherwise this tracer is a nop.
See the “ftrace_enabled” section below.

# sysctl kernel.ftrace_enabled=1
# echo function > current_tracer
# echo 1 > tracing_on
# usleep 1
# echo 0 > tracing_on
# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 24799/24799   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
            bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
            bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
            bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
            bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
            bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
            bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
            bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
[...]





Note: function tracer uses ring buffers to store the above
entries. The newest data may overwrite the oldest data.
Sometimes using echo to stop the trace is not sufficient because
the tracing could have overwritten the data that you wanted to
record. For this reason, it is sometimes better to disable
tracing directly from a program. This allows you to stop the
tracing at the point that you hit the part that you are
interested in. To disable the tracing directly from a C program,
something like following code snippet can be used:

int trace_fd;
[...]
int main(int argc, char *argv[]) {
        [...]
        trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
        [...]
        if (condition_hit()) {
                write(trace_fd, "0", 1);
        }
        [...]
}








Single thread tracing

By writing into set_ftrace_pid you can trace a
single thread. For example:

# cat set_ftrace_pid
no pid
# echo 3111 > set_ftrace_pid
# cat set_ftrace_pid
3111
# echo function > current_tracer
# cat trace | head
# tracer: function
#
#           TASK-PID    CPU#    TIMESTAMP  FUNCTION
#              | |       |          |         |
    yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
    yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
    yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
    yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
    yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
    yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
# echo > set_ftrace_pid
# cat trace |head
# tracer: function
#
#           TASK-PID    CPU#    TIMESTAMP  FUNCTION
#              | |       |          |         |
##### CPU 3 buffer started ####
    yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
    yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
    yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
    yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
    yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit





If you want to trace a function when executing, you could use
something like this simple program.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

#define _STR(x) #x
#define STR(x) _STR(x)
#define MAX_PATH 256

const char *find_tracefs(void)
{
       static char tracefs[MAX_PATH+1];
       static int tracefs_found;
       char type[100];
       FILE *fp;

       if (tracefs_found)
               return tracefs;

       if ((fp = fopen("/proc/mounts","r")) == NULL) {
               perror("/proc/mounts");
               return NULL;
       }

       while (fscanf(fp, "%*s %"
                     STR(MAX_PATH)
                     "s %99s %*s %*d %*d\n",
                     tracefs, type) == 2) {
               if (strcmp(type, "tracefs") == 0)
                       break;
       }
       fclose(fp);

       if (strcmp(type, "tracefs") != 0) {
               fprintf(stderr, "tracefs not mounted");
               return NULL;
       }

       strcat(tracefs, "/tracing/");
       tracefs_found = 1;

       return tracefs;
}

const char *tracing_file(const char *file_name)
{
       static char trace_file[MAX_PATH+1];
       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
       return trace_file;
}

int main (int argc, char **argv)
{
        if (argc < 1)
                exit(-1);

        if (fork() > 0) {
                int fd, ffd;
                char line[64];
                int s;

                ffd = open(tracing_file("current_tracer"), O_WRONLY);
                if (ffd < 0)
                        exit(-1);
                write(ffd, "nop", 3);

                fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
                s = sprintf(line, "%d\n", getpid());
                write(fd, line, s);

                write(ffd, "function", 8);

                close(fd);
                close(ffd);

                execvp(argv[1], argv+1);
        }

        return 0;
}





Or this simple script!

#!/bin/bash

tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
echo nop > $tracefs/tracing/current_tracer
echo 0 > $tracefs/tracing/tracing_on
echo $$ > $tracefs/tracing/set_ftrace_pid
echo function > $tracefs/tracing/current_tracer
echo 1 > $tracefs/tracing/tracing_on
exec "$@"








function graph tracer

This tracer is similar to the function tracer except that it
probes a function on its entry and its exit. This is done by
using a dynamically allocated stack of return addresses in each
task_struct. On function entry the tracer overwrites the return
address of each function traced to set a custom probe. Thus the
original return address is stored on the stack of return address
in the task_struct.

Probing on both ends of a function leads to special features
such as:


	measure of a function’s time execution

	having a reliable call stack to draw function calls graph



This tracer is useful in several situations:


	you want to find the reason of a strange kernel behavior and
need to see what happens in detail on any areas (or specific
ones).

	you are experiencing weird latencies but it’s difficult to
find its origin.

	you want to find quickly which path is taken by a specific
function

	you just want to peek inside a working kernel and want to see
what happens there.



# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |

 0)               |  sys_open() {
 0)               |    do_sys_open() {
 0)               |      getname() {
 0)               |        kmem_cache_alloc() {
 0)   1.382 us    |          __might_sleep();
 0)   2.478 us    |        }
 0)               |        strncpy_from_user() {
 0)               |          might_fault() {
 0)   1.389 us    |            __might_sleep();
 0)   2.553 us    |          }
 0)   3.807 us    |        }
 0)   7.876 us    |      }
 0)               |      alloc_fd() {
 0)   0.668 us    |        _spin_lock();
 0)   0.570 us    |        expand_files();
 0)   0.586 us    |        _spin_unlock();





There are several columns that can be dynamically
enabled/disabled. You can use every combination of options you
want, depending on your needs.


	The cpu number on which the function executed is default
enabled.  It is sometimes better to only trace one cpu (see
tracing_cpu_mask file) or you might sometimes see unordered
function calls while cpu tracing switch.



	hide: echo nofuncgraph-cpu > trace_options

	show: echo funcgraph-cpu > trace_options








	The duration (function’s time of execution) is displayed on
the closing bracket line of a function or on the same line
than the current function in case of a leaf one. It is default
enabled.



	hide: echo nofuncgraph-duration > trace_options

	show: echo funcgraph-duration > trace_options








	The overhead field precedes the duration field in case of
reached duration thresholds.



	hide: echo nofuncgraph-overhead > trace_options

	show: echo funcgraph-overhead > trace_options

	depends on: funcgraph-duration






ie:

3) # 1837.709 us |          } /* __switch_to */
3)               |          finish_task_switch() {
3)   0.313 us    |            _raw_spin_unlock_irq();
3)   3.177 us    |          }
3) # 1889.063 us |        } /* __schedule */
3) ! 140.417 us  |      } /* __schedule */
3) # 2034.948 us |    } /* schedule */
3) * 33998.59 us |  } /* schedule_preempt_disabled */

[...]

1)   0.260 us    |              msecs_to_jiffies();
1)   0.313 us    |              __rcu_read_unlock();
1) + 61.770 us   |            }
1) + 64.479 us   |          }
1)   0.313 us    |          rcu_bh_qs();
1)   0.313 us    |          __local_bh_enable();
1) ! 217.240 us  |        }
1)   0.365 us    |        idle_cpu();
1)               |        rcu_irq_exit() {
1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
1)   3.125 us    |        }
1) ! 227.812 us  |      }
1) ! 457.395 us  |    }
1) @ 119760.2 us |  }

[...]

2)               |    handle_IPI() {
1)   6.979 us    |                  }
2)   0.417 us    |      scheduler_ipi();
1)   9.791 us    |                }
1) + 12.917 us   |              }
2)   3.490 us    |    }
1) + 15.729 us   |            }
1) + 18.542 us   |          }
2) $ 3594274 us  |  }









Flags:

+ means that the function exceeded 10 usecs.
! means that the function exceeded 100 usecs.
# means that the function exceeded 1000 usecs.
* means that the function exceeded 10 msecs.
@ means that the function exceeded 100 msecs.
$ means that the function exceeded 1 sec.






	The task/pid field displays the thread cmdline and pid which
executed the function. It is default disabled.



	hide: echo nofuncgraph-proc > trace_options

	show: echo funcgraph-proc > trace_options






ie:

# tracer: function_graph
#
# CPU  TASK/PID        DURATION                  FUNCTION CALLS
# |    |    |           |   |                     |   |   |   |
0)    sh-4802     |               |                  d_free() {
0)    sh-4802     |               |                    call_rcu() {
0)    sh-4802     |               |                      __call_rcu() {
0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
0)    sh-4802     |   2.899 us    |                      }
0)    sh-4802     |   4.040 us    |                    }
0)    sh-4802     |   5.151 us    |                  }
0)    sh-4802     | + 49.370 us   |                }







	The absolute time field is an absolute timestamp given by the
system clock since it started. A snapshot of this time is
given on each entry/exit of functions



	hide: echo nofuncgraph-abstime > trace_options

	show: echo funcgraph-abstime > trace_options






ie:

#
#      TIME       CPU  DURATION                  FUNCTION CALLS
#       |         |     |   |                     |   |   |   |
360.774522 |   1)   0.541 us    |                                          }
360.774522 |   1)   4.663 us    |                                        }
360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
360.774524 |   1)   6.796 us    |                                      }
360.774524 |   1)   7.952 us    |                                    }
360.774525 |   1)   9.063 us    |                                  }
360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
360.774527 |   1)   0.578 us    |                                  __brelse();
360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
360.774528 |   1)               |                                    unlock_buffer() {
360.774529 |   1)               |                                      wake_up_bit() {
360.774529 |   1)               |                                        bit_waitqueue() {
360.774530 |   1)   0.594 us    |                                          __phys_addr();









The function name is always displayed after the closing bracket
for a function if the start of that function is not in the
trace buffer.

Display of the function name after the closing bracket may be
enabled for functions whose start is in the trace buffer,
allowing easier searching with grep for function durations.
It is default disabled.




	hide: echo nofuncgraph-tail > trace_options

	show: echo funcgraph-tail > trace_options






Example with nofuncgraph-tail (default):

0)               |      putname() {
0)               |        kmem_cache_free() {
0)   0.518 us    |          __phys_addr();
0)   1.757 us    |        }
0)   2.861 us    |      }





Example with funcgraph-tail:

0)               |      putname() {
0)               |        kmem_cache_free() {
0)   0.518 us    |          __phys_addr();
0)   1.757 us    |        } /* kmem_cache_free() */
0)   2.861 us    |      } /* putname() */








You can put some comments on specific functions by using
trace_printk() For example, if you want to put a comment inside
the __might_sleep() function, you just have to include
<linux/ftrace.h> and call trace_printk() inside __might_sleep():

trace_printk("I'm a comment!\n")





will produce:

1)               |             __might_sleep() {
1)               |                /* I'm a comment! */
1)   1.449 us    |             }





You might find other useful features for this tracer in the
following “dynamic ftrace” section such as tracing only specific
functions or tasks.




dynamic ftrace

If CONFIG_DYNAMIC_FTRACE is set, the system will run with
virtually no overhead when function tracing is disabled. The way
this works is the mcount function call (placed at the start of
every kernel function, produced by the -pg switch in gcc),
starts of pointing to a simple return. (Enabling FTRACE will
include the -pg switch in the compiling of the kernel.)

At compile time every C file object is run through the
recordmcount program (located in the scripts directory). This
program will parse the ELF headers in the C object to find all
the locations in the .text section that call mcount. Starting
with gcc verson 4.6, the -mfentry has been added for x86, which
calls “__fentry__” instead of “mcount”. Which is called before
the creation of the stack frame.

Note, not all sections are traced. They may be prevented by either
a notrace, or blocked another way and all inline functions are not
traced. Check the “available_filter_functions” file to see what functions
can be traced.

A section called “__mcount_loc” is created that holds
references to all the mcount/fentry call sites in the .text section.
The recordmcount program re-links this section back into the
original object. The final linking stage of the kernel will add all these
references into a single table.

On boot up, before SMP is initialized, the dynamic ftrace code
scans this table and updates all the locations into nops. It
also records the locations, which are added to the
available_filter_functions list.  Modules are processed as they
are loaded and before they are executed.  When a module is
unloaded, it also removes its functions from the ftrace function
list. This is automatic in the module unload code, and the
module author does not need to worry about it.

When tracing is enabled, the process of modifying the function
tracepoints is dependent on architecture. The old method is to use
kstop_machine to prevent races with the CPUs executing code being
modified (which can cause the CPU to do undesirable things, especially
if the modified code crosses cache (or page) boundaries), and the nops are
patched back to calls. But this time, they do not call mcount
(which is just a function stub). They now call into the ftrace
infrastructure.

The new method of modifying the function tracepoints is to place
a breakpoint at the location to be modified, sync all CPUs, modify
the rest of the instruction not covered by the breakpoint. Sync
all CPUs again, and then remove the breakpoint with the finished
version to the ftrace call site.

Some archs do not even need to monkey around with the synchronization,
and can just slap the new code on top of the old without any
problems with other CPUs executing it at the same time.

One special side-effect to the recording of the functions being
traced is that we can now selectively choose which functions we
wish to trace and which ones we want the mcount calls to remain
as nops.

Two files are used, one for enabling and one for disabling the
tracing of specified functions. They are:


set_ftrace_filter


and


set_ftrace_notrace


A list of available functions that you can add to these files is
listed in:


available_filter_functions


# cat available_filter_functions
put_prev_task_idle
kmem_cache_create
pick_next_task_rt
get_online_cpus
pick_next_task_fair
mutex_lock
[...]





If I am only interested in sys_nanosleep and hrtimer_interrupt:

# echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
# echo function > current_tracer
# echo 1 > tracing_on
# usleep 1
# echo 0 > tracing_on
# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 5/5   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
          <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
          usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
          <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
          <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt





To see which functions are being traced, you can cat the file:

# cat set_ftrace_filter
hrtimer_interrupt
sys_nanosleep





Perhaps this is not enough. The filters also allow glob(7) matching.



	<match>*

	will match functions that begin with <match>

	*<match>

	will match functions that end with <match>

	*<match>*

	will match functions that have <match> in it

	<match1>*<match2>

	will match functions that begin with <match1> and end with <match2>







注解

It is better to use quotes to enclose the wild cards,
otherwise the shell may expand the parameters into names
of files in the local directory.



# echo 'hrtimer_*' > set_ftrace_filter





Produces:

# tracer: function
#
# entries-in-buffer/entries-written: 897/897   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
          <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
          <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
          <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
          <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
          <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
          <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
          <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem





Notice that we lost the sys_nanosleep.

# cat set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init
hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper





This is because the ‘>’ and ‘>>’ act just like they do in bash.
To rewrite the filters, use ‘>’
To append to the filters, use ‘>>’

To clear out a filter so that all functions will be recorded
again:

# echo > set_ftrace_filter
# cat set_ftrace_filter
#





Again, now we want to append.

# echo sys_nanosleep > set_ftrace_filter
# cat set_ftrace_filter
sys_nanosleep
# echo 'hrtimer_*' >> set_ftrace_filter
# cat set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init
hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
sys_nanosleep
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper





The set_ftrace_notrace prevents those functions from being
traced.

# echo '*preempt*' '*lock*' > set_ftrace_notrace





Produces:

# tracer: function
#
# entries-in-buffer/entries-written: 39608/39608   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
            bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
            bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
            bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
            bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
            bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
            bash-1994  [000] ....  4342.324899: do_truncate <-do_last
            bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
            bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
            bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
            bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
            bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time





We can see that there’s no more lock or preempt tracing.




Dynamic ftrace with the function graph tracer

Although what has been explained above concerns both the
function tracer and the function-graph-tracer, there are some
special features only available in the function-graph tracer.

If you want to trace only one function and all of its children,
you just have to echo its name into set_graph_function:

echo __do_fault > set_graph_function





will produce the following “expanded” trace of the __do_fault()
function:

0)               |  __do_fault() {
0)               |    filemap_fault() {
0)               |      find_lock_page() {
0)   0.804 us    |        find_get_page();
0)               |        __might_sleep() {
0)   1.329 us    |        }
0)   3.904 us    |      }
0)   4.979 us    |    }
0)   0.653 us    |    _spin_lock();
0)   0.578 us    |    page_add_file_rmap();
0)   0.525 us    |    native_set_pte_at();
0)   0.585 us    |    _spin_unlock();
0)               |    unlock_page() {
0)   0.541 us    |      page_waitqueue();
0)   0.639 us    |      __wake_up_bit();
0)   2.786 us    |    }
0) + 14.237 us   |  }
0)               |  __do_fault() {
0)               |    filemap_fault() {
0)               |      find_lock_page() {
0)   0.698 us    |        find_get_page();
0)               |        __might_sleep() {
0)   1.412 us    |        }
0)   3.950 us    |      }
0)   5.098 us    |    }
0)   0.631 us    |    _spin_lock();
0)   0.571 us    |    page_add_file_rmap();
0)   0.526 us    |    native_set_pte_at();
0)   0.586 us    |    _spin_unlock();
0)               |    unlock_page() {
0)   0.533 us    |      page_waitqueue();
0)   0.638 us    |      __wake_up_bit();
0)   2.793 us    |    }
0) + 14.012 us   |  }





You can also expand several functions at once:

echo sys_open > set_graph_function
echo sys_close >> set_graph_function





Now if you want to go back to trace all functions you can clear
this special filter via:

echo > set_graph_function








ftrace_enabled

Note, the proc sysctl ftrace_enable is a big on/off switch for the
function tracer. By default it is enabled (when function tracing is
enabled in the kernel). If it is disabled, all function tracing is
disabled. This includes not only the function tracers for ftrace, but
also for any other uses (perf, kprobes, stack tracing, profiling, etc).

Please disable this with care.

This can be disable (and enabled) with:

 sysctl kernel.ftrace_enabled=0
 sysctl kernel.ftrace_enabled=1

or

 echo 0 > /proc/sys/kernel/ftrace_enabled
 echo 1 > /proc/sys/kernel/ftrace_enabled








Filter commands

A few commands are supported by the set_ftrace_filter interface.
Trace commands have the following format:

<function>:<command>:<parameter>





The following commands are supported:


	mod:
This command enables function filtering per module. The
parameter defines the module. For example, if only the write*
functions in the ext3 module are desired, run:


echo ‘write*:mod:ext3’ > set_ftrace_filter




This command interacts with the filter in the same way as
filtering based on function names. Thus, adding more functions
in a different module is accomplished by appending (>>) to the
filter file. Remove specific module functions by prepending
‘!’:

echo '!writeback*:mod:ext3' >> set_ftrace_filter





Mod command supports module globbing. Disable tracing for all
functions except a specific module:

echo '!*:mod:!ext3' >> set_ftrace_filter





Disable tracing for all modules, but still trace kernel:

echo '!*:mod:*' >> set_ftrace_filter





Enable filter only for kernel:

echo '*write*:mod:!*' >> set_ftrace_filter





Enable filter for module globbing:

echo '*write*:mod:*snd*' >> set_ftrace_filter







	traceon/traceoff:
These commands turn tracing on and off when the specified
functions are hit. The parameter determines how many times the
tracing system is turned on and off. If unspecified, there is
no limit. For example, to disable tracing when a schedule bug
is hit the first 5 times, run:

echo '__schedule_bug:traceoff:5' > set_ftrace_filter





To always disable tracing when __schedule_bug is hit:

echo '__schedule_bug:traceoff' > set_ftrace_filter





These commands are cumulative whether or not they are appended
to set_ftrace_filter. To remove a command, prepend it by ‘!’
and drop the parameter:

echo '!__schedule_bug:traceoff:0' > set_ftrace_filter





The above removes the traceoff command for __schedule_bug
that have a counter. To remove commands without counters:

echo '!__schedule_bug:traceoff' > set_ftrace_filter







	snapshot:
Will cause a snapshot to be triggered when the function is hit.

echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter





To only snapshot once:

echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter





To remove the above commands:

echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter







	enable_event/disable_event:
These commands can enable or disable a trace event. Note, because
function tracing callbacks are very sensitive, when these commands
are registered, the trace point is activated, but disabled in
a “soft” mode. That is, the tracepoint will be called, but
just will not be traced. The event tracepoint stays in this mode
as long as there’s a command that triggers it.

echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
      set_ftrace_filter





The format is:

<function>:enable_event:<system>:<event>[:count]
<function>:disable_event:<system>:<event>[:count]





To remove the events commands:

echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
      set_ftrace_filter
echo '!schedule:disable_event:sched:sched_switch' > \
      set_ftrace_filter







	dump:
When the function is hit, it will dump the contents of the ftrace
ring buffer to the console. This is useful if you need to debug
something, and want to dump the trace when a certain function
is hit. Perhaps its a function that is called before a tripple
fault happens and does not allow you to get a regular dump.



	cpudump:
When the function is hit, it will dump the contents of the ftrace
ring buffer for the current CPU to the console. Unlike the “dump”
command, it only prints out the contents of the ring buffer for the
CPU that executed the function that triggered the dump.



	stacktrace:
When the function is hit, a stack trace is recorded.








trace_pipe

The trace_pipe outputs the same content as the trace file, but
the effect on the tracing is different. Every read from
trace_pipe is consumed. This means that subsequent reads will be
different. The trace is live.

# echo function > current_tracer
# cat trace_pipe > /tmp/trace.out &
[1] 4153
# echo 1 > tracing_on
# usleep 1
# echo 0 > tracing_on
# cat trace
# tracer: function
#
# entries-in-buffer/entries-written: 0/0   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |

#
# cat /tmp/trace.out
           bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
           bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
           bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
           bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
           bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
           bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
           bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
           bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
           bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath





Note, reading the trace_pipe file will block until more input is
added.




trace entries

Having too much or not enough data can be troublesome in
diagnosing an issue in the kernel. The file buffer_size_kb is
used to modify the size of the internal trace buffers. The
number listed is the number of entries that can be recorded per
CPU. To know the full size, multiply the number of possible CPUs
with the number of entries.

# cat buffer_size_kb
1408 (units kilobytes)





Or simply read buffer_total_size_kb

# cat buffer_total_size_kb
5632





To modify the buffer, simple echo in a number (in 1024 byte segments).

# echo 10000 > buffer_size_kb
# cat buffer_size_kb
10000 (units kilobytes)





It will try to allocate as much as possible. If you allocate too
much, it can cause Out-Of-Memory to trigger.

# echo 1000000000000 > buffer_size_kb
-bash: echo: write error: Cannot allocate memory
# cat buffer_size_kb
85





The per_cpu buffers can be changed individually as well:

# echo 10000 > per_cpu/cpu0/buffer_size_kb
# echo 100 > per_cpu/cpu1/buffer_size_kb





When the per_cpu buffers are not the same, the buffer_size_kb
at the top level will just show an X

# cat buffer_size_kb
X





This is where the buffer_total_size_kb is useful:

# cat buffer_total_size_kb
12916





Writing to the top level buffer_size_kb will reset all the buffers
to be the same again.




Snapshot

CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
available to all non latency tracers. (Latency tracers which
record max latency, such as “irqsoff” or “wakeup”, can’t use
this feature, since those are already using the snapshot
mechanism internally.)

Snapshot preserves a current trace buffer at a particular point
in time without stopping tracing. Ftrace swaps the current
buffer with a spare buffer, and tracing continues in the new
current (=previous spare) buffer.

The following tracefs files in “tracing” are related to this
feature:


snapshot:


This is used to take a snapshot and to read the output
of the snapshot. Echo 1 into this file to allocate a
spare buffer and to take a snapshot (swap), then read
the snapshot from this file in the same format as
“trace” (described above in the section “The File
System”). Both reads snapshot and tracing are executable
in parallel. When the spare buffer is allocated, echoing
0 frees it, and echoing else (positive) values clear the
snapshot contents.
More details are shown in the table below.









	status\input
	0
	1
	else




	not allocated
	(do nothing)
	alloc+swap
	(do nothing)


	allocated
	free
	swap
	clear











Here is an example of using the snapshot feature.

# echo 1 > events/sched/enable
# echo 1 > snapshot
# cat snapshot
# tracer: nop
#
# entries-in-buffer/entries-written: 71/71   #P:8
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
           sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
[...]
        <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120

# cat trace
# tracer: nop
#
# entries-in-buffer/entries-written: 77/77   #P:8
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
          <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
 snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
[...]





If you try to use this snapshot feature when current tracer is
one of the latency tracers, you will get the following results.

# echo wakeup > current_tracer
# echo 1 > snapshot
bash: echo: write error: Device or resource busy
# cat snapshot
cat: snapshot: Device or resource busy








Instances

In the tracefs tracing directory is a directory called “instances”.
This directory can have new directories created inside of it using
mkdir, and removing directories with rmdir. The directory created
with mkdir in this directory will already contain files and other
directories after it is created.

# mkdir instances/foo
# ls instances/foo
buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
set_event  snapshot  trace  trace_clock  trace_marker  trace_options
trace_pipe  tracing_on





As you can see, the new directory looks similar to the tracing directory
itself. In fact, it is very similar, except that the buffer and
events are agnostic from the main director, or from any other
instances that are created.

The files in the new directory work just like the files with the
same name in the tracing directory except the buffer that is used
is a separate and new buffer. The files affect that buffer but do not
affect the main buffer with the exception of trace_options. Currently,
the trace_options affect all instances and the top level buffer
the same, but this may change in future releases. That is, options
may become specific to the instance they reside in.

Notice that none of the function tracer files are there, nor is
current_tracer and available_tracers. This is because the buffers
can currently only have events enabled for them.

# mkdir instances/foo
# mkdir instances/bar
# mkdir instances/zoot
# echo 100000 > buffer_size_kb
# echo 1000 > instances/foo/buffer_size_kb
# echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
# echo function > current_trace
# echo 1 > instances/foo/events/sched/sched_wakeup/enable
# echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
# echo 1 > instances/foo/events/sched/sched_switch/enable
# echo 1 > instances/bar/events/irq/enable
# echo 1 > instances/zoot/events/syscalls/enable
# cat trace_pipe
CPU:2 [LOST 11745 EVENTS]
            bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
            bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
            bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
            bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
            bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
            bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
            bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
            bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
            bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
            bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
[...]

# cat instances/foo/trace_pipe
            bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
            bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
          <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
          <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
     rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
            bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
            bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
            bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
     kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
     kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
[...]

# cat instances/bar/trace_pipe
     migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
          <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
            bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
            bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
            bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
            bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
            bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
            bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
            sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
            sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
            sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
            sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
[...]

# cat instances/zoot/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 18996/18996   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            bash-1998  [000] d...   140.733501: sys_write -> 0x2
            bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
            bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
            bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
            bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
            bash-1998  [000] d...   140.733510: sys_close(fd: a)
            bash-1998  [000] d...   140.733510: sys_close -> 0x0
            bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
            bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
            bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
            bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0





You can see that the trace of the top most trace buffer shows only
the function tracing. The foo instance displays wakeups and task
switches.

To remove the instances, simply delete their directories:

# rmdir instances/foo
# rmdir instances/bar
# rmdir instances/zoot





Note, if a process has a trace file open in one of the instance
directories, the rmdir will fail with EBUSY.




Stack trace

Since the kernel has a fixed sized stack, it is important not to
waste it in functions. A kernel developer must be conscience of
what they allocate on the stack. If they add too much, the system
can be in danger of a stack overflow, and corruption will occur,
usually leading to a system panic.

There are some tools that check this, usually with interrupts
periodically checking usage. But if you can perform a check
at every function call that will become very useful. As ftrace provides
a function tracer, it makes it convenient to check the stack size
at every function call. This is enabled via the stack tracer.

CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
To enable it, write a ‘1’ into /proc/sys/kernel/stack_tracer_enabled.

# echo 1 > /proc/sys/kernel/stack_tracer_enabled





You can also enable it from the kernel command line to trace
the stack size of the kernel during boot up, by adding “stacktrace”
to the kernel command line parameter.

After running it for a few minutes, the output looks like:

# cat stack_max_size
2928

# cat stack_trace
        Depth    Size   Location    (18 entries)
        -----    ----   --------
  0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
  1)     2704     160   find_busiest_group+0x31/0x1f1
  2)     2544     256   load_balance+0xd9/0x662
  3)     2288      80   idle_balance+0xbb/0x130
  4)     2208     128   __schedule+0x26e/0x5b9
  5)     2080      16   schedule+0x64/0x66
  6)     2064     128   schedule_timeout+0x34/0xe0
  7)     1936     112   wait_for_common+0x97/0xf1
  8)     1824      16   wait_for_completion+0x1d/0x1f
  9)     1808     128   flush_work+0xfe/0x119
 10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
 11)     1664      48   input_available_p+0x1d/0x5c
 12)     1616      48   n_tty_poll+0x6d/0x134
 13)     1568      64   tty_poll+0x64/0x7f
 14)     1504     880   do_select+0x31e/0x511
 15)      624     400   core_sys_select+0x177/0x216
 16)      224      96   sys_select+0x91/0xb9
 17)      128     128   system_call_fastpath+0x16/0x1b





Note, if -mfentry is being used by gcc, functions get traced before
they set up the stack frame. This means that leaf level functions
are not tested by the stack tracer when -mfentry is used.

Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.




More

More details can be found in the source code, in the kernel/trace/*.c files.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Using ftrace to hook to functions
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Using ftrace to hook to functions

Written for: 4.14


Introduction

The ftrace infrastructure was originally created to attach callbacks to the
beginning of functions in order to record and trace the flow of the kernel.
But callbacks to the start of a function can have other use cases. Either
for live kernel patching, or for security monitoring. This document describes
how to use ftrace to implement your own function callbacks.




The ftrace context


警告

The ability to add a callback to almost any function within the
kernel comes with risks. A callback can be called from any context
(normal, softirq, irq, and NMI). Callbacks can also be called just before
going to idle, during CPU bring up and takedown, or going to user space.
This requires extra care to what can be done inside a callback. A callback
can be called outside the protective scope of RCU.



The ftrace infrastructure has some protections against recursions and RCU
but one must still be very careful how they use the callbacks.




The ftrace_ops structure

To register a function callback, a ftrace_ops is required. This structure
is used to tell ftrace what function should be called as the callback
as well as what protections the callback will perform and not require
ftrace to handle.

There is only one field that is needed to be set when registering
an ftrace_ops with ftrace:

struct ftrace_ops ops = {
      .func                    = my_callback_func,
      .flags                   = MY_FTRACE_FLAGS
      .private                 = any_private_data_structure,
};





Both .flags and .private are optional. Only .func is required.

To enable tracing call:


	
register_ftrace_function(&ops);

	



To disable tracing call:


	
unregister_ftrace_function(&ops);

	



The above is defined by including the header:


	
#include <linux/ftrace.h>

	



The registered callback will start being called some time after the
register_ftrace_function() is called and before it returns. The exact time
that callbacks start being called is dependent upon architecture and scheduling
of services. The callback itself will have to handle any synchronization if it
must begin at an exact moment.

The unregister_ftrace_function() will guarantee that the callback is
no longer being called by functions after the unregister_ftrace_function()
returns. Note that to perform this guarantee, the unregister_ftrace_function()
may take some time to finish.




The callback function

The prototype of the callback function is as follows (as of v4.14):

void callback_func(unsigned long ip, unsigned long parent_ip,
                   struct ftrace_ops *op, struct pt_regs *regs);






	@ip

	This is the instruction pointer of the function that is being traced.
(where the fentry or mcount is within the function)

	@parent_ip

	This is the instruction pointer of the function that called the
the function being traced (where the call of the function occurred).

	@op

	This is a pointer to ftrace_ops that was used to register the callback.
This can be used to pass data to the callback via the private pointer.

	@regs

	If the FTRACE_OPS_FL_SAVE_REGS or FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED
flags are set in the ftrace_ops structure, then this will be pointing
to the pt_regs structure like it would be if an breakpoint was placed
at the start of the function where ftrace was tracing. Otherwise it
either contains garbage, or NULL.






The ftrace FLAGS

The ftrace_ops flags are all defined and documented in include/linux/ftrace.h.
Some of the flags are used for internal infrastructure of ftrace, but the
ones that users should be aware of are the following:


	FTRACE_OPS_FL_SAVE_REGS

	If the callback requires reading or modifying the pt_regs
passed to the callback, then it must set this flag. Registering
a ftrace_ops with this flag set on an architecture that does not
support passing of pt_regs to the callback will fail.

	FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED

	Similar to SAVE_REGS but the registering of a
ftrace_ops on an architecture that does not support passing of regs
will not fail with this flag set. But the callback must check if
regs is NULL or not to determine if the architecture supports it.

	FTRACE_OPS_FL_RECURSION_SAFE

	By default, a wrapper is added around the callback to
make sure that recursion of the function does not occur. That is,
if a function that is called as a result of the callback’s execution
is also traced, ftrace will prevent the callback from being called
again. But this wrapper adds some overhead, and if the callback is
safe from recursion, it can set this flag to disable the ftrace
protection.

Note, if this flag is set, and recursion does occur, it could cause
the system to crash, and possibly reboot via a triple fault.

It is OK if another callback traces a function that is called by a
callback that is marked recursion safe. Recursion safe callbacks
must never trace any function that are called by the callback
itself or any nested functions that those functions call.

If this flag is set, it is possible that the callback will also
be called with preemption enabled (when CONFIG_PREEMPT is set),
but this is not guaranteed.



	FTRACE_OPS_FL_IPMODIFY

	Requires FTRACE_OPS_FL_SAVE_REGS set. If the callback is to “hijack”
the traced function (have another function called instead of the
traced function), it requires setting this flag. This is what live
kernel patches uses. Without this flag the pt_regs->ip can not be
modified.

Note, only one ftrace_ops with FTRACE_OPS_FL_IPMODIFY set may be
registered to any given function at a time.



	FTRACE_OPS_FL_RCU

	If this is set, then the callback will only be called by functions
where RCU is “watching”. This is required if the callback function
performs any rcu_read_lock() operation.

RCU stops watching when the system goes idle, the time when a CPU
is taken down and comes back online, and when entering from kernel
to user space and back to kernel space. During these transitions,
a callback may be executed and RCU synchronization will not protect
it.








Filtering which functions to trace

If a callback is only to be called from specific functions, a filter must be
set up. The filters are added by name, or ip if it is known.

int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
                      int len, int reset);






	@ops

	The ops to set the filter with

	@buf

	The string that holds the function filter text.

	@len

	The length of the string.

	@reset

	Non-zero to reset all filters before applying this filter.



Filters denote which functions should be enabled when tracing is enabled.
If @buf is NULL and reset is set, all functions will be enabled for tracing.

The @buf can also be a glob expression to enable all functions that
match a specific pattern.

See Filter Commands in Documentation/trace/ftrace.rst.

To just trace the schedule function:

ret = ftrace_set_filter(&ops, "schedule", strlen("schedule"), 0);





To add more functions, call the ftrace_set_filter() more than once with the
@reset parameter set to zero. To remove the current filter set and replace it
with new functions defined by @buf, have @reset be non-zero.

To remove all the filtered functions and trace all functions:

ret = ftrace_set_filter(&ops, NULL, 0, 1);





Sometimes more than one function has the same name. To trace just a specific
function in this case, ftrace_set_filter_ip() can be used.

ret = ftrace_set_filter_ip(&ops, ip, 0, 0);





Although the ip must be the address where the call to fentry or mcount is
located in the function. This function is used by perf and kprobes that
gets the ip address from the user (usually using debug info from the kernel).

If a glob is used to set the filter, functions can be added to a “notrace”
list that will prevent those functions from calling the callback.
The “notrace” list takes precedence over the “filter” list. If the
two lists are non-empty and contain the same functions, the callback will not
be called by any function.

An empty “notrace” list means to allow all functions defined by the filter
to be traced.

int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
                       int len, int reset);





This takes the same parameters as ftrace_set_filter() but will add the
functions it finds to not be traced. This is a separate list from the
filter list, and this function does not modify the filter list.

A non-zero @reset will clear the “notrace” list before adding functions
that match @buf to it.

Clearing the “notrace” list is the same as clearing the filter list

ret = ftrace_set_notrace(&ops, NULL, 0, 1);





The filter and notrace lists may be changed at any time. If only a set of
functions should call the callback, it is best to set the filters before
registering the callback. But the changes may also happen after the callback
has been registered.

If a filter is in place, and the @reset is non-zero, and @buf contains a
matching glob to functions, the switch will happen during the time of
the ftrace_set_filter() call. At no time will all functions call the callback.

ftrace_set_filter(&ops, "schedule", strlen("schedule"), 1);

register_ftrace_function(&ops);

msleep(10);

ftrace_set_filter(&ops, "try_to_wake_up", strlen("try_to_wake_up"), 1);





is not the same as:

ftrace_set_filter(&ops, "schedule", strlen("schedule"), 1);

register_ftrace_function(&ops);

msleep(10);

ftrace_set_filter(&ops, NULL, 0, 1);

ftrace_set_filter(&ops, "try_to_wake_up", strlen("try_to_wake_up"), 0);





As the latter will have a short time where all functions will call
the callback, between the time of the reset, and the time of the
new setting of the filter.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Kprobe-based Event Tracing
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Kprobe-based Event Tracing





	Author:	Masami Hiramatsu






Overview

These events are similar to tracepoint based events. Instead of Tracepoint,
this is based on kprobes (kprobe and kretprobe). So it can probe wherever
kprobes can probe (this means, all functions except those with
__kprobes/nokprobe_inline annotation and those marked NOKPROBE_SYMBOL).
Unlike the Tracepoint based event, this can be added and removed
dynamically, on the fly.

To enable this feature, build your kernel with CONFIG_KPROBE_EVENTS=y.

Similar to the events tracer, this doesn’t need to be activated via
current_tracer. Instead of that, add probe points via
/sys/kernel/debug/tracing/kprobe_events, and enable it via
/sys/kernel/debug/tracing/events/kprobes/<EVENT>/enable.




Synopsis of kprobe_events

 p[:[GRP/]EVENT] [MOD:]SYM[+offs]|MEMADDR [FETCHARGS]  : Set a probe
 r[MAXACTIVE][:[GRP/]EVENT] [MOD:]SYM[+0] [FETCHARGS]  : Set a return probe
 -:[GRP/]EVENT                                         : Clear a probe

GRP            : Group name. If omitted, use "kprobes" for it.
EVENT          : Event name. If omitted, the event name is generated
                 based on SYM+offs or MEMADDR.
MOD            : Module name which has given SYM.
SYM[+offs]     : Symbol+offset where the probe is inserted.
MEMADDR        : Address where the probe is inserted.
MAXACTIVE      : Maximum number of instances of the specified function that
                 can be probed simultaneously, or 0 for the default value
                 as defined in Documentation/kprobes.txt section 1.3.1.

FETCHARGS      : Arguments. Each probe can have up to 128 args.
 %REG          : Fetch register REG
 @ADDR         : Fetch memory at ADDR (ADDR should be in kernel)
 @SYM[+|-offs] : Fetch memory at SYM +|- offs (SYM should be a data symbol)
 $stackN       : Fetch Nth entry of stack (N >= 0)
 $stack        : Fetch stack address.
 $argN         : Fetch the Nth function argument. (N >= 1) (\*1)
 $retval       : Fetch return value.(\*2)
 $comm         : Fetch current task comm.
 +|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(\*3)
 NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
 FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
                 (u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
                 (x8/x16/x32/x64), "string" and bitfield are supported.

 (\*1) only for the probe on function entry (offs == 0).
 (\*2) only for return probe.
 (\*3) this is useful for fetching a field of data structures.








Types

Several types are supported for fetch-args. Kprobe tracer will access memory
by given type. Prefix ‘s’ and ‘u’ means those types are signed and unsigned
respectively. ‘x’ prefix implies it is unsigned. Traced arguments are shown
in decimal (‘s’ and ‘u’) or hexadecimal (‘x’). Without type casting, ‘x32’
or ‘x64’ is used depends on the architecture (e.g. x86-32 uses x32, and
x86-64 uses x64).
These value types can be an array. To record array data, you can add ‘[N]’
(where N is a fixed number, less than 64) to the base type.
E.g. ‘x16[4]’ means an array of x16 (2bytes hex) with 4 elements.
Note that the array can be applied to memory type fetchargs, you can not
apply it to registers/stack-entries etc. (for example, ‘$stack1:x8[8]’ is
wrong, but ‘+8($stack):x8[8]’ is OK.)
String type is a special type, which fetches a “null-terminated” string from
kernel space. This means it will fail and store NULL if the string container
has been paged out.
The string array type is a bit different from other types. For other base
types, <base-type>[1] is equal to <base-type> (e.g. +0(%di):x32[1] is same
as +0(%di):x32.) But string[1] is not equal to string. The string type itself
represents “char array”, but string array type represents “char * array”.
So, for example, +0(%di):string[1] is equal to +0(+0(%di)):string.
Bitfield is another special type, which takes 3 parameters, bit-width, bit-
offset, and container-size (usually 32). The syntax is:

b<bit-width>@<bit-offset>/<container-size>





Symbol type(‘symbol’) is an alias of u32 or u64 type (depends on BITS_PER_LONG)
which shows given pointer in “symbol+offset” style.
For $comm, the default type is “string”; any other type is invalid.




Per-Probe Event Filtering

Per-probe event filtering feature allows you to set different filter on each
probe and gives you what arguments will be shown in trace buffer. If an event
name is specified right after ‘p:’ or ‘r:’ in kprobe_events, it adds an event
under tracing/events/kprobes/<EVENT>, at the directory you can see ‘id’,
‘enable’, ‘format’, ‘filter’ and ‘trigger’.


	enable:

	You can enable/disable the probe by writing 1 or 0 on it.

	format:

	This shows the format of this probe event.

	filter:

	You can write filtering rules of this event.

	id:

	This shows the id of this probe event.

	trigger:

	This allows to install trigger commands which are executed when the event is
hit (for details, see Documentation/trace/events.rst, section 6).






Event Profiling

You can check the total number of probe hits and probe miss-hits via
/sys/kernel/debug/tracing/kprobe_profile.
The first column is event name, the second is the number of probe hits,
the third is the number of probe miss-hits.




Usage examples

To add a probe as a new event, write a new definition to kprobe_events
as below:

echo 'p:myprobe do_sys_open dfd=%ax filename=%dx flags=%cx mode=+4($stack)' > /sys/kernel/debug/tracing/kprobe_events





This sets a kprobe on the top of do_sys_open() function with recording
1st to 4th arguments as “myprobe” event. Note, which register/stack entry is
assigned to each function argument depends on arch-specific ABI. If you unsure
the ABI, please try to use probe subcommand of perf-tools (you can find it
under tools/perf/).
As this example shows, users can choose more familiar names for each arguments.

echo 'r:myretprobe do_sys_open $retval' >> /sys/kernel/debug/tracing/kprobe_events





This sets a kretprobe on the return point of do_sys_open() function with
recording return value as “myretprobe” event.
You can see the format of these events via
/sys/kernel/debug/tracing/events/kprobes/<EVENT>/format.

cat /sys/kernel/debug/tracing/events/kprobes/myprobe/format
name: myprobe
ID: 780
format:
        field:unsigned short common_type;       offset:0;       size:2; signed:0;
        field:unsigned char common_flags;       offset:2;       size:1; signed:0;
        field:unsigned char common_preempt_count;       offset:3; size:1;signed:0;
        field:int common_pid;   offset:4;       size:4; signed:1;

        field:unsigned long __probe_ip; offset:12;      size:4; signed:0;
        field:int __probe_nargs;        offset:16;      size:4; signed:1;
        field:unsigned long dfd;        offset:20;      size:4; signed:0;
        field:unsigned long filename;   offset:24;      size:4; signed:0;
        field:unsigned long flags;      offset:28;      size:4; signed:0;
        field:unsigned long mode;       offset:32;      size:4; signed:0;


print fmt: "(%lx) dfd=%lx filename=%lx flags=%lx mode=%lx", REC->__probe_ip,
REC->dfd, REC->filename, REC->flags, REC->mode





You can see that the event has 4 arguments as in the expressions you specified.

echo > /sys/kernel/debug/tracing/kprobe_events





This clears all probe points.

Or,

echo -:myprobe >> kprobe_events





This clears probe points selectively.

Right after definition, each event is disabled by default. For tracing these
events, you need to enable it.

echo 1 > /sys/kernel/debug/tracing/events/kprobes/myprobe/enable
echo 1 > /sys/kernel/debug/tracing/events/kprobes/myretprobe/enable





And you can see the traced information via /sys/kernel/debug/tracing/trace.

cat /sys/kernel/debug/tracing/trace
# tracer: nop
#
#           TASK-PID    CPU#    TIMESTAMP  FUNCTION
#              | |       |          |         |
           <...>-1447  [001] 1038282.286875: myprobe: (do_sys_open+0x0/0xd6) dfd=3 filename=7fffd1ec4440 flags=8000 mode=0
           <...>-1447  [001] 1038282.286878: myretprobe: (sys_openat+0xc/0xe <- do_sys_open) $retval=fffffffffffffffe
           <...>-1447  [001] 1038282.286885: myprobe: (do_sys_open+0x0/0xd6) dfd=ffffff9c filename=40413c flags=8000 mode=1b6
           <...>-1447  [001] 1038282.286915: myretprobe: (sys_open+0x1b/0x1d <- do_sys_open) $retval=3
           <...>-1447  [001] 1038282.286969: myprobe: (do_sys_open+0x0/0xd6) dfd=ffffff9c filename=4041c6 flags=98800 mode=10
           <...>-1447  [001] 1038282.286976: myretprobe: (sys_open+0x1b/0x1d <- do_sys_open) $retval=3





Each line shows when the kernel hits an event, and <- SYMBOL means kernel
returns from SYMBOL(e.g. “sys_open+0x1b/0x1d <- do_sys_open” means kernel
returns from do_sys_open to sys_open+0x1b).







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Uprobe-tracer: Uprobe-based Event Tracing
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Uprobe-tracer: Uprobe-based Event Tracing





	Author:	Srikar Dronamraju






Overview

Uprobe based trace events are similar to kprobe based trace events.
To enable this feature, build your kernel with CONFIG_UPROBE_EVENTS=y.

Similar to the kprobe-event tracer, this doesn’t need to be activated via
current_tracer. Instead of that, add probe points via
/sys/kernel/debug/tracing/uprobe_events, and enable it via
/sys/kernel/debug/tracing/events/uprobes/<EVENT>/enable.

However unlike kprobe-event tracer, the uprobe event interface expects the
user to calculate the offset of the probepoint in the object.




Synopsis of uprobe_tracer

p[:[GRP/]EVENT] PATH:OFFSET [FETCHARGS] : Set a uprobe
r[:[GRP/]EVENT] PATH:OFFSET [FETCHARGS] : Set a return uprobe (uretprobe)
-:[GRP/]EVENT                           : Clear uprobe or uretprobe event

GRP           : Group name. If omitted, "uprobes" is the default value.
EVENT         : Event name. If omitted, the event name is generated based
                on PATH+OFFSET.
PATH          : Path to an executable or a library.
OFFSET        : Offset where the probe is inserted.

FETCHARGS     : Arguments. Each probe can have up to 128 args.
 %REG         : Fetch register REG
 @ADDR        : Fetch memory at ADDR (ADDR should be in userspace)
 @+OFFSET     : Fetch memory at OFFSET (OFFSET from same file as PATH)
 $stackN      : Fetch Nth entry of stack (N >= 0)
 $stack       : Fetch stack address.
 $retval      : Fetch return value.(*)
 $comm        : Fetch current task comm.
 +|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
 NAME=FETCHARG     : Set NAME as the argument name of FETCHARG.
 FETCHARG:TYPE     : Set TYPE as the type of FETCHARG. Currently, basic types
                     (u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
                     (x8/x16/x32/x64), "string" and bitfield are supported.

(*) only for return probe.
(**) this is useful for fetching a field of data structures.








Types

Several types are supported for fetch-args. Uprobe tracer will access memory
by given type. Prefix ‘s’ and ‘u’ means those types are signed and unsigned
respectively. ‘x’ prefix implies it is unsigned. Traced arguments are shown
in decimal (‘s’ and ‘u’) or hexadecimal (‘x’). Without type casting, ‘x32’
or ‘x64’ is used depends on the architecture (e.g. x86-32 uses x32, and
x86-64 uses x64).
String type is a special type, which fetches a “null-terminated” string from
user space.
Bitfield is another special type, which takes 3 parameters, bit-width, bit-
offset, and container-size (usually 32). The syntax is:

b<bit-width>@<bit-offset>/<container-size>





For $comm, the default type is “string”; any other type is invalid.




Event Profiling

You can check the total number of probe hits and probe miss-hits via
/sys/kernel/debug/tracing/uprobe_profile.
The first column is event name, the second is the number of probe hits,
the third is the number of probe miss-hits.




Usage examples



	Add a probe as a new uprobe event, write a new definition to uprobe_events
as below (sets a uprobe at an offset of 0x4245c0 in the executable /bin/bash):

echo 'p /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events







	Add a probe as a new uretprobe event:

echo 'r /bin/bash:0x4245c0' > /sys/kernel/debug/tracing/uprobe_events







	Unset registered event:

echo '-:p_bash_0x4245c0' >> /sys/kernel/debug/tracing/uprobe_events







	Print out the events that are registered:

cat /sys/kernel/debug/tracing/uprobe_events







	Clear all events:

echo > /sys/kernel/debug/tracing/uprobe_events












Following example shows how to dump the instruction pointer and %ax register
at the probed text address. Probe zfree function in /bin/zsh:

# cd /sys/kernel/debug/tracing/
# cat /proc/`pgrep zsh`/maps | grep /bin/zsh | grep r-xp
00400000-0048a000 r-xp 00000000 08:03 130904 /bin/zsh
# objdump -T /bin/zsh | grep -w zfree
0000000000446420 g    DF .text  0000000000000012  Base        zfree





0x46420 is the offset of zfree in object /bin/zsh that is loaded at
0x00400000. Hence the command to uprobe would be:

# echo 'p:zfree_entry /bin/zsh:0x46420 %ip %ax' > uprobe_events





And the same for the uretprobe would be:

# echo 'r:zfree_exit /bin/zsh:0x46420 %ip %ax' >> uprobe_events






注解

User has to explicitly calculate the offset of the probe-point
in the object.



We can see the events that are registered by looking at the uprobe_events file.

# cat uprobe_events
p:uprobes/zfree_entry /bin/zsh:0x00046420 arg1=%ip arg2=%ax
r:uprobes/zfree_exit /bin/zsh:0x00046420 arg1=%ip arg2=%ax





Format of events can be seen by viewing the file events/uprobes/zfree_entry/format.

# cat events/uprobes/zfree_entry/format
name: zfree_entry
ID: 922
format:
     field:unsigned short common_type;         offset:0;  size:2; signed:0;
     field:unsigned char common_flags;         offset:2;  size:1; signed:0;
     field:unsigned char common_preempt_count; offset:3;  size:1; signed:0;
     field:int common_pid;                     offset:4;  size:4; signed:1;
     field:int common_padding;                 offset:8;  size:4; signed:1;

     field:unsigned long __probe_ip;           offset:12; size:4; signed:0;
     field:u32 arg1;                           offset:16; size:4; signed:0;
     field:u32 arg2;                           offset:20; size:4; signed:0;

print fmt: "(%lx) arg1=%lx arg2=%lx", REC->__probe_ip, REC->arg1, REC->arg2





Right after definition, each event is disabled by default. For tracing these
events, you need to enable it by:

# echo 1 > events/uprobes/enable





Lets disable the event after sleeping for some time.

# sleep 20
# echo 0 > events/uprobes/enable





And you can see the traced information via /sys/kernel/debug/tracing/trace.

# cat trace
# tracer: nop
#
#           TASK-PID    CPU#    TIMESTAMP  FUNCTION
#              | |       |          |         |
             zsh-24842 [006] 258544.995456: zfree_entry: (0x446420) arg1=446420 arg2=79
             zsh-24842 [007] 258545.000270: zfree_exit:  (0x446540 <- 0x446420) arg1=446540 arg2=0
             zsh-24842 [002] 258545.043929: zfree_entry: (0x446420) arg1=446420 arg2=79
             zsh-24842 [004] 258547.046129: zfree_exit:  (0x446540 <- 0x446420) arg1=446540 arg2=0





Output shows us uprobe was triggered for a pid 24842 with ip being 0x446420
and contents of ax register being 79. And uretprobe was triggered with ip at
0x446540 with counterpart function entry at 0x446420.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Using the Linux Kernel Tracepoints
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Using the Linux Kernel Tracepoints





	Author:	Mathieu Desnoyers





This document introduces Linux Kernel Tracepoints and their use. It
provides examples of how to insert tracepoints in the kernel and
connect probe functions to them and provides some examples of probe
functions.


Purpose of tracepoints

A tracepoint placed in code provides a hook to call a function (probe)
that you can provide at runtime. A tracepoint can be “on” (a probe is
connected to it) or “off” (no probe is attached). When a tracepoint is
“off” it has no effect, except for adding a tiny time penalty
(checking a condition for a branch) and space penalty (adding a few
bytes for the function call at the end of the instrumented function
and adds a data structure in a separate section).  When a tracepoint
is “on”, the function you provide is called each time the tracepoint
is executed, in the execution context of the caller. When the function
provided ends its execution, it returns to the caller (continuing from
the tracepoint site).

You can put tracepoints at important locations in the code. They are
lightweight hooks that can pass an arbitrary number of parameters,
which prototypes are described in a tracepoint declaration placed in a
header file.

They can be used for tracing and performance accounting.




Usage

Two elements are required for tracepoints :


	A tracepoint definition, placed in a header file.

	The tracepoint statement, in C code.



In order to use tracepoints, you should include linux/tracepoint.h.

In include/trace/events/subsys.h:

#undef TRACE_SYSTEM
#define TRACE_SYSTEM subsys

#if !defined(_TRACE_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_SUBSYS_H

#include <linux/tracepoint.h>

DECLARE_TRACE(subsys_eventname,
        TP_PROTO(int firstarg, struct task_struct *p),
        TP_ARGS(firstarg, p));

#endif /* _TRACE_SUBSYS_H */

/* This part must be outside protection */
#include <trace/define_trace.h>





In subsys/file.c (where the tracing statement must be added):

#include <trace/events/subsys.h>

#define CREATE_TRACE_POINTS
DEFINE_TRACE(subsys_eventname);

void somefct(void)
{
        ...
        trace_subsys_eventname(arg, task);
        ...
}






	Where :

	
	subsys_eventname is an identifier unique to your event
	subsys is the name of your subsystem.

	eventname is the name of the event to trace.





	TP_PROTO(int firstarg, struct task_struct *p) is the prototype of the
function called by this tracepoint.

	TP_ARGS(firstarg, p) are the parameters names, same as found in the
prototype.

	if you use the header in multiple source files, #define CREATE_TRACE_POINTS
should appear only in one source file.







Connecting a function (probe) to a tracepoint is done by providing a
probe (function to call) for the specific tracepoint through
register_trace_subsys_eventname().  Removing a probe is done through
unregister_trace_subsys_eventname(); it will remove the probe.

tracepoint_synchronize_unregister() must be called before the end of
the module exit function to make sure there is no caller left using
the probe. This, and the fact that preemption is disabled around the
probe call, make sure that probe removal and module unload are safe.

The tracepoint mechanism supports inserting multiple instances of the
same tracepoint, but a single definition must be made of a given
tracepoint name over all the kernel to make sure no type conflict will
occur. Name mangling of the tracepoints is done using the prototypes
to make sure typing is correct. Verification of probe type correctness
is done at the registration site by the compiler. Tracepoints can be
put in inline functions, inlined static functions, and unrolled loops
as well as regular functions.

The naming scheme “subsys_event” is suggested here as a convention
intended to limit collisions. Tracepoint names are global to the
kernel: they are considered as being the same whether they are in the
core kernel image or in modules.

If the tracepoint has to be used in kernel modules, an
EXPORT_TRACEPOINT_SYMBOL_GPL() or EXPORT_TRACEPOINT_SYMBOL() can be
used to export the defined tracepoints.

If you need to do a bit of work for a tracepoint parameter, and
that work is only used for the tracepoint, that work can be encapsulated
within an if statement with the following:

if (trace_foo_bar_enabled()) {
        int i;
        int tot = 0;

        for (i = 0; i < count; i++)
                tot += calculate_nuggets();

        trace_foo_bar(tot);
}





All trace_<tracepoint>() calls have a matching trace_<tracepoint>_enabled()
function defined that returns true if the tracepoint is enabled and
false otherwise. The trace_<tracepoint>() should always be within the
block of the if (trace_<tracepoint>_enabled()) to prevent races between
the tracepoint being enabled and the check being seen.

The advantage of using the trace_<tracepoint>_enabled() is that it uses
the static_key of the tracepoint to allow the if statement to be implemented
with jump labels and avoid conditional branches.


注解

The convenience macro TRACE_EVENT provides an alternative way to
define tracepoints. Check http://lwn.net/Articles/379903,
http://lwn.net/Articles/381064 and http://lwn.net/Articles/383362
for a series of articles with more details.









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Event Tracing
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Event Tracing





	Author:	Theodore Ts’o


	Updated:	Li Zefan and Tom Zanussi






1. Introduction

Tracepoints (see Documentation/trace/tracepoints.rst) can be used
without creating custom kernel modules to register probe functions
using the event tracing infrastructure.

Not all tracepoints can be traced using the event tracing system;
the kernel developer must provide code snippets which define how the
tracing information is saved into the tracing buffer, and how the
tracing information should be printed.




2. Using Event Tracing


2.1 Via the ‘set_event’ interface

The events which are available for tracing can be found in the file
/sys/kernel/debug/tracing/available_events.

To enable a particular event, such as ‘sched_wakeup’, simply echo it
to /sys/kernel/debug/tracing/set_event. For example:

# echo sched_wakeup >> /sys/kernel/debug/tracing/set_event






注解

‘>>’ is necessary, otherwise it will firstly disable all the events.



To disable an event, echo the event name to the set_event file prefixed
with an exclamation point:

# echo '!sched_wakeup' >> /sys/kernel/debug/tracing/set_event





To disable all events, echo an empty line to the set_event file:

# echo > /sys/kernel/debug/tracing/set_event





To enable all events, echo *:* or *: to the set_event file:

# echo *:* > /sys/kernel/debug/tracing/set_event





The events are organized into subsystems, such as ext4, irq, sched,
etc., and a full event name looks like this: <subsystem>:<event>.  The
subsystem name is optional, but it is displayed in the available_events
file.  All of the events in a subsystem can be specified via the syntax
<subsystem>:*; for example, to enable all irq events, you can use the
command:

# echo 'irq:*' > /sys/kernel/debug/tracing/set_event








2.2 Via the ‘enable’ toggle

The events available are also listed in /sys/kernel/debug/tracing/events/ hierarchy
of directories.

To enable event ‘sched_wakeup’:

# echo 1 > /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable





To disable it:

# echo 0 > /sys/kernel/debug/tracing/events/sched/sched_wakeup/enable





To enable all events in sched subsystem:

# echo 1 > /sys/kernel/debug/tracing/events/sched/enable





To enable all events:

# echo 1 > /sys/kernel/debug/tracing/events/enable





When reading one of these enable files, there are four results:



	0 - all events this file affects are disabled

	1 - all events this file affects are enabled

	X - there is a mixture of events enabled and disabled

	? - this file does not affect any event









2.3 Boot option

In order to facilitate early boot debugging, use boot option:

trace_event=[event-list]





event-list is a comma separated list of events. See section 2.1 for event
format.






3. Defining an event-enabled tracepoint

See The example provided in samples/trace_events




4. Event formats

Each trace event has a ‘format’ file associated with it that contains
a description of each field in a logged event.  This information can
be used to parse the binary trace stream, and is also the place to
find the field names that can be used in event filters (see section 5).

It also displays the format string that will be used to print the
event in text mode, along with the event name and ID used for
profiling.

Every event has a set of common fields associated with it; these are
the fields prefixed with common_.  The other fields vary between
events and correspond to the fields defined in the TRACE_EVENT
definition for that event.

Each field in the format has the form:

field:field-type field-name; offset:N; size:N;





where offset is the offset of the field in the trace record and size
is the size of the data item, in bytes.

For example, here’s the information displayed for the ‘sched_wakeup’
event:

# cat /sys/kernel/debug/tracing/events/sched/sched_wakeup/format

name: sched_wakeup
ID: 60
format:
        field:unsigned short common_type;       offset:0;       size:2;
        field:unsigned char common_flags;       offset:2;       size:1;
        field:unsigned char common_preempt_count;       offset:3;       size:1;
        field:int common_pid;   offset:4;       size:4;
        field:int common_tgid;  offset:8;       size:4;

        field:char comm[TASK_COMM_LEN]; offset:12;      size:16;
        field:pid_t pid;        offset:28;      size:4;
        field:int prio; offset:32;      size:4;
        field:int success;      offset:36;      size:4;
        field:int cpu;  offset:40;      size:4;

print fmt: "task %s:%d [%d] success=%d [%03d]", REC->comm, REC->pid,
           REC->prio, REC->success, REC->cpu





This event contains 10 fields, the first 5 common and the remaining 5
event-specific.  All the fields for this event are numeric, except for
‘comm’ which is a string, a distinction important for event filtering.




5. Event filtering

Trace events can be filtered in the kernel by associating boolean
‘filter expressions’ with them.  As soon as an event is logged into
the trace buffer, its fields are checked against the filter expression
associated with that event type.  An event with field values that
‘match’ the filter will appear in the trace output, and an event whose
values don’t match will be discarded.  An event with no filter
associated with it matches everything, and is the default when no
filter has been set for an event.


5.1 Expression syntax

A filter expression consists of one or more ‘predicates’ that can be
combined using the logical operators ‘&&’ and ‘||’.  A predicate is
simply a clause that compares the value of a field contained within a
logged event with a constant value and returns either 0 or 1 depending
on whether the field value matched (1) or didn’t match (0):

field-name relational-operator value





Parentheses can be used to provide arbitrary logical groupings and
double-quotes can be used to prevent the shell from interpreting
operators as shell metacharacters.

The field-names available for use in filters can be found in the
‘format’ files for trace events (see section 4).

The relational-operators depend on the type of the field being tested:

The operators available for numeric fields are:

==, !=, <, <=, >, >=, &

And for string fields they are:

==, !=, ~

The glob (~) accepts a wild card character (*,?) and character classes
([). For example:

prev_comm ~ "*sh"
prev_comm ~ "sh*"
prev_comm ~ "*sh*"
prev_comm ~ "ba*sh"








5.2 Setting filters

A filter for an individual event is set by writing a filter expression
to the ‘filter’ file for the given event.

For example:

# cd /sys/kernel/debug/tracing/events/sched/sched_wakeup
# echo "common_preempt_count > 4" > filter





A slightly more involved example:

# cd /sys/kernel/debug/tracing/events/signal/signal_generate
# echo "((sig >= 10 && sig < 15) || sig == 17) && comm != bash" > filter





If there is an error in the expression, you’ll get an ‘Invalid
argument’ error when setting it, and the erroneous string along with
an error message can be seen by looking at the filter e.g.:

# cd /sys/kernel/debug/tracing/events/signal/signal_generate
# echo "((sig >= 10 && sig < 15) || dsig == 17) && comm != bash" > filter
-bash: echo: write error: Invalid argument
# cat filter
((sig >= 10 && sig < 15) || dsig == 17) && comm != bash
^
parse_error: Field not found





Currently the caret (‘^’) for an error always appears at the beginning of
the filter string; the error message should still be useful though
even without more accurate position info.




5.3 Clearing filters

To clear the filter for an event, write a ‘0’ to the event’s filter
file.

To clear the filters for all events in a subsystem, write a ‘0’ to the
subsystem’s filter file.




5.3 Subsystem filters

For convenience, filters for every event in a subsystem can be set or
cleared as a group by writing a filter expression into the filter file
at the root of the subsystem.  Note however, that if a filter for any
event within the subsystem lacks a field specified in the subsystem
filter, or if the filter can’t be applied for any other reason, the
filter for that event will retain its previous setting.  This can
result in an unintended mixture of filters which could lead to
confusing (to the user who might think different filters are in
effect) trace output.  Only filters that reference just the common
fields can be guaranteed to propagate successfully to all events.

Here are a few subsystem filter examples that also illustrate the
above points:

Clear the filters on all events in the sched subsystem:

# cd /sys/kernel/debug/tracing/events/sched
# echo 0 > filter
# cat sched_switch/filter
none
# cat sched_wakeup/filter
none





Set a filter using only common fields for all events in the sched
subsystem (all events end up with the same filter):

# cd /sys/kernel/debug/tracing/events/sched
# echo common_pid == 0 > filter
# cat sched_switch/filter
common_pid == 0
# cat sched_wakeup/filter
common_pid == 0





Attempt to set a filter using a non-common field for all events in the
sched subsystem (all events but those that have a prev_pid field retain
their old filters):

# cd /sys/kernel/debug/tracing/events/sched
# echo prev_pid == 0 > filter
# cat sched_switch/filter
prev_pid == 0
# cat sched_wakeup/filter
common_pid == 0








5.4 PID filtering

The set_event_pid file in the same directory as the top events directory
exists, will filter all events from tracing any task that does not have the
PID listed in the set_event_pid file.

# cd /sys/kernel/debug/tracing
# echo $$ > set_event_pid
# echo 1 > events/enable





Will only trace events for the current task.

To add more PIDs without losing the PIDs already included, use ‘>>’.

# echo 123 244 1 >> set_event_pid










6. Event triggers

Trace events can be made to conditionally invoke trigger ‘commands’
which can take various forms and are described in detail below;
examples would be enabling or disabling other trace events or invoking
a stack trace whenever the trace event is hit.  Whenever a trace event
with attached triggers is invoked, the set of trigger commands
associated with that event is invoked.  Any given trigger can
additionally have an event filter of the same form as described in
section 5 (Event filtering) associated with it - the command will only
be invoked if the event being invoked passes the associated filter.
If no filter is associated with the trigger, it always passes.

Triggers are added to and removed from a particular event by writing
trigger expressions to the ‘trigger’ file for the given event.

A given event can have any number of triggers associated with it,
subject to any restrictions that individual commands may have in that
regard.

Event triggers are implemented on top of “soft” mode, which means that
whenever a trace event has one or more triggers associated with it,
the event is activated even if it isn’t actually enabled, but is
disabled in a “soft” mode.  That is, the tracepoint will be called,
but just will not be traced, unless of course it’s actually enabled.
This scheme allows triggers to be invoked even for events that aren’t
enabled, and also allows the current event filter implementation to be
used for conditionally invoking triggers.

The syntax for event triggers is roughly based on the syntax for
set_ftrace_filter ‘ftrace filter commands’ (see the ‘Filter commands’
section of Documentation/trace/ftrace.rst), but there are major
differences and the implementation isn’t currently tied to it in any
way, so beware about making generalizations between the two.


	Note: Writing into trace_marker (See Documentation/trace/ftrace.rst)

	can also enable triggers that are written into
/sys/kernel/tracing/events/ftrace/print/trigger




6.1 Expression syntax

Triggers are added by echoing the command to the ‘trigger’ file:

# echo 'command[:count] [if filter]' > trigger





Triggers are removed by echoing the same command but starting with ‘!’
to the ‘trigger’ file:

# echo '!command[:count] [if filter]' > trigger





The [if filter] part isn’t used in matching commands when removing, so
leaving that off in a ‘!’ command will accomplish the same thing as
having it in.

The filter syntax is the same as that described in the ‘Event
filtering’ section above.

For ease of use, writing to the trigger file using ‘>’ currently just
adds or removes a single trigger and there’s no explicit ‘>>’ support
(‘>’ actually behaves like ‘>>’) or truncation support to remove all
triggers (you have to use ‘!’ for each one added.)




6.2 Supported trigger commands

The following commands are supported:


	enable_event/disable_event

These commands can enable or disable another trace event whenever
the triggering event is hit.  When these commands are registered,
the other trace event is activated, but disabled in a “soft” mode.
That is, the tracepoint will be called, but just will not be traced.
The event tracepoint stays in this mode as long as there’s a trigger
in effect that can trigger it.

For example, the following trigger causes kmalloc events to be
traced when a read system call is entered, and the :1 at the end
specifies that this enablement happens only once:

# echo 'enable_event:kmem:kmalloc:1' > \
    /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/trigger





The following trigger causes kmalloc events to stop being traced
when a read system call exits.  This disablement happens on every
read system call exit:

# echo 'disable_event:kmem:kmalloc' > \
    /sys/kernel/debug/tracing/events/syscalls/sys_exit_read/trigger





The format is:

enable_event:<system>:<event>[:count]
disable_event:<system>:<event>[:count]





To remove the above commands:

# echo '!enable_event:kmem:kmalloc:1' > \
    /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/trigger

# echo '!disable_event:kmem:kmalloc' > \
    /sys/kernel/debug/tracing/events/syscalls/sys_exit_read/trigger





Note that there can be any number of enable/disable_event triggers
per triggering event, but there can only be one trigger per
triggered event. e.g. sys_enter_read can have triggers enabling both
kmem:kmalloc and sched:sched_switch, but can’t have two kmem:kmalloc
versions such as kmem:kmalloc and kmem:kmalloc:1 or ‘kmem:kmalloc if
bytes_req == 256’ and ‘kmem:kmalloc if bytes_alloc == 256’ (they
could be combined into a single filter on kmem:kmalloc though).



	stacktrace

This command dumps a stacktrace in the trace buffer whenever the
triggering event occurs.

For example, the following trigger dumps a stacktrace every time the
kmalloc tracepoint is hit:

# echo 'stacktrace' > \
      /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger





The following trigger dumps a stacktrace the first 5 times a kmalloc
request happens with a size >= 64K:

# echo 'stacktrace:5 if bytes_req >= 65536' > \
      /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger





The format is:

stacktrace[:count]





To remove the above commands:

# echo '!stacktrace' > \
      /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# echo '!stacktrace:5 if bytes_req >= 65536' > \
      /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger





The latter can also be removed more simply by the following (without
the filter):

# echo '!stacktrace:5' > \
      /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger





Note that there can be only one stacktrace trigger per triggering
event.



	snapshot

This command causes a snapshot to be triggered whenever the
triggering event occurs.

The following command creates a snapshot every time a block request
queue is unplugged with a depth > 1.  If you were tracing a set of
events or functions at the time, the snapshot trace buffer would
capture those events when the trigger event occurred:

# echo 'snapshot if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger





To only snapshot once:

# echo 'snapshot:1 if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger





To remove the above commands:

# echo '!snapshot if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger

# echo '!snapshot:1 if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger





Note that there can be only one snapshot trigger per triggering
event.



	traceon/traceoff

These commands turn tracing on and off when the specified events are
hit. The parameter determines how many times the tracing system is
turned on and off. If unspecified, there is no limit.

The following command turns tracing off the first time a block
request queue is unplugged with a depth > 1.  If you were tracing a
set of events or functions at the time, you could then examine the
trace buffer to see the sequence of events that led up to the
trigger event:

# echo 'traceoff:1 if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger





To always disable tracing when nr_rq  > 1:

# echo 'traceoff if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger





To remove the above commands:

# echo '!traceoff:1 if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger

# echo '!traceoff if nr_rq > 1' > \
      /sys/kernel/debug/tracing/events/block/block_unplug/trigger





Note that there can be only one traceon or traceoff trigger per
triggering event.



	hist

This command aggregates event hits into a hash table keyed on one or
more trace event format fields (or stacktrace) and a set of running
totals derived from one or more trace event format fields and/or
event counts (hitcount).

See Documentation/trace/histogram.rst for details and examples.













          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Subsystem Trace Points: kmem
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Subsystem Trace Points: kmem

The kmem tracing system captures events related to object and page allocation
within the kernel. Broadly speaking there are five major subheadings.



	Slab allocation of small objects of unknown type (kmalloc)

	Slab allocation of small objects of known type

	Page allocation

	Per-CPU Allocator Activity

	External Fragmentation






This document describes what each of the tracepoints is and why they
might be useful.


1. Slab allocation of small objects of unknown type

kmalloc               call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s
kmalloc_node  call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d
kfree         call_site=%lx ptr=%p





Heavy activity for these events may indicate that a specific cache is
justified, particularly if kmalloc slab pages are getting significantly
internal fragmented as a result of the allocation pattern. By correlating
kmalloc with kfree, it may be possible to identify memory leaks and where
the allocation sites were.




2. Slab allocation of small objects of known type

kmem_cache_alloc      call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s
kmem_cache_alloc_node call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s node=%d
kmem_cache_free               call_site=%lx ptr=%p





These events are similar in usage to the kmalloc-related events except that
it is likely easier to pin the event down to a specific cache. At the time
of writing, no information is available on what slab is being allocated from,
but the call_site can usually be used to extrapolate that information.




3. Page allocation

mm_page_alloc           page=%p pfn=%lu order=%d migratetype=%d gfp_flags=%s
mm_page_alloc_zone_locked page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d
mm_page_free            page=%p pfn=%lu order=%d
mm_page_free_batched    page=%p pfn=%lu order=%d cold=%d





These four events deal with page allocation and freeing. mm_page_alloc is
a simple indicator of page allocator activity. Pages may be allocated from
the per-CPU allocator (high performance) or the buddy allocator.

If pages are allocated directly from the buddy allocator, the
mm_page_alloc_zone_locked event is triggered. This event is important as high
amounts of activity imply high activity on the zone->lock. Taking this lock
impairs performance by disabling interrupts, dirtying cache lines between
CPUs and serialising many CPUs.

When a page is freed directly by the caller, the only mm_page_free event
is triggered. Significant amounts of activity here could indicate that the
callers should be batching their activities.

When pages are freed in batch, the also mm_page_free_batched is triggered.
Broadly speaking, pages are taken off the LRU lock in bulk and
freed in batch with a page list. Significant amounts of activity here could
indicate that the system is under memory pressure and can also indicate
contention on the zone->lru_lock.




4. Per-CPU Allocator Activity

mm_page_alloc_zone_locked     page=%p pfn=%lu order=%u migratetype=%d cpu=%d percpu_refill=%d
mm_page_pcpu_drain            page=%p pfn=%lu order=%d cpu=%d migratetype=%d





In front of the page allocator is a per-cpu page allocator. It exists only
for order-0 pages, reduces contention on the zone->lock and reduces the
amount of writing on struct page.

When a per-CPU list is empty or pages of the wrong type are allocated,
the zone->lock will be taken once and the per-CPU list refilled. The event
triggered is mm_page_alloc_zone_locked for each page allocated with the
event indicating whether it is for a percpu_refill or not.

When the per-CPU list is too full, a number of pages are freed, each one
which triggers a mm_page_pcpu_drain event.

The individual nature of the events is so that pages can be tracked
between allocation and freeing. A number of drain or refill pages that occur
consecutively imply the zone->lock being taken once. Large amounts of per-CPU
refills and drains could imply an imbalance between CPUs where too much work
is being concentrated in one place. It could also indicate that the per-CPU
lists should be a larger size. Finally, large amounts of refills on one CPU
and drains on another could be a factor in causing large amounts of cache
line bounces due to writes between CPUs and worth investigating if pages
can be allocated and freed on the same CPU through some algorithm change.




5. External Fragmentation

mm_page_alloc_extfrag         page=%p pfn=%lu alloc_order=%d fallback_order=%d pageblock_order=%d alloc_migratetype=%d fallback_migratetype=%d fragmenting=%d change_ownership=%d





External fragmentation affects whether a high-order allocation will be
successful or not. For some types of hardware, this is important although
it is avoided where possible. If the system is using huge pages and needs
to be able to resize the pool over the lifetime of the system, this value
is important.

Large numbers of this event implies that memory is fragmenting and
high-order allocations will start failing at some time in the future. One
means of reducing the occurrence of this event is to increase the size of
min_free_kbytes in increments of 3*pageblock_size*nr_online_nodes where
pageblock_size is usually the size of the default hugepage size.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Subsystem Trace Points: power
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Subsystem Trace Points: power

The power tracing system captures events related to power transitions
within the kernel. Broadly speaking there are three major subheadings:



	Power state switch which reports events related to suspend (S-states),
cpuidle (C-states) and cpufreq (P-states)

	System clock related changes

	Power domains related changes and transitions






This document describes what each of the tracepoints is and why they
might be useful.

Cf. include/trace/events/power.h for the events definitions.


1. Power state switch events


1.1 Trace API

A ‘cpu’ event class gathers the CPU-related events: cpuidle and
cpufreq.

cpu_idle              "state=%lu cpu_id=%lu"
cpu_frequency         "state=%lu cpu_id=%lu"
cpu_frequency_limits  "min=%lu max=%lu cpu_id=%lu"





A suspend event is used to indicate the system going in and out of the
suspend mode:

machine_suspend               "state=%lu"





Note: the value of ‘-1’ or ‘4294967295’ for state means an exit from the current state,
i.e. trace_cpu_idle(4, smp_processor_id()) means that the system
enters the idle state 4, while trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id())
means that the system exits the previous idle state.

The event which has ‘state=4294967295’ in the trace is very important to the user
space tools which are using it to detect the end of the current state, and so to
correctly draw the states diagrams and to calculate accurate statistics etc.






2. Clocks events

The clock events are used for clock enable/disable and for
clock rate change.

clock_enable          "%s state=%lu cpu_id=%lu"
clock_disable         "%s state=%lu cpu_id=%lu"
clock_set_rate                "%s state=%lu cpu_id=%lu"





The first parameter gives the clock name (e.g. “gpio1_iclk”).
The second parameter is ‘1’ for enable, ‘0’ for disable, the target
clock rate for set_rate.




3. Power domains events

The power domain events are used for power domains transitions

power_domain_target   "%s state=%lu cpu_id=%lu"





The first parameter gives the power domain name (e.g. “mpu_pwrdm”).
The second parameter is the power domain target state.




4. PM QoS events

The PM QoS events are used for QoS add/update/remove request and for
target/flags update.

pm_qos_add_request                 "pm_qos_class=%s value=%d"
pm_qos_update_request              "pm_qos_class=%s value=%d"
pm_qos_remove_request              "pm_qos_class=%s value=%d"
pm_qos_update_request_timeout      "pm_qos_class=%s value=%d, timeout_us=%ld"





The first parameter gives the QoS class name (e.g. “CPU_DMA_LATENCY”).
The second parameter is value to be added/updated/removed.
The third parameter is timeout value in usec.

pm_qos_update_target               "action=%s prev_value=%d curr_value=%d"
pm_qos_update_flags                "action=%s prev_value=0x%x curr_value=0x%x"





The first parameter gives the QoS action name (e.g. “ADD_REQ”).
The second parameter is the previous QoS value.
The third parameter is the current QoS value to update.

And, there are also events used for device PM QoS add/update/remove request.

dev_pm_qos_add_request             "device=%s type=%s new_value=%d"
dev_pm_qos_update_request          "device=%s type=%s new_value=%d"
dev_pm_qos_remove_request          "device=%s type=%s new_value=%d"





The first parameter gives the device name which tries to add/update/remove
QoS requests.
The second parameter gives the request type (e.g. “DEV_PM_QOS_RESUME_LATENCY”).
The third parameter is value to be added/updated/removed.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    NMI Trace Events
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
NMI Trace Events

These events normally show up here:


/sys/kernel/debug/tracing/events/nmi



nmi_handler

You might want to use this tracepoint if you suspect that your
NMI handlers are hogging large amounts of CPU time.  The kernel
will warn if it sees long-running handlers:

INFO: NMI handler took too long to run: 9.207 msecs





and this tracepoint will allow you to drill down and get some
more details.

Let’s say you suspect that perf_event_nmi_handler() is causing
you some problems and you only want to trace that handler
specifically.  You need to find its address:

$ grep perf_event_nmi_handler /proc/kallsyms
ffffffff81625600 t perf_event_nmi_handler





Let’s also say you are only interested in when that function is
really hogging a lot of CPU time, like a millisecond at a time.
Note that the kernel’s output is in milliseconds, but the input
to the filter is in nanoseconds!  You can filter on ‘delta_ns’:

cd /sys/kernel/debug/tracing/events/nmi/nmi_handler
echo 'handler==0xffffffff81625600 && delta_ns>1000000' > filter
echo 1 > enable





Your output would then look like:

$ cat /sys/kernel/debug/tracing/trace_pipe
<idle>-0     [000] d.h3   505.397558: nmi_handler: perf_event_nmi_handler() delta_ns: 3236765 handled: 1
<idle>-0     [000] d.h3   505.805893: nmi_handler: perf_event_nmi_handler() delta_ns: 3174234 handled: 1
<idle>-0     [000] d.h3   506.158206: nmi_handler: perf_event_nmi_handler() delta_ns: 3084642 handled: 1
<idle>-0     [000] d.h3   506.334346: nmi_handler: perf_event_nmi_handler() delta_ns: 3080351 handled: 1











          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    MSR Trace Events
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
MSR Trace Events

The x86 kernel supports tracing most MSR (Model Specific Register) accesses.
To see the definition of the MSRs on Intel systems please see the SDM
at http://www.intel.com/sdm (Volume 3)

Available trace points:

/sys/kernel/debug/tracing/events/msr/

Trace MSR reads:

read_msr



	msr: MSR number

	val: Value written

	failed: 1 if the access failed, otherwise 0






Trace MSR writes:

write_msr



	msr: MSR number

	val: Value written

	failed: 1 if the access failed, otherwise 0






Trace RDPMC in kernel:

rdpmc

The trace data can be post processed with the postprocess/decode_msr.py script:

cat /sys/kernel/debug/tracing/trace | decode_msr.py /usr/src/linux/include/asm/msr-index.h





to add symbolic MSR names.





          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    In-kernel memory-mapped I/O tracing
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
In-kernel memory-mapped I/O tracing

Home page and links to optional user space tools:


http://nouveau.freedesktop.org/wiki/MmioTrace


MMIO tracing was originally developed by Intel around 2003 for their Fault
Injection Test Harness. In Dec 2006 - Jan 2007, using the code from Intel,
Jeff Muizelaar created a tool for tracing MMIO accesses with the Nouveau
project in mind. Since then many people have contributed.

Mmiotrace was built for reverse engineering any memory-mapped IO device with
the Nouveau project as the first real user. Only x86 and x86_64 architectures
are supported.

Out-of-tree mmiotrace was originally modified for mainline inclusion and
ftrace framework by Pekka Paalanen <pq@iki.fi>.


Preparation

Mmiotrace feature is compiled in by the CONFIG_MMIOTRACE option. Tracing is
disabled by default, so it is safe to have this set to yes. SMP systems are
supported, but tracing is unreliable and may miss events if more than one CPU
is on-line, therefore mmiotrace takes all but one CPU off-line during run-time
activation. You can re-enable CPUs by hand, but you have been warned, there
is no way to automatically detect if you are losing events due to CPUs racing.




Usage Quick Reference

$ mount -t debugfs debugfs /sys/kernel/debug
$ echo mmiotrace > /sys/kernel/debug/tracing/current_tracer
$ cat /sys/kernel/debug/tracing/trace_pipe > mydump.txt &
Start X or whatever.
$ echo "X is up" > /sys/kernel/debug/tracing/trace_marker
$ echo nop > /sys/kernel/debug/tracing/current_tracer
Check for lost events.








Usage

Make sure debugfs is mounted to /sys/kernel/debug.
If not (requires root privileges):

$ mount -t debugfs debugfs /sys/kernel/debug





Check that the driver you are about to trace is not loaded.

Activate mmiotrace (requires root privileges):

$ echo mmiotrace > /sys/kernel/debug/tracing/current_tracer





Start storing the trace:

$ cat /sys/kernel/debug/tracing/trace_pipe > mydump.txt &





The ‘cat’ process should stay running (sleeping) in the background.

Load the driver you want to trace and use it. Mmiotrace will only catch MMIO
accesses to areas that are ioremapped while mmiotrace is active.

During tracing you can place comments (markers) into the trace by
$ echo “X is up” > /sys/kernel/debug/tracing/trace_marker
This makes it easier to see which part of the (huge) trace corresponds to
which action. It is recommended to place descriptive markers about what you
do.

Shut down mmiotrace (requires root privileges):

$ echo nop > /sys/kernel/debug/tracing/current_tracer





The ‘cat’ process exits. If it does not, kill it by issuing ‘fg’ command and
pressing ctrl+c.

Check that mmiotrace did not lose events due to a buffer filling up. Either:

$ grep -i lost mydump.txt





which tells you exactly how many events were lost, or use:

$ dmesg





to view your kernel log and look for “mmiotrace has lost events” warning. If
events were lost, the trace is incomplete. You should enlarge the buffers and
try again. Buffers are enlarged by first seeing how large the current buffers
are:

$ cat /sys/kernel/debug/tracing/buffer_size_kb





gives you a number. Approximately double this number and write it back, for
instance:

$ echo 128000 > /sys/kernel/debug/tracing/buffer_size_kb





Then start again from the top.

If you are doing a trace for a driver project, e.g. Nouveau, you should also
do the following before sending your results:

$ lspci -vvv > lspci.txt
$ dmesg > dmesg.txt
$ tar zcf pciid-nick-mmiotrace.tar.gz mydump.txt lspci.txt dmesg.txt





and then send the .tar.gz file. The trace compresses considerably. Replace
“pciid” and “nick” with the PCI ID or model name of your piece of hardware
under investigation and your nickname.




How Mmiotrace Works

Access to hardware IO-memory is gained by mapping addresses from PCI bus by
calling one of the ioremap_*() functions. Mmiotrace is hooked into the
__ioremap() function and gets called whenever a mapping is created. Mapping is
an event that is recorded into the trace log. Note that ISA range mappings
are not caught, since the mapping always exists and is returned directly.

MMIO accesses are recorded via page faults. Just before __ioremap() returns,
the mapped pages are marked as not present. Any access to the pages causes a
fault. The page fault handler calls mmiotrace to handle the fault. Mmiotrace
marks the page present, sets TF flag to achieve single stepping and exits the
fault handler. The instruction that faulted is executed and debug trap is
entered. Here mmiotrace again marks the page as not present. The instruction
is decoded to get the type of operation (read/write), data width and the value
read or written. These are stored to the trace log.

Setting the page present in the page fault handler has a race condition on SMP
machines. During the single stepping other CPUs may run freely on that page
and events can be missed without a notice. Re-enabling other CPUs during
tracing is discouraged.




Trace Log Format

The raw log is text and easily filtered with e.g. grep and awk. One record is
one line in the log. A record starts with a keyword, followed by keyword-
dependent arguments. Arguments are separated by a space, or continue until the
end of line. The format for version 20070824 is as follows:




Explanation     Keyword Space-separated arguments

read event      R       width, timestamp, map id, physical, value, PC, PID
write event     W       width, timestamp, map id, physical, value, PC, PID
ioremap event   MAP     timestamp, map id, physical, virtual, length, PC, PID
iounmap event   UNMAP   timestamp, map id, PC, PID
marker          MARK    timestamp, text
version         VERSION the string “20070824”
info for reader LSPCI   one line from lspci -v
PCI address map PCIDEV  space-separated /proc/bus/pci/devices data
unk. opcode     UNKNOWN timestamp, map id, physical, data, PC, PID

Timestamp is in seconds with decimals. Physical is a PCI bus address, virtual
is a kernel virtual address. Width is the data width in bytes and value is the
data value. Map id is an arbitrary id number identifying the mapping that was
used in an operation. PC is the program counter and PID is process id. PC is
zero if it is not recorded. PID is always zero as tracing MMIO accesses
originating in user space memory is not yet supported.

For instance, the following awk filter will pass all 32-bit writes that target
physical addresses in the range [0xfb73ce40, 0xfb800000]

$ awk '/W 4 / { adr=strtonum($5); if (adr >= 0xfb73ce40 &&
adr < 0xfb800000) print; }'








Tools for Developers


	The user space tools include utilities for:

	
	replacing numeric addresses and values with hardware register names

	replaying MMIO logs, i.e., re-executing the recorded writes













          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Event Histograms
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Event Histograms

Documentation written by Tom Zanussi


1. Introduction


Histogram triggers are special event triggers that can be used to
aggregate trace event data into histograms.  For information on
trace events and event triggers, see Documentation/trace/events.rst.





2. Histogram Trigger Command


A histogram trigger command is an event trigger command that
aggregates event hits into a hash table keyed on one or more trace
event format fields (or stacktrace) and a set of running totals
derived from one or more trace event format fields and/or event
counts (hitcount).

The format of a hist trigger is as follows:

hist:keys=<field1[,field2,...]>[:values=<field1[,field2,...]>]
  [:sort=<field1[,field2,...]>][:size=#entries][:pause][:continue]
  [:clear][:name=histname1] [if <filter>]





When a matching event is hit, an entry is added to a hash table
using the key(s) and value(s) named.  Keys and values correspond to
fields in the event’s format description.  Values must correspond to
numeric fields - on an event hit, the value(s) will be added to a
sum kept for that field.  The special string ‘hitcount’ can be used
in place of an explicit value field - this is simply a count of
event hits.  If ‘values’ isn’t specified, an implicit ‘hitcount’
value will be automatically created and used as the only value.
Keys can be any field, or the special string ‘stacktrace’, which
will use the event’s kernel stacktrace as the key.  The keywords
‘keys’ or ‘key’ can be used to specify keys, and the keywords
‘values’, ‘vals’, or ‘val’ can be used to specify values.  Compound
keys consisting of up to two fields can be specified by the ‘keys’
keyword.  Hashing a compound key produces a unique entry in the
table for each unique combination of component keys, and can be
useful for providing more fine-grained summaries of event data.
Additionally, sort keys consisting of up to two fields can be
specified by the ‘sort’ keyword.  If more than one field is
specified, the result will be a ‘sort within a sort’: the first key
is taken to be the primary sort key and the second the secondary
key.  If a hist trigger is given a name using the ‘name’ parameter,
its histogram data will be shared with other triggers of the same
name, and trigger hits will update this common data.  Only triggers
with ‘compatible’ fields can be combined in this way; triggers are
‘compatible’ if the fields named in the trigger share the same
number and type of fields and those fields also have the same names.
Note that any two events always share the compatible ‘hitcount’ and
‘stacktrace’ fields and can therefore be combined using those
fields, however pointless that may be.

‘hist’ triggers add a ‘hist’ file to each event’s subdirectory.
Reading the ‘hist’ file for the event will dump the hash table in
its entirety to stdout.  If there are multiple hist triggers
attached to an event, there will be a table for each trigger in the
output.  The table displayed for a named trigger will be the same as
any other instance having the same name. Each printed hash table
entry is a simple list of the keys and values comprising the entry;
keys are printed first and are delineated by curly braces, and are
followed by the set of value fields for the entry.  By default,
numeric fields are displayed as base-10 integers.  This can be
modified by appending any of the following modifiers to the field
name:








	.hex
	display a number as a hex value


	.sym
	display an address as a symbol


	.sym-offset
	display an address as a symbol and offset


	.syscall
	display a syscall id as a system call name


	.execname
	display a common_pid as a program name


	.log2
	display log2 value rather than raw number


	.usecs
	display a common_timestamp in microseconds








Note that in general the semantics of a given field aren’t
interpreted when applying a modifier to it, but there are some
restrictions to be aware of in this regard:



	only the ‘hex’ modifier can be used for values (because values
are essentially sums, and the other modifiers don’t make sense
in that context).

	the ‘execname’ modifier can only be used on a ‘common_pid’.  The
reason for this is that the execname is simply the ‘comm’ value
saved for the ‘current’ process when an event was triggered,
which is the same as the common_pid value saved by the event
tracing code.  Trying to apply that comm value to other pid
values wouldn’t be correct, and typically events that care save
pid-specific comm fields in the event itself.






A typical usage scenario would be the following to enable a hist
trigger, read its current contents, and then turn it off:

# echo 'hist:keys=skbaddr.hex:vals=len' > \
  /sys/kernel/debug/tracing/events/net/netif_rx/trigger

# cat /sys/kernel/debug/tracing/events/net/netif_rx/hist

# echo '!hist:keys=skbaddr.hex:vals=len' > \
  /sys/kernel/debug/tracing/events/net/netif_rx/trigger





The trigger file itself can be read to show the details of the
currently attached hist trigger.  This information is also displayed
at the top of the ‘hist’ file when read.

By default, the size of the hash table is 2048 entries.  The ‘size’
parameter can be used to specify more or fewer than that.  The units
are in terms of hashtable entries - if a run uses more entries than
specified, the results will show the number of ‘drops’, the number
of hits that were ignored.  The size should be a power of 2 between
128 and 131072 (any non- power-of-2 number specified will be rounded
up).

The ‘sort’ parameter can be used to specify a value field to sort
on.  The default if unspecified is ‘hitcount’ and the default sort
order is ‘ascending’.  To sort in the opposite direction, append
.descending’ to the sort key.

The ‘pause’ parameter can be used to pause an existing hist trigger
or to start a hist trigger but not log any events until told to do
so.  ‘continue’ or ‘cont’ can be used to start or restart a paused
hist trigger.

The ‘clear’ parameter will clear the contents of a running hist
trigger and leave its current paused/active state.

Note that the ‘pause’, ‘cont’, and ‘clear’ parameters should be
applied using ‘append’ shell operator (‘>>’) if applied to an
existing trigger, rather than via the ‘>’ operator, which will cause
the trigger to be removed through truncation.





	enable_hist/disable_hist

The enable_hist and disable_hist triggers can be used to have one
event conditionally start and stop another event’s already-attached
hist trigger.  Any number of enable_hist and disable_hist triggers
can be attached to a given event, allowing that event to kick off
and stop aggregations on a host of other events.

The format is very similar to the enable/disable_event triggers:

enable_hist:<system>:<event>[:count]
disable_hist:<system>:<event>[:count]





Instead of enabling or disabling the tracing of the target event
into the trace buffer as the enable/disable_event triggers do, the
enable/disable_hist triggers enable or disable the aggregation of
the target event into a hash table.

A typical usage scenario for the enable_hist/disable_hist triggers
would be to first set up a paused hist trigger on some event,
followed by an enable_hist/disable_hist pair that turns the hist
aggregation on and off when conditions of interest are hit:

# echo 'hist:keys=skbaddr.hex:vals=len:pause' > \
   /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger

 # echo 'enable_hist:net:netif_receive_skb if filename==/usr/bin/wget' > \
   /sys/kernel/debug/tracing/events/sched/sched_process_exec/trigger

 # echo 'disable_hist:net:netif_receive_skb if comm==wget' > \
   /sys/kernel/debug/tracing/events/sched/sched_process_exit/trigger





The above sets up an initially paused hist trigger which is unpaused
and starts aggregating events when a given program is executed, and
which stops aggregating when the process exits and the hist trigger
is paused again.

The examples below provide a more concrete illustration of the
concepts and typical usage patterns discussed above.






‘special’ event fields


There are a number of ‘special event fields’ available for use as
keys or values in a hist trigger.  These look like and behave as if
they were actual event fields, but aren’t really part of the event’s
field definition or format file.  They are however available for any
event, and can be used anywhere an actual event field could be.
They are:









	common_timestamp
	u64
	timestamp (from ring buffer) associated
with the event, in nanoseconds.  May be
modified by .usecs to have timestamps
interpreted as microseconds.


	cpu
	int
	the cpu on which the event occurred.














Extended error information


For some error conditions encountered when invoking a hist trigger
command, extended error information is available via the
corresponding event’s ‘hist’ file.  Reading the hist file after an
error will display more detailed information about what went wrong,
if information is available.  This extended error information will
be available until the next hist trigger command for that event.

If available for a given error condition, the extended error
information and usage takes the following form:

# echo xxx > /sys/kernel/debug/tracing/events/sched/sched_wakeup/trigger
echo: write error: Invalid argument

# cat /sys/kernel/debug/tracing/events/sched/sched_wakeup/hist
ERROR: Couldn't yyy: zzz
  Last command: xxx











6.2 ‘hist’ trigger examples


The first set of examples creates aggregations using the kmalloc
event.  The fields that can be used for the hist trigger are listed
in the kmalloc event’s format file:

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/format
name: kmalloc
ID: 374
format:
    field:unsigned short common_type;       offset:0;       size:2; signed:0;
    field:unsigned char common_flags;       offset:2;       size:1; signed:0;
    field:unsigned char common_preempt_count;               offset:3;       size:1; signed:0;
    field:int common_pid;                                   offset:4;       size:4; signed:1;

    field:unsigned long call_site;                          offset:8;       size:8; signed:0;
    field:const void * ptr;                                 offset:16;      size:8; signed:0;
    field:size_t bytes_req;                                 offset:24;      size:8; signed:0;
    field:size_t bytes_alloc;                               offset:32;      size:8; signed:0;
    field:gfp_t gfp_flags;                                  offset:40;      size:4; signed:0;





We’ll start by creating a hist trigger that generates a simple table
that lists the total number of bytes requested for each function in
the kernel that made one or more calls to kmalloc:

# echo 'hist:key=call_site:val=bytes_req' > \
        /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger





This tells the tracing system to create a ‘hist’ trigger using the
call_site field of the kmalloc event as the key for the table, which
just means that each unique call_site address will have an entry
created for it in the table.  The ‘val=bytes_req’ parameter tells
the hist trigger that for each unique entry (call_site) in the
table, it should keep a running total of the number of bytes
requested by that call_site.

We’ll let it run for awhile and then dump the contents of the ‘hist’
file in the kmalloc event’s subdirectory (for readability, a number
of entries have been omitted):

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site:vals=bytes_req:sort=hitcount:size=2048 [active]

{ call_site: 18446744072106379007 } hitcount:          1  bytes_req:        176
{ call_site: 18446744071579557049 } hitcount:          1  bytes_req:       1024
{ call_site: 18446744071580608289 } hitcount:          1  bytes_req:      16384
{ call_site: 18446744071581827654 } hitcount:          1  bytes_req:         24
{ call_site: 18446744071580700980 } hitcount:          1  bytes_req:          8
{ call_site: 18446744071579359876 } hitcount:          1  bytes_req:        152
{ call_site: 18446744071580795365 } hitcount:          3  bytes_req:        144
{ call_site: 18446744071581303129 } hitcount:          3  bytes_req:        144
{ call_site: 18446744071580713234 } hitcount:          4  bytes_req:       2560
{ call_site: 18446744071580933750 } hitcount:          4  bytes_req:        736
.
.
.
{ call_site: 18446744072106047046 } hitcount:         69  bytes_req:       5576
{ call_site: 18446744071582116407 } hitcount:         73  bytes_req:       2336
{ call_site: 18446744072106054684 } hitcount:        136  bytes_req:     140504
{ call_site: 18446744072106224230 } hitcount:        136  bytes_req:      19584
{ call_site: 18446744072106078074 } hitcount:        153  bytes_req:       2448
{ call_site: 18446744072106062406 } hitcount:        153  bytes_req:      36720
{ call_site: 18446744071582507929 } hitcount:        153  bytes_req:      37088
{ call_site: 18446744072102520590 } hitcount:        273  bytes_req:      10920
{ call_site: 18446744071582143559 } hitcount:        358  bytes_req:        716
{ call_site: 18446744072106465852 } hitcount:        417  bytes_req:      56712
{ call_site: 18446744072102523378 } hitcount:        485  bytes_req:      27160
{ call_site: 18446744072099568646 } hitcount:       1676  bytes_req:      33520

Totals:
    Hits: 4610
    Entries: 45
    Dropped: 0





The output displays a line for each entry, beginning with the key
specified in the trigger, followed by the value(s) also specified in
the trigger.  At the beginning of the output is a line that displays
the trigger info, which can also be displayed by reading the
‘trigger’ file:

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger
hist:keys=call_site:vals=bytes_req:sort=hitcount:size=2048 [active]





At the end of the output are a few lines that display the overall
totals for the run.  The ‘Hits’ field shows the total number of
times the event trigger was hit, the ‘Entries’ field shows the total
number of used entries in the hash table, and the ‘Dropped’ field
shows the number of hits that were dropped because the number of
used entries for the run exceeded the maximum number of entries
allowed for the table (normally 0, but if not a hint that you may
want to increase the size of the table using the ‘size’ parameter).

Notice in the above output that there’s an extra field, ‘hitcount’,
which wasn’t specified in the trigger.  Also notice that in the
trigger info output, there’s a parameter, ‘sort=hitcount’, which
wasn’t specified in the trigger either.  The reason for that is that
every trigger implicitly keeps a count of the total number of hits
attributed to a given entry, called the ‘hitcount’.  That hitcount
information is explicitly displayed in the output, and in the
absence of a user-specified sort parameter, is used as the default
sort field.

The value ‘hitcount’ can be used in place of an explicit value in
the ‘values’ parameter if you don’t really need to have any
particular field summed and are mainly interested in hit
frequencies.

To turn the hist trigger off, simply call up the trigger in the
command history and re-execute it with a ‘!’ prepended:

# echo '!hist:key=call_site:val=bytes_req' > \
       /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger





Finally, notice that the call_site as displayed in the output above
isn’t really very useful.  It’s an address, but normally addresses
are displayed in hex.  To have a numeric field displayed as a hex
value, simply append ‘.hex’ to the field name in the trigger:

# echo 'hist:key=call_site.hex:val=bytes_req' > \
       /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.hex:vals=bytes_req:sort=hitcount:size=2048 [active]

{ call_site: ffffffffa026b291 } hitcount:          1  bytes_req:        433
{ call_site: ffffffffa07186ff } hitcount:          1  bytes_req:        176
{ call_site: ffffffff811ae721 } hitcount:          1  bytes_req:      16384
{ call_site: ffffffff811c5134 } hitcount:          1  bytes_req:          8
{ call_site: ffffffffa04a9ebb } hitcount:          1  bytes_req:        511
{ call_site: ffffffff8122e0a6 } hitcount:          1  bytes_req:         12
{ call_site: ffffffff8107da84 } hitcount:          1  bytes_req:        152
{ call_site: ffffffff812d8246 } hitcount:          1  bytes_req:         24
{ call_site: ffffffff811dc1e5 } hitcount:          3  bytes_req:        144
{ call_site: ffffffffa02515e8 } hitcount:          3  bytes_req:        648
{ call_site: ffffffff81258159 } hitcount:          3  bytes_req:        144
{ call_site: ffffffff811c80f4 } hitcount:          4  bytes_req:        544
.
.
.
{ call_site: ffffffffa06c7646 } hitcount:        106  bytes_req:       8024
{ call_site: ffffffffa06cb246 } hitcount:        132  bytes_req:      31680
{ call_site: ffffffffa06cef7a } hitcount:        132  bytes_req:       2112
{ call_site: ffffffff8137e399 } hitcount:        132  bytes_req:      23232
{ call_site: ffffffffa06c941c } hitcount:        185  bytes_req:     171360
{ call_site: ffffffffa06f2a66 } hitcount:        185  bytes_req:      26640
{ call_site: ffffffffa036a70e } hitcount:        265  bytes_req:      10600
{ call_site: ffffffff81325447 } hitcount:        292  bytes_req:        584
{ call_site: ffffffffa072da3c } hitcount:        446  bytes_req:      60656
{ call_site: ffffffffa036b1f2 } hitcount:        526  bytes_req:      29456
{ call_site: ffffffffa0099c06 } hitcount:       1780  bytes_req:      35600

Totals:
    Hits: 4775
    Entries: 46
    Dropped: 0





Even that’s only marginally more useful - while hex values do look
more like addresses, what users are typically more interested in
when looking at text addresses are the corresponding symbols
instead.  To have an address displayed as symbolic value instead,
simply append ‘.sym’ or ‘.sym-offset’ to the field name in the
trigger:

# echo 'hist:key=call_site.sym:val=bytes_req' > \
       /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym:vals=bytes_req:sort=hitcount:size=2048 [active]

{ call_site: [ffffffff810adcb9] syslog_print_all                              } hitcount:          1  bytes_req:       1024
{ call_site: [ffffffff8154bc62] usb_control_msg                               } hitcount:          1  bytes_req:          8
{ call_site: [ffffffffa00bf6fe] hidraw_send_report [hid]                      } hitcount:          1  bytes_req:          7
{ call_site: [ffffffff8154acbe] usb_alloc_urb                                 } hitcount:          1  bytes_req:        192
{ call_site: [ffffffffa00bf1ca] hidraw_report_event [hid]                     } hitcount:          1  bytes_req:          7
{ call_site: [ffffffff811e3a25] __seq_open_private                            } hitcount:          1  bytes_req:         40
{ call_site: [ffffffff8109524a] alloc_fair_sched_group                        } hitcount:          2  bytes_req:        128
{ call_site: [ffffffff811febd5] fsnotify_alloc_group                          } hitcount:          2  bytes_req:        528
{ call_site: [ffffffff81440f58] __tty_buffer_request_room                     } hitcount:          2  bytes_req:       2624
{ call_site: [ffffffff81200ba6] inotify_new_group                             } hitcount:          2  bytes_req:         96
{ call_site: [ffffffffa05e19af] ieee80211_start_tx_ba_session [mac80211]      } hitcount:          2  bytes_req:        464
{ call_site: [ffffffff81672406] tcp_get_metrics                               } hitcount:          2  bytes_req:        304
{ call_site: [ffffffff81097ec2] alloc_rt_sched_group                          } hitcount:          2  bytes_req:        128
{ call_site: [ffffffff81089b05] sched_create_group                            } hitcount:          2  bytes_req:       1424
.
.
.
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915]                   } hitcount:       1185  bytes_req:     123240
{ call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl [drm]                } hitcount:       1185  bytes_req:     104280
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state [i915]            } hitcount:       1402  bytes_req:     190672
{ call_site: [ffffffff812891ca] ext4_find_extent                              } hitcount:       1518  bytes_req:     146208
{ call_site: [ffffffffa029070e] drm_vma_node_allow [drm]                      } hitcount:       1746  bytes_req:      69840
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23 [i915]         } hitcount:       2021  bytes_req:     792312
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm]                   } hitcount:       2592  bytes_req:     145152
{ call_site: [ffffffffa0489a66] intel_ring_begin [i915]                       } hitcount:       2629  bytes_req:     378576
{ call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915]                   } hitcount:       2629  bytes_req:    3783248
{ call_site: [ffffffff81325607] apparmor_file_alloc_security                  } hitcount:       5192  bytes_req:      10384
{ call_site: [ffffffffa00b7c06] hid_report_raw_event [hid]                    } hitcount:       5529  bytes_req:     110584
{ call_site: [ffffffff8131ebf7] aa_alloc_task_context                         } hitcount:      21943  bytes_req:     702176
{ call_site: [ffffffff8125847d] ext4_htree_store_dirent                       } hitcount:      55759  bytes_req:    5074265

Totals:
    Hits: 109928
    Entries: 71
    Dropped: 0





Because the default sort key above is ‘hitcount’, the above shows a
the list of call_sites by increasing hitcount, so that at the bottom
we see the functions that made the most kmalloc calls during the
run.  If instead we we wanted to see the top kmalloc callers in
terms of the number of bytes requested rather than the number of
calls, and we wanted the top caller to appear at the top, we can use
the ‘sort’ parameter, along with the ‘descending’ modifier:

# echo 'hist:key=call_site.sym:val=bytes_req:sort=bytes_req.descending' > \
       /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym:vals=bytes_req:sort=bytes_req.descending:size=2048 [active]

{ call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915]                   } hitcount:       2186  bytes_req:    3397464
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23 [i915]         } hitcount:       1790  bytes_req:     712176
{ call_site: [ffffffff8125847d] ext4_htree_store_dirent                       } hitcount:       8132  bytes_req:     513135
{ call_site: [ffffffff811e2a1b] seq_buf_alloc                                 } hitcount:        106  bytes_req:     440128
{ call_site: [ffffffffa0489a66] intel_ring_begin [i915]                       } hitcount:       2186  bytes_req:     314784
{ call_site: [ffffffff812891ca] ext4_find_extent                              } hitcount:       2174  bytes_req:     208992
{ call_site: [ffffffff811ae8e1] __kmalloc                                     } hitcount:          8  bytes_req:     131072
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state [i915]            } hitcount:        859  bytes_req:     116824
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm]                   } hitcount:       1834  bytes_req:     102704
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915]                   } hitcount:        972  bytes_req:     101088
{ call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl [drm]                } hitcount:        972  bytes_req:      85536
{ call_site: [ffffffffa00b7c06] hid_report_raw_event [hid]                    } hitcount:       3333  bytes_req:      66664
{ call_site: [ffffffff8137e559] sg_kmalloc                                    } hitcount:        209  bytes_req:      61632
.
.
.
{ call_site: [ffffffff81095225] alloc_fair_sched_group                        } hitcount:          2  bytes_req:        128
{ call_site: [ffffffff81097ec2] alloc_rt_sched_group                          } hitcount:          2  bytes_req:        128
{ call_site: [ffffffff812d8406] copy_semundo                                  } hitcount:          2  bytes_req:         48
{ call_site: [ffffffff81200ba6] inotify_new_group                             } hitcount:          1  bytes_req:         48
{ call_site: [ffffffffa027121a] drm_getmagic [drm]                            } hitcount:          1  bytes_req:         48
{ call_site: [ffffffff811e3a25] __seq_open_private                            } hitcount:          1  bytes_req:         40
{ call_site: [ffffffff811c52f4] bprm_change_interp                            } hitcount:          2  bytes_req:         16
{ call_site: [ffffffff8154bc62] usb_control_msg                               } hitcount:          1  bytes_req:          8
{ call_site: [ffffffffa00bf1ca] hidraw_report_event [hid]                     } hitcount:          1  bytes_req:          7
{ call_site: [ffffffffa00bf6fe] hidraw_send_report [hid]                      } hitcount:          1  bytes_req:          7

Totals:
    Hits: 32133
    Entries: 81
    Dropped: 0





To display the offset and size information in addition to the symbol
name, just use ‘sym-offset’ instead:

# echo 'hist:key=call_site.sym-offset:val=bytes_req:sort=bytes_req.descending' > \
       /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym-offset:vals=bytes_req:sort=bytes_req.descending:size=2048 [active]

{ call_site: [ffffffffa046041c] i915_gem_execbuffer2+0x6c/0x2c0 [i915]                  } hitcount:       4569  bytes_req:    3163720
{ call_site: [ffffffffa0489a66] intel_ring_begin+0xc6/0x1f0 [i915]                      } hitcount:       4569  bytes_req:     657936
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23+0x694/0x1020 [i915]      } hitcount:       1519  bytes_req:     472936
{ call_site: [ffffffffa045e646] i915_gem_do_execbuffer.isra.23+0x516/0x1020 [i915]      } hitcount:       3050  bytes_req:     211832
{ call_site: [ffffffff811e2a1b] seq_buf_alloc+0x1b/0x50                                 } hitcount:         34  bytes_req:     148384
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip+0xbc/0x870 [i915]                  } hitcount:       1385  bytes_req:     144040
{ call_site: [ffffffff811ae8e1] __kmalloc+0x191/0x1b0                                   } hitcount:          8  bytes_req:     131072
{ call_site: [ffffffffa0287592] drm_mode_page_flip_ioctl+0x282/0x360 [drm]              } hitcount:       1385  bytes_req:     121880
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc+0x32/0x100 [drm]                  } hitcount:       1848  bytes_req:     103488
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state+0x2c/0xa0 [i915]            } hitcount:        461  bytes_req:      62696
{ call_site: [ffffffffa029070e] drm_vma_node_allow+0x2e/0xd0 [drm]                      } hitcount:       1541  bytes_req:      61640
{ call_site: [ffffffff815f8d7b] sk_prot_alloc+0xcb/0x1b0                                } hitcount:         57  bytes_req:      57456
.
.
.
{ call_site: [ffffffff8109524a] alloc_fair_sched_group+0x5a/0x1a0                       } hitcount:          2  bytes_req:        128
{ call_site: [ffffffffa027b921] drm_vm_open_locked+0x31/0xa0 [drm]                      } hitcount:          3  bytes_req:         96
{ call_site: [ffffffff8122e266] proc_self_follow_link+0x76/0xb0                         } hitcount:          8  bytes_req:         96
{ call_site: [ffffffff81213e80] load_elf_binary+0x240/0x1650                            } hitcount:          3  bytes_req:         84
{ call_site: [ffffffff8154bc62] usb_control_msg+0x42/0x110                              } hitcount:          1  bytes_req:          8
{ call_site: [ffffffffa00bf6fe] hidraw_send_report+0x7e/0x1a0 [hid]                     } hitcount:          1  bytes_req:          7
{ call_site: [ffffffffa00bf1ca] hidraw_report_event+0x8a/0x120 [hid]                    } hitcount:          1  bytes_req:          7

Totals:
    Hits: 26098
    Entries: 64
    Dropped: 0





We can also add multiple fields to the ‘values’ parameter.  For
example, we might want to see the total number of bytes allocated
alongside bytes requested, and display the result sorted by bytes
allocated in a descending order:

# echo 'hist:keys=call_site.sym:values=bytes_req,bytes_alloc:sort=bytes_alloc.descending' > \
       /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=call_site.sym:vals=bytes_req,bytes_alloc:sort=bytes_alloc.descending:size=2048 [active]

{ call_site: [ffffffffa046041c] i915_gem_execbuffer2 [i915]                   } hitcount:       7403  bytes_req:    4084360  bytes_alloc:    5958016
{ call_site: [ffffffff811e2a1b] seq_buf_alloc                                 } hitcount:        541  bytes_req:    2213968  bytes_alloc:    2228224
{ call_site: [ffffffffa0489a66] intel_ring_begin [i915]                       } hitcount:       7404  bytes_req:    1066176  bytes_alloc:    1421568
{ call_site: [ffffffffa045e7c4] i915_gem_do_execbuffer.isra.23 [i915]         } hitcount:       1565  bytes_req:     557368  bytes_alloc:    1037760
{ call_site: [ffffffff8125847d] ext4_htree_store_dirent                       } hitcount:       9557  bytes_req:     595778  bytes_alloc:     695744
{ call_site: [ffffffffa045e646] i915_gem_do_execbuffer.isra.23 [i915]         } hitcount:       5839  bytes_req:     430680  bytes_alloc:     470400
{ call_site: [ffffffffa04c4a3c] intel_plane_duplicate_state [i915]            } hitcount:       2388  bytes_req:     324768  bytes_alloc:     458496
{ call_site: [ffffffffa02911f2] drm_modeset_lock_crtc [drm]                   } hitcount:       3911  bytes_req:     219016  bytes_alloc:     250304
{ call_site: [ffffffff815f8d7b] sk_prot_alloc                                 } hitcount:        235  bytes_req:     236880  bytes_alloc:     240640
{ call_site: [ffffffff8137e559] sg_kmalloc                                    } hitcount:        557  bytes_req:     169024  bytes_alloc:     221760
{ call_site: [ffffffffa00b7c06] hid_report_raw_event [hid]                    } hitcount:       9378  bytes_req:     187548  bytes_alloc:     206312
{ call_site: [ffffffffa04a580c] intel_crtc_page_flip [i915]                   } hitcount:       1519  bytes_req:     157976  bytes_alloc:     194432
.
.
.
{ call_site: [ffffffff8109bd3b] sched_autogroup_create_attach                 } hitcount:          2  bytes_req:        144  bytes_alloc:        192
{ call_site: [ffffffff81097ee8] alloc_rt_sched_group                          } hitcount:          2  bytes_req:        128  bytes_alloc:        128
{ call_site: [ffffffff8109524a] alloc_fair_sched_group                        } hitcount:          2  bytes_req:        128  bytes_alloc:        128
{ call_site: [ffffffff81095225] alloc_fair_sched_group                        } hitcount:          2  bytes_req:        128  bytes_alloc:        128
{ call_site: [ffffffff81097ec2] alloc_rt_sched_group                          } hitcount:          2  bytes_req:        128  bytes_alloc:        128
{ call_site: [ffffffff81213e80] load_elf_binary                               } hitcount:          3  bytes_req:         84  bytes_alloc:         96
{ call_site: [ffffffff81079a2e] kthread_create_on_node                        } hitcount:          1  bytes_req:         56  bytes_alloc:         64
{ call_site: [ffffffffa00bf6fe] hidraw_send_report [hid]                      } hitcount:          1  bytes_req:          7  bytes_alloc:          8
{ call_site: [ffffffff8154bc62] usb_control_msg                               } hitcount:          1  bytes_req:          8  bytes_alloc:          8
{ call_site: [ffffffffa00bf1ca] hidraw_report_event [hid]                     } hitcount:          1  bytes_req:          7  bytes_alloc:          8

Totals:
    Hits: 66598
    Entries: 65
    Dropped: 0





Finally, to finish off our kmalloc example, instead of simply having
the hist trigger display symbolic call_sites, we can have the hist
trigger additionally display the complete set of kernel stack traces
that led to each call_site.  To do that, we simply use the special
value ‘stacktrace’ for the key parameter:

# echo 'hist:keys=stacktrace:values=bytes_req,bytes_alloc:sort=bytes_alloc' > \
       /sys/kernel/debug/tracing/events/kmem/kmalloc/trigger





The above trigger will use the kernel stack trace in effect when an
event is triggered as the key for the hash table.  This allows the
enumeration of every kernel callpath that led up to a particular
event, along with a running total of any of the event fields for
that event.  Here we tally bytes requested and bytes allocated for
every callpath in the system that led up to a kmalloc (in this case
every callpath to a kmalloc for a kernel compile):

# cat /sys/kernel/debug/tracing/events/kmem/kmalloc/hist
# trigger info: hist:keys=stacktrace:vals=bytes_req,bytes_alloc:sort=bytes_alloc:size=2048 [active]

{ stacktrace:
     __kmalloc_track_caller+0x10b/0x1a0
     kmemdup+0x20/0x50
     hidraw_report_event+0x8a/0x120 [hid]
     hid_report_raw_event+0x3ea/0x440 [hid]
     hid_input_report+0x112/0x190 [hid]
     hid_irq_in+0xc2/0x260 [usbhid]
     __usb_hcd_giveback_urb+0x72/0x120
     usb_giveback_urb_bh+0x9e/0xe0
     tasklet_hi_action+0xf8/0x100
     __do_softirq+0x114/0x2c0
     irq_exit+0xa5/0xb0
     do_IRQ+0x5a/0xf0
     ret_from_intr+0x0/0x30
     cpuidle_enter+0x17/0x20
     cpu_startup_entry+0x315/0x3e0
     rest_init+0x7c/0x80
} hitcount:          3  bytes_req:         21  bytes_alloc:         24
{ stacktrace:
     __kmalloc_track_caller+0x10b/0x1a0
     kmemdup+0x20/0x50
     hidraw_report_event+0x8a/0x120 [hid]
     hid_report_raw_event+0x3ea/0x440 [hid]
     hid_input_report+0x112/0x190 [hid]
     hid_irq_in+0xc2/0x260 [usbhid]
     __usb_hcd_giveback_urb+0x72/0x120
     usb_giveback_urb_bh+0x9e/0xe0
     tasklet_hi_action+0xf8/0x100
     __do_softirq+0x114/0x2c0
     irq_exit+0xa5/0xb0
     do_IRQ+0x5a/0xf0
     ret_from_intr+0x0/0x30
} hitcount:          3  bytes_req:         21  bytes_alloc:         24
{ stacktrace:
     kmem_cache_alloc_trace+0xeb/0x150
     aa_alloc_task_context+0x27/0x40
     apparmor_cred_prepare+0x1f/0x50
     security_prepare_creds+0x16/0x20
     prepare_creds+0xdf/0x1a0
     SyS_capset+0xb5/0x200
     system_call_fastpath+0x12/0x6a
} hitcount:          1  bytes_req:         32  bytes_alloc:         32
.
.
.
{ stacktrace:
     __kmalloc+0x11b/0x1b0
     i915_gem_execbuffer2+0x6c/0x2c0 [i915]
     drm_ioctl+0x349/0x670 [drm]
     do_vfs_ioctl+0x2f0/0x4f0
     SyS_ioctl+0x81/0xa0
     system_call_fastpath+0x12/0x6a
} hitcount:      17726  bytes_req:   13944120  bytes_alloc:   19593808
{ stacktrace:
     __kmalloc+0x11b/0x1b0
     load_elf_phdrs+0x76/0xa0
     load_elf_binary+0x102/0x1650
     search_binary_handler+0x97/0x1d0
     do_execveat_common.isra.34+0x551/0x6e0
     SyS_execve+0x3a/0x50
     return_from_execve+0x0/0x23
} hitcount:      33348  bytes_req:   17152128  bytes_alloc:   20226048
{ stacktrace:
     kmem_cache_alloc_trace+0xeb/0x150
     apparmor_file_alloc_security+0x27/0x40
     security_file_alloc+0x16/0x20
     get_empty_filp+0x93/0x1c0
     path_openat+0x31/0x5f0
     do_filp_open+0x3a/0x90
     do_sys_open+0x128/0x220
     SyS_open+0x1e/0x20
     system_call_fastpath+0x12/0x6a
} hitcount:    4766422  bytes_req:    9532844  bytes_alloc:   38131376
{ stacktrace:
     __kmalloc+0x11b/0x1b0
     seq_buf_alloc+0x1b/0x50
     seq_read+0x2cc/0x370
     proc_reg_read+0x3d/0x80
     __vfs_read+0x28/0xe0
     vfs_read+0x86/0x140
     SyS_read+0x46/0xb0
     system_call_fastpath+0x12/0x6a
} hitcount:      19133  bytes_req:   78368768  bytes_alloc:   78368768

Totals:
    Hits: 6085872
    Entries: 253
    Dropped: 0





If you key a hist trigger on common_pid, in order for example to
gather and display sorted totals for each process, you can use the
special .execname modifier to display the executable names for the
processes in the table rather than raw pids.  The example below
keeps a per-process sum of total bytes read:

# echo 'hist:key=common_pid.execname:val=count:sort=count.descending' > \
       /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/trigger

# cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_read/hist
# trigger info: hist:keys=common_pid.execname:vals=count:sort=count.descending:size=2048 [active]

{ common_pid: gnome-terminal  [      3196] } hitcount:        280  count:    1093512
{ common_pid: Xorg            [      1309] } hitcount:        525  count:     256640
{ common_pid: compiz          [      2889] } hitcount:         59  count:     254400
{ common_pid: bash            [      8710] } hitcount:          3  count:      66369
{ common_pid: dbus-daemon-lau [      8703] } hitcount:         49  count:      47739
{ common_pid: irqbalance      [      1252] } hitcount:         27  count:      27648
{ common_pid: 01ifupdown      [      8705] } hitcount:          3  count:      17216
{ common_pid: dbus-daemon     [       772] } hitcount:         10  count:      12396
{ common_pid: Socket Thread   [      8342] } hitcount:         11  count:      11264
{ common_pid: nm-dhcp-client. [      8701] } hitcount:          6  count:       7424
{ common_pid: gmain           [      1315] } hitcount:         18  count:       6336
.
.
.
{ common_pid: postgres        [      1892] } hitcount:          2  count:         32
{ common_pid: postgres        [      1891] } hitcount:          2  count:         32
{ common_pid: gmain           [      8704] } hitcount:          2  count:         32
{ common_pid: upstart-dbus-br [      2740] } hitcount:         21  count:         21
{ common_pid: nm-dispatcher.a [      8696] } hitcount:          1  count:         16
{ common_pid: indicator-datet [      2904] } hitcount:          1  count:         16
{ common_pid: gdbus           [      2998] } hitcount:          1  count:         16
{ common_pid: rtkit-daemon    [      2052] } hitcount:          1  count:          8
{ common_pid: init            [         1] } hitcount:          2  count:          2

Totals:
    Hits: 2116
    Entries: 51
    Dropped: 0





Similarly, if you key a hist trigger on syscall id, for example to
gather and display a list of systemwide syscall hits, you can use
the special .syscall modifier to display the syscall names rather
than raw ids.  The example below keeps a running total of syscall
counts for the system during the run:

# echo 'hist:key=id.syscall:val=hitcount' > \
       /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger

# cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
# trigger info: hist:keys=id.syscall:vals=hitcount:sort=hitcount:size=2048 [active]

{ id: sys_fsync                     [ 74] } hitcount:          1
{ id: sys_newuname                  [ 63] } hitcount:          1
{ id: sys_prctl                     [157] } hitcount:          1
{ id: sys_statfs                    [137] } hitcount:          1
{ id: sys_symlink                   [ 88] } hitcount:          1
{ id: sys_sendmmsg                  [307] } hitcount:          1
{ id: sys_semctl                    [ 66] } hitcount:          1
{ id: sys_readlink                  [ 89] } hitcount:          3
{ id: sys_bind                      [ 49] } hitcount:          3
{ id: sys_getsockname               [ 51] } hitcount:          3
{ id: sys_unlink                    [ 87] } hitcount:          3
{ id: sys_rename                    [ 82] } hitcount:          4
{ id: unknown_syscall               [ 58] } hitcount:          4
{ id: sys_connect                   [ 42] } hitcount:          4
{ id: sys_getpid                    [ 39] } hitcount:          4
.
.
.
{ id: sys_rt_sigprocmask            [ 14] } hitcount:        952
{ id: sys_futex                     [202] } hitcount:       1534
{ id: sys_write                     [  1] } hitcount:       2689
{ id: sys_setitimer                 [ 38] } hitcount:       2797
{ id: sys_read                      [  0] } hitcount:       3202
{ id: sys_select                    [ 23] } hitcount:       3773
{ id: sys_writev                    [ 20] } hitcount:       4531
{ id: sys_poll                      [  7] } hitcount:       8314
{ id: sys_recvmsg                   [ 47] } hitcount:      13738
{ id: sys_ioctl                     [ 16] } hitcount:      21843

Totals:
    Hits: 67612
    Entries: 72
    Dropped: 0





The syscall counts above provide a rough overall picture of system
call activity on the system; we can see for example that the most
popular system call on this system was the ‘sys_ioctl’ system call.

We can use ‘compound’ keys to refine that number and provide some
further insight as to which processes exactly contribute to the
overall ioctl count.

The command below keeps a hitcount for every unique combination of
system call id and pid - the end result is essentially a table
that keeps a per-pid sum of system call hits.  The results are
sorted using the system call id as the primary key, and the
hitcount sum as the secondary key:

# echo 'hist:key=id.syscall,common_pid.execname:val=hitcount:sort=id,hitcount' > \
       /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger

# cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
# trigger info: hist:keys=id.syscall,common_pid.execname:vals=hitcount:sort=id.syscall,hitcount:size=2048 [active]

{ id: sys_read                      [  0], common_pid: rtkit-daemon    [      1877] } hitcount:          1
{ id: sys_read                      [  0], common_pid: gdbus           [      2976] } hitcount:          1
{ id: sys_read                      [  0], common_pid: console-kit-dae [      3400] } hitcount:          1
{ id: sys_read                      [  0], common_pid: postgres        [      1865] } hitcount:          1
{ id: sys_read                      [  0], common_pid: deja-dup-monito [      3543] } hitcount:          2
{ id: sys_read                      [  0], common_pid: NetworkManager  [       890] } hitcount:          2
{ id: sys_read                      [  0], common_pid: evolution-calen [      3048] } hitcount:          2
{ id: sys_read                      [  0], common_pid: postgres        [      1864] } hitcount:          2
{ id: sys_read                      [  0], common_pid: nm-applet       [      3022] } hitcount:          2
{ id: sys_read                      [  0], common_pid: whoopsie        [      1212] } hitcount:          2
.
.
.
{ id: sys_ioctl                     [ 16], common_pid: bash            [      8479] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: bash            [      3472] } hitcount:         12
{ id: sys_ioctl                     [ 16], common_pid: gnome-terminal  [      3199] } hitcount:         16
{ id: sys_ioctl                     [ 16], common_pid: Xorg            [      1267] } hitcount:       1808
{ id: sys_ioctl                     [ 16], common_pid: compiz          [      2994] } hitcount:       5580
.
.
.
{ id: sys_waitid                    [247], common_pid: upstart-dbus-br [      2690] } hitcount:          3
{ id: sys_waitid                    [247], common_pid: upstart-dbus-br [      2688] } hitcount:         16
{ id: sys_inotify_add_watch         [254], common_pid: gmain           [       975] } hitcount:          2
{ id: sys_inotify_add_watch         [254], common_pid: gmain           [      3204] } hitcount:          4
{ id: sys_inotify_add_watch         [254], common_pid: gmain           [      2888] } hitcount:          4
{ id: sys_inotify_add_watch         [254], common_pid: gmain           [      3003] } hitcount:          4
{ id: sys_inotify_add_watch         [254], common_pid: gmain           [      2873] } hitcount:          4
{ id: sys_inotify_add_watch         [254], common_pid: gmain           [      3196] } hitcount:          6
{ id: sys_openat                    [257], common_pid: java            [      2623] } hitcount:          2
{ id: sys_eventfd2                  [290], common_pid: ibus-ui-gtk3    [      2760] } hitcount:          4
{ id: sys_eventfd2                  [290], common_pid: compiz          [      2994] } hitcount:          6

Totals:
    Hits: 31536
    Entries: 323
    Dropped: 0





The above list does give us a breakdown of the ioctl syscall by
pid, but it also gives us quite a bit more than that, which we
don’t really care about at the moment.  Since we know the syscall
id for sys_ioctl (16, displayed next to the sys_ioctl name), we
can use that to filter out all the other syscalls:

# echo 'hist:key=id.syscall,common_pid.execname:val=hitcount:sort=id,hitcount if id == 16' > \
       /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger

# cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
# trigger info: hist:keys=id.syscall,common_pid.execname:vals=hitcount:sort=id.syscall,hitcount:size=2048 if id == 16 [active]

{ id: sys_ioctl                     [ 16], common_pid: gmain           [      2769] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: evolution-addre [      8571] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: gmain           [      3003] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: gmain           [      2781] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: gmain           [      2829] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: bash            [      8726] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: bash            [      8508] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: gmain           [      2970] } hitcount:          1
{ id: sys_ioctl                     [ 16], common_pid: gmain           [      2768] } hitcount:          1
.
.
.
{ id: sys_ioctl                     [ 16], common_pid: pool            [      8559] } hitcount:         45
{ id: sys_ioctl                     [ 16], common_pid: pool            [      8555] } hitcount:         48
{ id: sys_ioctl                     [ 16], common_pid: pool            [      8551] } hitcount:         48
{ id: sys_ioctl                     [ 16], common_pid: avahi-daemon    [       896] } hitcount:         66
{ id: sys_ioctl                     [ 16], common_pid: Xorg            [      1267] } hitcount:      26674
{ id: sys_ioctl                     [ 16], common_pid: compiz          [      2994] } hitcount:      73443

Totals:
    Hits: 101162
    Entries: 103
    Dropped: 0





The above output shows that ‘compiz’ and ‘Xorg’ are far and away
the heaviest ioctl callers (which might lead to questions about
whether they really need to be making all those calls and to
possible avenues for further investigation.)

The compound key examples used a key and a sum value (hitcount) to
sort the output, but we can just as easily use two keys instead.
Here’s an example where we use a compound key composed of the the
common_pid and size event fields.  Sorting with pid as the primary
key and ‘size’ as the secondary key allows us to display an
ordered summary of the recvfrom sizes, with counts, received by
each process:

# echo 'hist:key=common_pid.execname,size:val=hitcount:sort=common_pid,size' > \
       /sys/kernel/debug/tracing/events/syscalls/sys_enter_recvfrom/trigger

# cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_recvfrom/hist
# trigger info: hist:keys=common_pid.execname,size:vals=hitcount:sort=common_pid.execname,size:size=2048 [active]

{ common_pid: smbd            [       784], size:          4 } hitcount:          1
{ common_pid: dnsmasq         [      1412], size:       4096 } hitcount:        672
{ common_pid: postgres        [      1796], size:       1000 } hitcount:          6
{ common_pid: postgres        [      1867], size:       1000 } hitcount:         10
{ common_pid: bamfdaemon      [      2787], size:         28 } hitcount:          2
{ common_pid: bamfdaemon      [      2787], size:      14360 } hitcount:          1
{ common_pid: compiz          [      2994], size:          8 } hitcount:          1
{ common_pid: compiz          [      2994], size:         20 } hitcount:         11
{ common_pid: gnome-terminal  [      3199], size:          4 } hitcount:          2
{ common_pid: firefox         [      8817], size:          4 } hitcount:          1
{ common_pid: firefox         [      8817], size:          8 } hitcount:          5
{ common_pid: firefox         [      8817], size:        588 } hitcount:          2
{ common_pid: firefox         [      8817], size:        628 } hitcount:          1
{ common_pid: firefox         [      8817], size:       6944 } hitcount:          1
{ common_pid: firefox         [      8817], size:     408880 } hitcount:          2
{ common_pid: firefox         [      8822], size:          8 } hitcount:          2
{ common_pid: firefox         [      8822], size:        160 } hitcount:          2
{ common_pid: firefox         [      8822], size:        320 } hitcount:          2
{ common_pid: firefox         [      8822], size:        352 } hitcount:          1
.
.
.
{ common_pid: pool            [      8923], size:       1960 } hitcount:         10
{ common_pid: pool            [      8923], size:       2048 } hitcount:         10
{ common_pid: pool            [      8924], size:       1960 } hitcount:         10
{ common_pid: pool            [      8924], size:       2048 } hitcount:         10
{ common_pid: pool            [      8928], size:       1964 } hitcount:          4
{ common_pid: pool            [      8928], size:       1965 } hitcount:          2
{ common_pid: pool            [      8928], size:       2048 } hitcount:          6
{ common_pid: pool            [      8929], size:       1982 } hitcount:          1
{ common_pid: pool            [      8929], size:       2048 } hitcount:          1

Totals:
    Hits: 2016
    Entries: 224
    Dropped: 0





The above example also illustrates the fact that although a compound
key is treated as a single entity for hashing purposes, the sub-keys
it’s composed of can be accessed independently.

The next example uses a string field as the hash key and
demonstrates how you can manually pause and continue a hist trigger.
In this example, we’ll aggregate fork counts and don’t expect a
large number of entries in the hash table, so we’ll drop it to a
much smaller number, say 256:

# echo 'hist:key=child_comm:val=hitcount:size=256' > \
       /sys/kernel/debug/tracing/events/sched/sched_process_fork/trigger

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/hist
# trigger info: hist:keys=child_comm:vals=hitcount:sort=hitcount:size=256 [active]

{ child_comm: dconf worker                        } hitcount:          1
{ child_comm: ibus-daemon                         } hitcount:          1
{ child_comm: whoopsie                            } hitcount:          1
{ child_comm: smbd                                } hitcount:          1
{ child_comm: gdbus                               } hitcount:          1
{ child_comm: kthreadd                            } hitcount:          1
{ child_comm: dconf worker                        } hitcount:          1
{ child_comm: evolution-alarm                     } hitcount:          2
{ child_comm: Socket Thread                       } hitcount:          2
{ child_comm: postgres                            } hitcount:          2
{ child_comm: bash                                } hitcount:          3
{ child_comm: compiz                              } hitcount:          3
{ child_comm: evolution-sourc                     } hitcount:          4
{ child_comm: dhclient                            } hitcount:          4
{ child_comm: pool                                } hitcount:          5
{ child_comm: nm-dispatcher.a                     } hitcount:          8
{ child_comm: firefox                             } hitcount:          8
{ child_comm: dbus-daemon                         } hitcount:          8
{ child_comm: glib-pacrunner                      } hitcount:         10
{ child_comm: evolution                           } hitcount:         23

Totals:
    Hits: 89
    Entries: 20
    Dropped: 0





If we want to pause the hist trigger, we can simply append :pause to
the command that started the trigger.  Notice that the trigger info
displays as [paused]:

# echo 'hist:key=child_comm:val=hitcount:size=256:pause' >> \
       /sys/kernel/debug/tracing/events/sched/sched_process_fork/trigger

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/hist
# trigger info: hist:keys=child_comm:vals=hitcount:sort=hitcount:size=256 [paused]

{ child_comm: dconf worker                        } hitcount:          1
{ child_comm: kthreadd                            } hitcount:          1
{ child_comm: dconf worker                        } hitcount:          1
{ child_comm: gdbus                               } hitcount:          1
{ child_comm: ibus-daemon                         } hitcount:          1
{ child_comm: Socket Thread                       } hitcount:          2
{ child_comm: evolution-alarm                     } hitcount:          2
{ child_comm: smbd                                } hitcount:          2
{ child_comm: bash                                } hitcount:          3
{ child_comm: whoopsie                            } hitcount:          3
{ child_comm: compiz                              } hitcount:          3
{ child_comm: evolution-sourc                     } hitcount:          4
{ child_comm: pool                                } hitcount:          5
{ child_comm: postgres                            } hitcount:          6
{ child_comm: firefox                             } hitcount:          8
{ child_comm: dhclient                            } hitcount:         10
{ child_comm: emacs                               } hitcount:         12
{ child_comm: dbus-daemon                         } hitcount:         20
{ child_comm: nm-dispatcher.a                     } hitcount:         20
{ child_comm: evolution                           } hitcount:         35
{ child_comm: glib-pacrunner                      } hitcount:         59

Totals:
    Hits: 199
    Entries: 21
    Dropped: 0





To manually continue having the trigger aggregate events, append
:cont instead.  Notice that the trigger info displays as [active]
again, and the data has changed:

# echo 'hist:key=child_comm:val=hitcount:size=256:cont' >> \
       /sys/kernel/debug/tracing/events/sched/sched_process_fork/trigger

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/hist
# trigger info: hist:keys=child_comm:vals=hitcount:sort=hitcount:size=256 [active]

{ child_comm: dconf worker                        } hitcount:          1
{ child_comm: dconf worker                        } hitcount:          1
{ child_comm: kthreadd                            } hitcount:          1
{ child_comm: gdbus                               } hitcount:          1
{ child_comm: ibus-daemon                         } hitcount:          1
{ child_comm: Socket Thread                       } hitcount:          2
{ child_comm: evolution-alarm                     } hitcount:          2
{ child_comm: smbd                                } hitcount:          2
{ child_comm: whoopsie                            } hitcount:          3
{ child_comm: compiz                              } hitcount:          3
{ child_comm: evolution-sourc                     } hitcount:          4
{ child_comm: bash                                } hitcount:          5
{ child_comm: pool                                } hitcount:          5
{ child_comm: postgres                            } hitcount:          6
{ child_comm: firefox                             } hitcount:          8
{ child_comm: dhclient                            } hitcount:         11
{ child_comm: emacs                               } hitcount:         12
{ child_comm: dbus-daemon                         } hitcount:         22
{ child_comm: nm-dispatcher.a                     } hitcount:         22
{ child_comm: evolution                           } hitcount:         35
{ child_comm: glib-pacrunner                      } hitcount:         59

Totals:
    Hits: 206
    Entries: 21
    Dropped: 0





The previous example showed how to start and stop a hist trigger by
appending ‘pause’ and ‘continue’ to the hist trigger command.  A
hist trigger can also be started in a paused state by initially
starting the trigger with ‘:pause’ appended.  This allows you to
start the trigger only when you’re ready to start collecting data
and not before.  For example, you could start the trigger in a
paused state, then unpause it and do something you want to measure,
then pause the trigger again when done.

Of course, doing this manually can be difficult and error-prone, but
it is possible to automatically start and stop a hist trigger based
on some condition, via the enable_hist and disable_hist triggers.

For example, suppose we wanted to take a look at the relative
weights in terms of skb length for each callpath that leads to a
netif_receieve_skb event when downloading a decent-sized file using
wget.

First we set up an initially paused stacktrace trigger on the
netif_receive_skb event:

# echo 'hist:key=stacktrace:vals=len:pause' > \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger





Next, we set up an ‘enable_hist’ trigger on the sched_process_exec
event, with an ‘if filename==/usr/bin/wget’ filter.  The effect of
this new trigger is that it will ‘unpause’ the hist trigger we just
set up on netif_receive_skb if and only if it sees a
sched_process_exec event with a filename of ‘/usr/bin/wget’.  When
that happens, all netif_receive_skb events are aggregated into a
hash table keyed on stacktrace:

# echo 'enable_hist:net:netif_receive_skb if filename==/usr/bin/wget' > \
       /sys/kernel/debug/tracing/events/sched/sched_process_exec/trigger





The aggregation continues until the netif_receive_skb is paused
again, which is what the following disable_hist event does by
creating a similar setup on the sched_process_exit event, using the
filter ‘comm==wget’:

# echo 'disable_hist:net:netif_receive_skb if comm==wget' > \
       /sys/kernel/debug/tracing/events/sched/sched_process_exit/trigger





Whenever a process exits and the comm field of the disable_hist
trigger filter matches ‘comm==wget’, the netif_receive_skb hist
trigger is disabled.

The overall effect is that netif_receive_skb events are aggregated
into the hash table for only the duration of the wget.  Executing a
wget command and then listing the ‘hist’ file will display the
output generated by the wget command:

$ wget https://www.kernel.org/pub/linux/kernel/v3.x/patch-3.19.xz

# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist
# trigger info: hist:keys=stacktrace:vals=len:sort=hitcount:size=2048 [paused]

{ stacktrace:
     __netif_receive_skb_core+0x46d/0x990
     __netif_receive_skb+0x18/0x60
     netif_receive_skb_internal+0x23/0x90
     napi_gro_receive+0xc8/0x100
     ieee80211_deliver_skb+0xd6/0x270 [mac80211]
     ieee80211_rx_handlers+0xccf/0x22f0 [mac80211]
     ieee80211_prepare_and_rx_handle+0x4e7/0xc40 [mac80211]
     ieee80211_rx+0x31d/0x900 [mac80211]
     iwlagn_rx_reply_rx+0x3db/0x6f0 [iwldvm]
     iwl_rx_dispatch+0x8e/0xf0 [iwldvm]
     iwl_pcie_irq_handler+0xe3c/0x12f0 [iwlwifi]
     irq_thread_fn+0x20/0x50
     irq_thread+0x11f/0x150
     kthread+0xd2/0xf0
     ret_from_fork+0x42/0x70
} hitcount:         85  len:      28884
{ stacktrace:
     __netif_receive_skb_core+0x46d/0x990
     __netif_receive_skb+0x18/0x60
     netif_receive_skb_internal+0x23/0x90
     napi_gro_complete+0xa4/0xe0
     dev_gro_receive+0x23a/0x360
     napi_gro_receive+0x30/0x100
     ieee80211_deliver_skb+0xd6/0x270 [mac80211]
     ieee80211_rx_handlers+0xccf/0x22f0 [mac80211]
     ieee80211_prepare_and_rx_handle+0x4e7/0xc40 [mac80211]
     ieee80211_rx+0x31d/0x900 [mac80211]
     iwlagn_rx_reply_rx+0x3db/0x6f0 [iwldvm]
     iwl_rx_dispatch+0x8e/0xf0 [iwldvm]
     iwl_pcie_irq_handler+0xe3c/0x12f0 [iwlwifi]
     irq_thread_fn+0x20/0x50
     irq_thread+0x11f/0x150
     kthread+0xd2/0xf0
} hitcount:         98  len:     664329
{ stacktrace:
     __netif_receive_skb_core+0x46d/0x990
     __netif_receive_skb+0x18/0x60
     process_backlog+0xa8/0x150
     net_rx_action+0x15d/0x340
     __do_softirq+0x114/0x2c0
     do_softirq_own_stack+0x1c/0x30
     do_softirq+0x65/0x70
     __local_bh_enable_ip+0xb5/0xc0
     ip_finish_output+0x1f4/0x840
     ip_output+0x6b/0xc0
     ip_local_out_sk+0x31/0x40
     ip_send_skb+0x1a/0x50
     udp_send_skb+0x173/0x2a0
     udp_sendmsg+0x2bf/0x9f0
     inet_sendmsg+0x64/0xa0
     sock_sendmsg+0x3d/0x50
} hitcount:        115  len:      13030
{ stacktrace:
     __netif_receive_skb_core+0x46d/0x990
     __netif_receive_skb+0x18/0x60
     netif_receive_skb_internal+0x23/0x90
     napi_gro_complete+0xa4/0xe0
     napi_gro_flush+0x6d/0x90
     iwl_pcie_irq_handler+0x92a/0x12f0 [iwlwifi]
     irq_thread_fn+0x20/0x50
     irq_thread+0x11f/0x150
     kthread+0xd2/0xf0
     ret_from_fork+0x42/0x70
} hitcount:        934  len:    5512212

Totals:
    Hits: 1232
    Entries: 4
    Dropped: 0





The above shows all the netif_receive_skb callpaths and their total
lengths for the duration of the wget command.

The ‘clear’ hist trigger param can be used to clear the hash table.
Suppose we wanted to try another run of the previous example but
this time also wanted to see the complete list of events that went
into the histogram.  In order to avoid having to set everything up
again, we can just clear the histogram first:

# echo 'hist:key=stacktrace:vals=len:clear' >> \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger





Just to verify that it is in fact cleared, here’s what we now see in
the hist file:

# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist
# trigger info: hist:keys=stacktrace:vals=len:sort=hitcount:size=2048 [paused]

Totals:
    Hits: 0
    Entries: 0
    Dropped: 0





Since we want to see the detailed list of every netif_receive_skb
event occurring during the new run, which are in fact the same
events being aggregated into the hash table, we add some additional
‘enable_event’ events to the triggering sched_process_exec and
sched_process_exit events as such:

# echo 'enable_event:net:netif_receive_skb if filename==/usr/bin/wget' > \
       /sys/kernel/debug/tracing/events/sched/sched_process_exec/trigger

# echo 'disable_event:net:netif_receive_skb if comm==wget' > \
       /sys/kernel/debug/tracing/events/sched/sched_process_exit/trigger





If you read the trigger files for the sched_process_exec and
sched_process_exit triggers, you should see two triggers for each:
one enabling/disabling the hist aggregation and the other
enabling/disabling the logging of events:

# cat /sys/kernel/debug/tracing/events/sched/sched_process_exec/trigger
enable_event:net:netif_receive_skb:unlimited if filename==/usr/bin/wget
enable_hist:net:netif_receive_skb:unlimited if filename==/usr/bin/wget

# cat /sys/kernel/debug/tracing/events/sched/sched_process_exit/trigger
enable_event:net:netif_receive_skb:unlimited if comm==wget
disable_hist:net:netif_receive_skb:unlimited if comm==wget





In other words, whenever either of the sched_process_exec or
sched_process_exit events is hit and matches ‘wget’, it enables or
disables both the histogram and the event log, and what you end up
with is a hash table and set of events just covering the specified
duration.  Run the wget command again:

$ wget https://www.kernel.org/pub/linux/kernel/v3.x/patch-3.19.xz





Displaying the ‘hist’ file should show something similar to what you
saw in the last run, but this time you should also see the
individual events in the trace file:

# cat /sys/kernel/debug/tracing/trace

# tracer: nop
#
# entries-in-buffer/entries-written: 183/1426   #P:4
#
#                              _-----=> irqs-off
#                             / _----=> need-resched
#                            | / _---=> hardirq/softirq
#                            || / _--=> preempt-depth
#                            ||| /     delay
#           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
#              | |       |   ||||       |         |
            wget-15108 [000] ..s1 31769.606929: netif_receive_skb: dev=lo skbaddr=ffff88009c353100 len=60
            wget-15108 [000] ..s1 31769.606999: netif_receive_skb: dev=lo skbaddr=ffff88009c353200 len=60
         dnsmasq-1382  [000] ..s1 31769.677652: netif_receive_skb: dev=lo skbaddr=ffff88009c352b00 len=130
         dnsmasq-1382  [000] ..s1 31769.685917: netif_receive_skb: dev=lo skbaddr=ffff88009c352200 len=138
##### CPU 2 buffer started ####
  irq/29-iwlwifi-559   [002] ..s. 31772.031529: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d433d00 len=2948
  irq/29-iwlwifi-559   [002] ..s. 31772.031572: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d432200 len=1500
  irq/29-iwlwifi-559   [002] ..s. 31772.032196: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d433100 len=2948
  irq/29-iwlwifi-559   [002] ..s. 31772.032761: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d433000 len=2948
  irq/29-iwlwifi-559   [002] ..s. 31772.033220: netif_receive_skb: dev=wlan0 skbaddr=ffff88009d432e00 len=1500
.
.
.





The following example demonstrates how multiple hist triggers can be
attached to a given event.  This capability can be useful for
creating a set of different summaries derived from the same set of
events, or for comparing the effects of different filters, among
other things:

# echo 'hist:keys=skbaddr.hex:vals=len if len < 0' >> \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger
# echo 'hist:keys=skbaddr.hex:vals=len if len > 4096' >> \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger
# echo 'hist:keys=skbaddr.hex:vals=len if len == 256' >> \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger
# echo 'hist:keys=skbaddr.hex:vals=len' >> \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger
# echo 'hist:keys=len:vals=common_preempt_count' >> \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger





The above set of commands create four triggers differing only in
their filters, along with a completely different though fairly
nonsensical trigger.  Note that in order to append multiple hist
triggers to the same file, you should use the ‘>>’ operator to
append them (‘>’ will also add the new hist trigger, but will remove
any existing hist triggers beforehand).

Displaying the contents of the ‘hist’ file for the event shows the
contents of all five histograms:

# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist

# event histogram
#
# trigger info: hist:keys=len:vals=hitcount,common_preempt_count:sort=hitcount:size=2048 [active]
#

{ len:        176 } hitcount:          1  common_preempt_count:          0
{ len:        223 } hitcount:          1  common_preempt_count:          0
{ len:       4854 } hitcount:          1  common_preempt_count:          0
{ len:        395 } hitcount:          1  common_preempt_count:          0
{ len:        177 } hitcount:          1  common_preempt_count:          0
{ len:        446 } hitcount:          1  common_preempt_count:          0
{ len:       1601 } hitcount:          1  common_preempt_count:          0
.
.
.
{ len:       1280 } hitcount:         66  common_preempt_count:          0
{ len:        116 } hitcount:         81  common_preempt_count:         40
{ len:        708 } hitcount:        112  common_preempt_count:          0
{ len:         46 } hitcount:        221  common_preempt_count:          0
{ len:       1264 } hitcount:        458  common_preempt_count:          0

Totals:
    Hits: 1428
    Entries: 147
    Dropped: 0


# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 [active]
#

{ skbaddr: ffff8800baee5e00 } hitcount:          1  len:        130
{ skbaddr: ffff88005f3d5600 } hitcount:          1  len:       1280
{ skbaddr: ffff88005f3d4900 } hitcount:          1  len:       1280
{ skbaddr: ffff88009fed6300 } hitcount:          1  len:        115
{ skbaddr: ffff88009fe0ad00 } hitcount:          1  len:        115
{ skbaddr: ffff88008cdb1900 } hitcount:          1  len:         46
{ skbaddr: ffff880064b5ef00 } hitcount:          1  len:        118
{ skbaddr: ffff880044e3c700 } hitcount:          1  len:         60
{ skbaddr: ffff880100065900 } hitcount:          1  len:         46
{ skbaddr: ffff8800d46bd500 } hitcount:          1  len:        116
{ skbaddr: ffff88005f3d5f00 } hitcount:          1  len:       1280
{ skbaddr: ffff880100064700 } hitcount:          1  len:        365
{ skbaddr: ffff8800badb6f00 } hitcount:          1  len:         60
.
.
.
{ skbaddr: ffff88009fe0be00 } hitcount:         27  len:      24677
{ skbaddr: ffff88009fe0a400 } hitcount:         27  len:      23052
{ skbaddr: ffff88009fe0b700 } hitcount:         31  len:      25589
{ skbaddr: ffff88009fe0b600 } hitcount:         32  len:      27326
{ skbaddr: ffff88006a462800 } hitcount:         68  len:      71678
{ skbaddr: ffff88006a463700 } hitcount:         70  len:      72678
{ skbaddr: ffff88006a462b00 } hitcount:         71  len:      77589
{ skbaddr: ffff88006a463600 } hitcount:         73  len:      71307
{ skbaddr: ffff88006a462200 } hitcount:         81  len:      81032

Totals:
    Hits: 1451
    Entries: 318
    Dropped: 0


# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 if len == 256 [active]
#


Totals:
    Hits: 0
    Entries: 0
    Dropped: 0


# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 if len > 4096 [active]
#

{ skbaddr: ffff88009fd2c300 } hitcount:          1  len:       7212
{ skbaddr: ffff8800d2bcce00 } hitcount:          1  len:       7212
{ skbaddr: ffff8800d2bcd700 } hitcount:          1  len:       7212
{ skbaddr: ffff8800d2bcda00 } hitcount:          1  len:      21492
{ skbaddr: ffff8800ae2e2d00 } hitcount:          1  len:       7212
{ skbaddr: ffff8800d2bcdb00 } hitcount:          1  len:       7212
{ skbaddr: ffff88006a4df500 } hitcount:          1  len:       4854
{ skbaddr: ffff88008ce47b00 } hitcount:          1  len:      18636
{ skbaddr: ffff8800ae2e2200 } hitcount:          1  len:      12924
{ skbaddr: ffff88005f3e1000 } hitcount:          1  len:       4356
{ skbaddr: ffff8800d2bcdc00 } hitcount:          2  len:      24420
{ skbaddr: ffff8800d2bcc200 } hitcount:          2  len:      12996

Totals:
    Hits: 14
    Entries: 12
    Dropped: 0


# event histogram
#
# trigger info: hist:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 if len < 0 [active]
#


Totals:
    Hits: 0
    Entries: 0
    Dropped: 0





Named triggers can be used to have triggers share a common set of
histogram data.  This capability is mostly useful for combining the
output of events generated by tracepoints contained inside inline
functions, but names can be used in a hist trigger on any event.
For example, these two triggers when hit will update the same ‘len’
field in the shared ‘foo’ histogram data:

# echo 'hist:name=foo:keys=skbaddr.hex:vals=len' > \
       /sys/kernel/debug/tracing/events/net/netif_receive_skb/trigger
# echo 'hist:name=foo:keys=skbaddr.hex:vals=len' > \
       /sys/kernel/debug/tracing/events/net/netif_rx/trigger





You can see that they’re updating common histogram data by reading
each event’s hist files at the same time:

# cat /sys/kernel/debug/tracing/events/net/netif_receive_skb/hist;
  cat /sys/kernel/debug/tracing/events/net/netif_rx/hist

# event histogram
#
# trigger info: hist:name=foo:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 [active]
#

{ skbaddr: ffff88000ad53500 } hitcount:          1  len:         46
{ skbaddr: ffff8800af5a1500 } hitcount:          1  len:         76
{ skbaddr: ffff8800d62a1900 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bccb00 } hitcount:          1  len:        468
{ skbaddr: ffff8800d3c69900 } hitcount:          1  len:         46
{ skbaddr: ffff88009ff09100 } hitcount:          1  len:         52
{ skbaddr: ffff88010f13ab00 } hitcount:          1  len:        168
{ skbaddr: ffff88006a54f400 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bcc500 } hitcount:          1  len:        260
{ skbaddr: ffff880064505000 } hitcount:          1  len:         46
{ skbaddr: ffff8800baf24e00 } hitcount:          1  len:         32
{ skbaddr: ffff88009fe0ad00 } hitcount:          1  len:         46
{ skbaddr: ffff8800d3edff00 } hitcount:          1  len:         44
{ skbaddr: ffff88009fe0b400 } hitcount:          1  len:        168
{ skbaddr: ffff8800a1c55a00 } hitcount:          1  len:         40
{ skbaddr: ffff8800d2bcd100 } hitcount:          1  len:         40
{ skbaddr: ffff880064505f00 } hitcount:          1  len:        174
{ skbaddr: ffff8800a8bff200 } hitcount:          1  len:        160
{ skbaddr: ffff880044e3cc00 } hitcount:          1  len:         76
{ skbaddr: ffff8800a8bfe700 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bcdc00 } hitcount:          1  len:         32
{ skbaddr: ffff8800a1f64800 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bcde00 } hitcount:          1  len:        988
{ skbaddr: ffff88006a5dea00 } hitcount:          1  len:         46
{ skbaddr: ffff88002e37a200 } hitcount:          1  len:         44
{ skbaddr: ffff8800a1f32c00 } hitcount:          2  len:        676
{ skbaddr: ffff88000ad52600 } hitcount:          2  len:        107
{ skbaddr: ffff8800a1f91e00 } hitcount:          2  len:         92
{ skbaddr: ffff8800af5a0200 } hitcount:          2  len:        142
{ skbaddr: ffff8800d2bcc600 } hitcount:          2  len:        220
{ skbaddr: ffff8800ba36f500 } hitcount:          2  len:         92
{ skbaddr: ffff8800d021f800 } hitcount:          2  len:         92
{ skbaddr: ffff8800a1f33600 } hitcount:          2  len:        675
{ skbaddr: ffff8800a8bfff00 } hitcount:          3  len:        138
{ skbaddr: ffff8800d62a1300 } hitcount:          3  len:        138
{ skbaddr: ffff88002e37a100 } hitcount:          4  len:        184
{ skbaddr: ffff880064504400 } hitcount:          4  len:        184
{ skbaddr: ffff8800a8bfec00 } hitcount:          4  len:        184
{ skbaddr: ffff88000ad53700 } hitcount:          5  len:        230
{ skbaddr: ffff8800d2bcdb00 } hitcount:          5  len:        196
{ skbaddr: ffff8800a1f90000 } hitcount:          6  len:        276
{ skbaddr: ffff88006a54f900 } hitcount:          6  len:        276

Totals:
    Hits: 81
    Entries: 42
    Dropped: 0
# event histogram
#
# trigger info: hist:name=foo:keys=skbaddr.hex:vals=hitcount,len:sort=hitcount:size=2048 [active]
#

{ skbaddr: ffff88000ad53500 } hitcount:          1  len:         46
{ skbaddr: ffff8800af5a1500 } hitcount:          1  len:         76
{ skbaddr: ffff8800d62a1900 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bccb00 } hitcount:          1  len:        468
{ skbaddr: ffff8800d3c69900 } hitcount:          1  len:         46
{ skbaddr: ffff88009ff09100 } hitcount:          1  len:         52
{ skbaddr: ffff88010f13ab00 } hitcount:          1  len:        168
{ skbaddr: ffff88006a54f400 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bcc500 } hitcount:          1  len:        260
{ skbaddr: ffff880064505000 } hitcount:          1  len:         46
{ skbaddr: ffff8800baf24e00 } hitcount:          1  len:         32
{ skbaddr: ffff88009fe0ad00 } hitcount:          1  len:         46
{ skbaddr: ffff8800d3edff00 } hitcount:          1  len:         44
{ skbaddr: ffff88009fe0b400 } hitcount:          1  len:        168
{ skbaddr: ffff8800a1c55a00 } hitcount:          1  len:         40
{ skbaddr: ffff8800d2bcd100 } hitcount:          1  len:         40
{ skbaddr: ffff880064505f00 } hitcount:          1  len:        174
{ skbaddr: ffff8800a8bff200 } hitcount:          1  len:        160
{ skbaddr: ffff880044e3cc00 } hitcount:          1  len:         76
{ skbaddr: ffff8800a8bfe700 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bcdc00 } hitcount:          1  len:         32
{ skbaddr: ffff8800a1f64800 } hitcount:          1  len:         46
{ skbaddr: ffff8800d2bcde00 } hitcount:          1  len:        988
{ skbaddr: ffff88006a5dea00 } hitcount:          1  len:         46
{ skbaddr: ffff88002e37a200 } hitcount:          1  len:         44
{ skbaddr: ffff8800a1f32c00 } hitcount:          2  len:        676
{ skbaddr: ffff88000ad52600 } hitcount:          2  len:        107
{ skbaddr: ffff8800a1f91e00 } hitcount:          2  len:         92
{ skbaddr: ffff8800af5a0200 } hitcount:          2  len:        142
{ skbaddr: ffff8800d2bcc600 } hitcount:          2  len:        220
{ skbaddr: ffff8800ba36f500 } hitcount:          2  len:         92
{ skbaddr: ffff8800d021f800 } hitcount:          2  len:         92
{ skbaddr: ffff8800a1f33600 } hitcount:          2  len:        675
{ skbaddr: ffff8800a8bfff00 } hitcount:          3  len:        138
{ skbaddr: ffff8800d62a1300 } hitcount:          3  len:        138
{ skbaddr: ffff88002e37a100 } hitcount:          4  len:        184
{ skbaddr: ffff880064504400 } hitcount:          4  len:        184
{ skbaddr: ffff8800a8bfec00 } hitcount:          4  len:        184
{ skbaddr: ffff88000ad53700 } hitcount:          5  len:        230
{ skbaddr: ffff8800d2bcdb00 } hitcount:          5  len:        196
{ skbaddr: ffff8800a1f90000 } hitcount:          6  len:        276
{ skbaddr: ffff88006a54f900 } hitcount:          6  len:        276

Totals:
    Hits: 81
    Entries: 42
    Dropped: 0





And here’s an example that shows how to combine histogram data from
any two events even if they don’t share any ‘compatible’ fields
other than ‘hitcount’ and ‘stacktrace’.  These commands create a
couple of triggers named ‘bar’ using those fields:

# echo 'hist:name=bar:key=stacktrace:val=hitcount' > \
       /sys/kernel/debug/tracing/events/sched/sched_process_fork/trigger
# echo 'hist:name=bar:key=stacktrace:val=hitcount' > \
      /sys/kernel/debug/tracing/events/net/netif_rx/trigger





And displaying the output of either shows some interesting if
somewhat confusing output:

# cat /sys/kernel/debug/tracing/events/sched/sched_process_fork/hist
# cat /sys/kernel/debug/tracing/events/net/netif_rx/hist

# event histogram
#
# trigger info: hist:name=bar:keys=stacktrace:vals=hitcount:sort=hitcount:size=2048 [active]
#

{ stacktrace:
         _do_fork+0x18e/0x330
         kernel_thread+0x29/0x30
         kthreadd+0x154/0x1b0
         ret_from_fork+0x3f/0x70
} hitcount:          1
{ stacktrace:
         netif_rx_internal+0xb2/0xd0
         netif_rx_ni+0x20/0x70
         dev_loopback_xmit+0xaa/0xd0
         ip_mc_output+0x126/0x240
         ip_local_out_sk+0x31/0x40
         igmp_send_report+0x1e9/0x230
         igmp_timer_expire+0xe9/0x120
         call_timer_fn+0x39/0xf0
         run_timer_softirq+0x1e1/0x290
         __do_softirq+0xfd/0x290
         irq_exit+0x98/0xb0
         smp_apic_timer_interrupt+0x4a/0x60
         apic_timer_interrupt+0x6d/0x80
         cpuidle_enter+0x17/0x20
         call_cpuidle+0x3b/0x60
         cpu_startup_entry+0x22d/0x310
} hitcount:          1
{ stacktrace:
         netif_rx_internal+0xb2/0xd0
         netif_rx_ni+0x20/0x70
         dev_loopback_xmit+0xaa/0xd0
         ip_mc_output+0x17f/0x240
         ip_local_out_sk+0x31/0x40
         ip_send_skb+0x1a/0x50
         udp_send_skb+0x13e/0x270
         udp_sendmsg+0x2bf/0x980
         inet_sendmsg+0x67/0xa0
         sock_sendmsg+0x38/0x50
         SYSC_sendto+0xef/0x170
         SyS_sendto+0xe/0x10
         entry_SYSCALL_64_fastpath+0x12/0x6a
} hitcount:          2
{ stacktrace:
         netif_rx_internal+0xb2/0xd0
         netif_rx+0x1c/0x60
         loopback_xmit+0x6c/0xb0
         dev_hard_start_xmit+0x219/0x3a0
         __dev_queue_xmit+0x415/0x4f0
         dev_queue_xmit_sk+0x13/0x20
         ip_finish_output2+0x237/0x340
         ip_finish_output+0x113/0x1d0
         ip_output+0x66/0xc0
         ip_local_out_sk+0x31/0x40
         ip_send_skb+0x1a/0x50
         udp_send_skb+0x16d/0x270
         udp_sendmsg+0x2bf/0x980
         inet_sendmsg+0x67/0xa0
         sock_sendmsg+0x38/0x50
         ___sys_sendmsg+0x14e/0x270
} hitcount:         76
{ stacktrace:
         netif_rx_internal+0xb2/0xd0
         netif_rx+0x1c/0x60
         loopback_xmit+0x6c/0xb0
         dev_hard_start_xmit+0x219/0x3a0
         __dev_queue_xmit+0x415/0x4f0
         dev_queue_xmit_sk+0x13/0x20
         ip_finish_output2+0x237/0x340
         ip_finish_output+0x113/0x1d0
         ip_output+0x66/0xc0
         ip_local_out_sk+0x31/0x40
         ip_send_skb+0x1a/0x50
         udp_send_skb+0x16d/0x270
         udp_sendmsg+0x2bf/0x980
         inet_sendmsg+0x67/0xa0
         sock_sendmsg+0x38/0x50
         ___sys_sendmsg+0x269/0x270
} hitcount:         77
{ stacktrace:
         netif_rx_internal+0xb2/0xd0
         netif_rx+0x1c/0x60
         loopback_xmit+0x6c/0xb0
         dev_hard_start_xmit+0x219/0x3a0
         __dev_queue_xmit+0x415/0x4f0
         dev_queue_xmit_sk+0x13/0x20
         ip_finish_output2+0x237/0x340
         ip_finish_output+0x113/0x1d0
         ip_output+0x66/0xc0
         ip_local_out_sk+0x31/0x40
         ip_send_skb+0x1a/0x50
         udp_send_skb+0x16d/0x270
         udp_sendmsg+0x2bf/0x980
         inet_sendmsg+0x67/0xa0
         sock_sendmsg+0x38/0x50
         SYSC_sendto+0xef/0x170
} hitcount:         88
{ stacktrace:
         _do_fork+0x18e/0x330
         SyS_clone+0x19/0x20
         entry_SYSCALL_64_fastpath+0x12/0x6a
} hitcount:        244

Totals:
    Hits: 489
    Entries: 7
    Dropped: 0











2.2 Inter-event hist triggers

Inter-event hist triggers are hist triggers that combine values from
one or more other events and create a histogram using that data.  Data
from an inter-event histogram can in turn become the source for
further combined histograms, thus providing a chain of related
histograms, which is important for some applications.

The most important example of an inter-event quantity that can be used
in this manner is latency, which is simply a difference in timestamps
between two events.  Although latency is the most important
inter-event quantity, note that because the support is completely
general across the trace event subsystem, any event field can be used
in an inter-event quantity.

An example of a histogram that combines data from other histograms
into a useful chain would be a ‘wakeupswitch latency’ histogram that
combines a ‘wakeup latency’ histogram and a ‘switch latency’
histogram.

Normally, a hist trigger specification consists of a (possibly
compound) key along with one or more numeric values, which are
continually updated sums associated with that key.  A histogram
specification in this case consists of individual key and value
specifications that refer to trace event fields associated with a
single event type.

The inter-event hist trigger extension allows fields from multiple
events to be referenced and combined into a multi-event histogram
specification.  In support of this overall goal, a few enabling
features have been added to the hist trigger support:



	In order to compute an inter-event quantity, a value from one
event needs to saved and then referenced from another event.  This
requires the introduction of support for histogram ‘variables’.

	The computation of inter-event quantities and their combination
require some minimal amount of support for applying simple
expressions to variables (+ and -).

	A histogram consisting of inter-event quantities isn’t logically a
histogram on either event (so having the ‘hist’ file for either
event host the histogram output doesn’t really make sense).  To
address the idea that the histogram is associated with a
combination of events, support is added allowing the creation of
‘synthetic’ events that are events derived from other events.
These synthetic events are full-fledged events just like any other
and can be used as such, as for instance to create the
‘combination’ histograms mentioned previously.

	A set of ‘actions’ can be associated with histogram entries -
these can be used to generate the previously mentioned synthetic
events, but can also be used for other purposes, such as for
example saving context when a ‘max’ latency has been hit.

	Trace events don’t have a ‘timestamp’ associated with them, but
there is an implicit timestamp saved along with an event in the
underlying ftrace ring buffer.  This timestamp is now exposed as a
a synthetic field named ‘common_timestamp’ which can be used in
histograms as if it were any other event field; it isn’t an actual
field in the trace format but rather is a synthesized value that
nonetheless can be used as if it were an actual field.  By default
it is in units of nanoseconds; appending ‘.usecs’ to a
common_timestamp field changes the units to microseconds.






A note on inter-event timestamps: If common_timestamp is used in a
histogram, the trace buffer is automatically switched over to using
absolute timestamps and the “global” trace clock, in order to avoid
bogus timestamp differences with other clocks that aren’t coherent
across CPUs.  This can be overridden by specifying one of the other
trace clocks instead, using the “clock=XXX” hist trigger attribute,
where XXX is any of the clocks listed in the tracing/trace_clock
pseudo-file.

These features are described in more detail in the following sections.




2.2.1 Histogram Variables

Variables are simply named locations used for saving and retrieving
values between matching events.  A ‘matching’ event is defined as an
event that has a matching key - if a variable is saved for a histogram
entry corresponding to that key, any subsequent event with a matching
key can access that variable.

A variable’s value is normally available to any subsequent event until
it is set to something else by a subsequent event.  The one exception
to that rule is that any variable used in an expression is essentially
‘read-once’ - once it’s used by an expression in a subsequent event,
it’s reset to its ‘unset’ state, which means it can’t be used again
unless it’s set again.  This ensures not only that an event doesn’t
use an uninitialized variable in a calculation, but that that variable
is used only once and not for any unrelated subsequent match.

The basic syntax for saving a variable is to simply prefix a unique
variable name not corresponding to any keyword along with an ‘=’ sign
to any event field.

Either keys or values can be saved and retrieved in this way.  This
creates a variable named ‘ts0’ for a histogram entry with the key
‘next_pid’:

# echo 'hist:keys=next_pid:vals=$ts0:ts0=common_timestamp ... >> \
      event/trigger





The ts0 variable can be accessed by any subsequent event having the
same pid as ‘next_pid’.

Variable references are formed by prepending the variable name with
the ‘$’ sign.  Thus for example, the ts0 variable above would be
referenced as ‘$ts0’ in expressions.

Because ‘vals=’ is used, the common_timestamp variable value above
will also be summed as a normal histogram value would (though for a
timestamp it makes little sense).

The below shows that a key value can also be saved in the same way:

# echo 'hist:timer_pid=common_pid:key=timer_pid ...' >> event/trigger





If a variable isn’t a key variable or prefixed with ‘vals=’, the
associated event field will be saved in a variable but won’t be summed
as a value:

# echo 'hist:keys=next_pid:ts1=common_timestamp ...' >> event/trigger





Multiple variables can be assigned at the same time.  The below would
result in both ts0 and b being created as variables, with both
common_timestamp and field1 additionally being summed as values:

# echo 'hist:keys=pid:vals=$ts0,$b:ts0=common_timestamp,b=field1 ...' >> \
      event/trigger





Note that variable assignments can appear either preceding or
following their use.  The command below behaves identically to the
command above:

# echo 'hist:keys=pid:ts0=common_timestamp,b=field1:vals=$ts0,$b ...' >> \
      event/trigger





Any number of variables not bound to a ‘vals=’ prefix can also be
assigned by simply separating them with colons.  Below is the same
thing but without the values being summed in the histogram:

# echo 'hist:keys=pid:ts0=common_timestamp:b=field1 ...' >> event/trigger





Variables set as above can be referenced and used in expressions on
another event.

For example, here’s how a latency can be calculated:

# echo 'hist:keys=pid,prio:ts0=common_timestamp ...' >> event1/trigger
# echo 'hist:keys=next_pid:wakeup_lat=common_timestamp-$ts0 ...' >> event2/trigger





In the first line above, the event’s timestamp is saved into the
variable ts0.  In the next line, ts0 is subtracted from the second
event’s timestamp to produce the latency, which is then assigned into
yet another variable, ‘wakeup_lat’.  The hist trigger below in turn
makes use of the wakeup_lat variable to compute a combined latency
using the same key and variable from yet another event:

# echo 'hist:key=pid:wakeupswitch_lat=$wakeup_lat+$switchtime_lat ...' >> event3/trigger








2.2.2 Synthetic Events

Synthetic events are user-defined events generated from hist trigger
variables or fields associated with one or more other events.  Their
purpose is to provide a mechanism for displaying data spanning
multiple events consistent with the existing and already familiar
usage for normal events.

To define a synthetic event, the user writes a simple specification
consisting of the name of the new event along with one or more
variables and their types, which can be any valid field type,
separated by semicolons, to the tracing/synthetic_events file.

For instance, the following creates a new event named ‘wakeup_latency’
with 3 fields: lat, pid, and prio.  Each of those fields is simply a
variable reference to a variable on another event:

# echo 'wakeup_latency \
        u64 lat; \
        pid_t pid; \
        int prio' >> \
        /sys/kernel/debug/tracing/synthetic_events





Reading the tracing/synthetic_events file lists all the currently
defined synthetic events, in this case the event defined above:

# cat /sys/kernel/debug/tracing/synthetic_events
  wakeup_latency u64 lat; pid_t pid; int prio





An existing synthetic event definition can be removed by prepending
the command that defined it with a ‘!’:

# echo '!wakeup_latency u64 lat pid_t pid int prio' >> \
  /sys/kernel/debug/tracing/synthetic_events





At this point, there isn’t yet an actual ‘wakeup_latency’ event
instantiated in the event subsystem - for this to happen, a ‘hist
trigger action’ needs to be instantiated and bound to actual fields
and variables defined on other events (see Section 2.2.3 below on
how that is done using hist trigger ‘onmatch’ action). Once that is
done, the ‘wakeup_latency’ synthetic event instance is created.

A histogram can now be defined for the new synthetic event:

# echo 'hist:keys=pid,prio,lat.log2:sort=pid,lat' >> \
      /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/trigger





The new event is created under the tracing/events/synthetic/ directory
and looks and behaves just like any other event:

# ls /sys/kernel/debug/tracing/events/synthetic/wakeup_latency
      enable  filter  format  hist  id  trigger





Like any other event, once a histogram is enabled for the event, the
output can be displayed by reading the event’s ‘hist’ file.




2.2.3 Hist trigger ‘actions’

A hist trigger ‘action’ is a function that’s executed whenever a
histogram entry is added or updated.

The default ‘action’ if no special function is explicitly specified is
as it always has been, to simply update the set of values associated
with an entry.  Some applications, however, may want to perform
additional actions at that point, such as generate another event, or
compare and save a maximum.

The following additional actions are available.  To specify an action
for a given event, simply specify the action between colons in the
hist trigger specification.



	onmatch(matching.event).<synthetic_event_name>(param list)

The ‘onmatch(matching.event).<synthetic_event_name>(params)’ hist
trigger action is invoked whenever an event matches and the
histogram entry would be added or updated.  It causes the named
synthetic event to be generated with the values given in the
‘param list’.  The result is the generation of a synthetic event
that consists of the values contained in those variables at the
time the invoking event was hit.

The ‘param list’ consists of one or more parameters which may be
either variables or fields defined on either the ‘matching.event’
or the target event.  The variables or fields specified in the
param list may be either fully-qualified or unqualified.  If a
variable is specified as unqualified, it must be unique between
the two events.  A field name used as a param can be unqualified
if it refers to the target event, but must be fully qualified if
it refers to the matching event.  A fully-qualified name is of the
form ‘system.event_name.$var_name’ or ‘system.event_name.field’.

The ‘matching.event’ specification is simply the fully qualified
event name of the event that matches the target event for the
onmatch() functionality, in the form ‘system.event_name’.

Finally, the number and type of variables/fields in the ‘param
list’ must match the number and types of the fields in the
synthetic event being generated.

As an example the below defines a simple synthetic event and uses
a variable defined on the sched_wakeup_new event as a parameter
when invoking the synthetic event.  Here we define the synthetic
event:

# echo 'wakeup_new_test pid_t pid' >> \
       /sys/kernel/debug/tracing/synthetic_events

# cat /sys/kernel/debug/tracing/synthetic_events
      wakeup_new_test pid_t pid





The following hist trigger both defines the missing testpid
variable and specifies an onmatch() action that generates a
wakeup_new_test synthetic event whenever a sched_wakeup_new event
occurs, which because of the ‘if comm == “cyclictest”’ filter only
happens when the executable is cyclictest:

# echo 'hist:keys=$testpid:testpid=pid:onmatch(sched.sched_wakeup_new).\
        wakeup_new_test($testpid) if comm=="cyclictest"' >> \
        /sys/kernel/debug/tracing/events/sched/sched_wakeup_new/trigger





Creating and displaying a histogram based on those events is now
just a matter of using the fields and new synthetic event in the
tracing/events/synthetic directory, as usual:

# echo 'hist:keys=pid:sort=pid' >> \
       /sys/kernel/debug/tracing/events/synthetic/wakeup_new_test/trigger





Running ‘cyclictest’ should cause wakeup_new events to generate
wakeup_new_test synthetic events which should result in histogram
output in the wakeup_new_test event’s hist file:

# cat /sys/kernel/debug/tracing/events/synthetic/wakeup_new_test/hist





A more typical usage would be to use two events to calculate a
latency.  The following example uses a set of hist triggers to
produce a ‘wakeup_latency’ histogram.

First, we define a ‘wakeup_latency’ synthetic event:

# echo 'wakeup_latency u64 lat; pid_t pid; int prio' >> \
        /sys/kernel/debug/tracing/synthetic_events





Next, we specify that whenever we see a sched_waking event for a
cyclictest thread, save the timestamp in a ‘ts0’ variable:

# echo 'hist:keys=$saved_pid:saved_pid=pid:ts0=common_timestamp.usecs \
        if comm=="cyclictest"' >> \
        /sys/kernel/debug/tracing/events/sched/sched_waking/trigger





Then, when the corresponding thread is actually scheduled onto the
CPU by a sched_switch event, calculate the latency and use that
along with another variable and an event field to generate a
wakeup_latency synthetic event:

# echo 'hist:keys=next_pid:wakeup_lat=common_timestamp.usecs-$ts0:\
        onmatch(sched.sched_waking).wakeup_latency($wakeup_lat,\
                $saved_pid,next_prio) if next_comm=="cyclictest"' >> \
        /sys/kernel/debug/tracing/events/sched/sched_switch/trigger





We also need to create a histogram on the wakeup_latency synthetic
event in order to aggregate the generated synthetic event data:

# echo 'hist:keys=pid,prio,lat:sort=pid,lat' >> \
        /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/trigger





Finally, once we’ve run cyclictest to actually generate some
events, we can see the output by looking at the wakeup_latency
synthetic event’s hist file:

# cat /sys/kernel/debug/tracing/events/synthetic/wakeup_latency/hist







	onmax(var).save(field,..    .)

The ‘onmax(var).save(field,...)’ hist trigger action is invoked
whenever the value of ‘var’ associated with a histogram entry
exceeds the current maximum contained in that variable.

The end result is that the trace event fields specified as the
onmax.save() params will be saved if ‘var’ exceeds the current
maximum for that hist trigger entry.  This allows context from the
event that exhibited the new maximum to be saved for later
reference.  When the histogram is displayed, additional fields
displaying the saved values will be printed.

As an example the below defines a couple of hist triggers, one for
sched_waking and another for sched_switch, keyed on pid.  Whenever
a sched_waking occurs, the timestamp is saved in the entry
corresponding to the current pid, and when the scheduler switches
back to that pid, the timestamp difference is calculated.  If the
resulting latency, stored in wakeup_lat, exceeds the current
maximum latency, the values specified in the save() fields are
recorded:

# echo 'hist:keys=pid:ts0=common_timestamp.usecs \
        if comm=="cyclictest"' >> \
        /sys/kernel/debug/tracing/events/sched/sched_waking/trigger

# echo 'hist:keys=next_pid:\
        wakeup_lat=common_timestamp.usecs-$ts0:\
        onmax($wakeup_lat).save(next_comm,prev_pid,prev_prio,prev_comm) \
        if next_comm=="cyclictest"' >> \
        /sys/kernel/debug/tracing/events/sched/sched_switch/trigger





When the histogram is displayed, the max value and the saved
values corresponding to the max are displayed following the rest
of the fields:

# cat /sys/kernel/debug/tracing/events/sched/sched_switch/hist
  { next_pid:       2255 } hitcount:        239
    common_timestamp-ts0:          0
    max:         27
    next_comm: cyclictest
    prev_pid:          0  prev_prio:        120  prev_comm: swapper/1

  { next_pid:       2256 } hitcount:       2355
    common_timestamp-ts0: 0
    max:         49  next_comm: cyclictest
    prev_pid:          0  prev_prio:        120  prev_comm: swapper/0

  Totals:
      Hits: 12970
      Entries: 2
      Dropped: 0















3. User space creating a trigger

Writing into /sys/kernel/tracing/trace_marker writes into the ftrace
ring buffer. This can also act like an event, by writing into the trigger
file located in /sys/kernel/tracing/events/ftrace/print/

Modifying cyclictest to write into the trace_marker file before it sleeps
and after it wakes up, something like this:

static void traceputs(char *str)
{
      /* tracemark_fd is the trace_marker file descriptor */
      if (tracemark_fd < 0)
              return;
      /* write the tracemark message */
      write(tracemark_fd, str, strlen(str));
}





And later add something like:

traceputs("start");
clock_nanosleep(...);
traceputs("end");





We can make a histogram from this:

# cd /sys/kernel/tracing
# echo 'latency u64 lat' > synthetic_events
# echo 'hist:keys=common_pid:ts0=common_timestamp.usecs if buf == "start"' > events/ftrace/print/trigger
# echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$ts0:onmatch(ftrace.print).latency($lat) if buf == "end"' >> events/ftrace/print/trigger
# echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/trigger





The above created a synthetic event called “latency” and two histograms
against the trace_marker, one gets triggered when “start” is written into the
trace_marker file and the other when “end” is written. If the pids match, then
it will call the “latency” synthetic event with the calculated latency as its
parameter. Finally, a histogram is added to the latency synthetic event to
record the calculated latency along with the pid.

Now running cyclictest with:

# ./cyclictest -p80 -d0 -i250 -n -a -t --tracemark -b 1000

-p80  : run threads at priority 80
-d0   : have all threads run at the same interval
-i250 : start the interval at 250 microseconds (all threads will do this)
-n    : sleep with nanosleep
-a    : affine all threads to a separate CPU
-t    : one thread per available CPU
--tracemark : enable trace mark writing
-b 1000 : stop if any latency is greater than 1000 microseconds





Note, the -b 1000 is used just to make –tracemark available.

Then we can see the histogram created by this with:

# cat events/synthetic/latency/hist
# event histogram
#
# trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048 [active]
#

{ lat:        107, common_pid:       2039 } hitcount:          1
{ lat:        122, common_pid:       2041 } hitcount:          1
{ lat:        166, common_pid:       2039 } hitcount:          1
{ lat:        174, common_pid:       2039 } hitcount:          1
{ lat:        194, common_pid:       2041 } hitcount:          1
{ lat:        196, common_pid:       2036 } hitcount:          1
{ lat:        197, common_pid:       2038 } hitcount:          1
{ lat:        198, common_pid:       2039 } hitcount:          1
{ lat:        199, common_pid:       2039 } hitcount:          1
{ lat:        200, common_pid:       2041 } hitcount:          1
{ lat:        201, common_pid:       2039 } hitcount:          2
{ lat:        202, common_pid:       2038 } hitcount:          1
{ lat:        202, common_pid:       2043 } hitcount:          1
{ lat:        203, common_pid:       2039 } hitcount:          1
{ lat:        203, common_pid:       2036 } hitcount:          1
{ lat:        203, common_pid:       2041 } hitcount:          1
{ lat:        206, common_pid:       2038 } hitcount:          2
{ lat:        207, common_pid:       2039 } hitcount:          1
{ lat:        207, common_pid:       2036 } hitcount:          1
{ lat:        208, common_pid:       2040 } hitcount:          1
{ lat:        209, common_pid:       2043 } hitcount:          1
{ lat:        210, common_pid:       2039 } hitcount:          1
{ lat:        211, common_pid:       2039 } hitcount:          4
{ lat:        212, common_pid:       2043 } hitcount:          1
{ lat:        212, common_pid:       2039 } hitcount:          2
{ lat:        213, common_pid:       2039 } hitcount:          1
{ lat:        214, common_pid:       2038 } hitcount:          1
{ lat:        214, common_pid:       2039 } hitcount:          2
{ lat:        214, common_pid:       2042 } hitcount:          1
{ lat:        215, common_pid:       2039 } hitcount:          1
{ lat:        217, common_pid:       2036 } hitcount:          1
{ lat:        217, common_pid:       2040 } hitcount:          1
{ lat:        217, common_pid:       2039 } hitcount:          1
{ lat:        218, common_pid:       2039 } hitcount:          6
{ lat:        219, common_pid:       2039 } hitcount:          9
{ lat:        220, common_pid:       2039 } hitcount:         11
{ lat:        221, common_pid:       2039 } hitcount:          5
{ lat:        221, common_pid:       2042 } hitcount:          1
{ lat:        222, common_pid:       2039 } hitcount:          7
{ lat:        223, common_pid:       2036 } hitcount:          1
{ lat:        223, common_pid:       2039 } hitcount:          3
{ lat:        224, common_pid:       2039 } hitcount:          4
{ lat:        224, common_pid:       2037 } hitcount:          1
{ lat:        224, common_pid:       2036 } hitcount:          2
{ lat:        225, common_pid:       2039 } hitcount:          5
{ lat:        225, common_pid:       2042 } hitcount:          1
{ lat:        226, common_pid:       2039 } hitcount:          7
{ lat:        226, common_pid:       2036 } hitcount:          4
{ lat:        227, common_pid:       2039 } hitcount:          6
{ lat:        227, common_pid:       2036 } hitcount:         12
{ lat:        227, common_pid:       2043 } hitcount:          1
{ lat:        228, common_pid:       2039 } hitcount:          7
{ lat:        228, common_pid:       2036 } hitcount:         14
{ lat:        229, common_pid:       2039 } hitcount:          9
{ lat:        229, common_pid:       2036 } hitcount:          8
{ lat:        229, common_pid:       2038 } hitcount:          1
{ lat:        230, common_pid:       2039 } hitcount:         11
{ lat:        230, common_pid:       2036 } hitcount:          6
{ lat:        230, common_pid:       2043 } hitcount:          1
{ lat:        230, common_pid:       2042 } hitcount:          2
{ lat:        231, common_pid:       2041 } hitcount:          1
{ lat:        231, common_pid:       2036 } hitcount:          6
{ lat:        231, common_pid:       2043 } hitcount:          1
{ lat:        231, common_pid:       2039 } hitcount:          8
{ lat:        232, common_pid:       2037 } hitcount:          1
{ lat:        232, common_pid:       2039 } hitcount:          6
{ lat:        232, common_pid:       2040 } hitcount:          2
{ lat:        232, common_pid:       2036 } hitcount:          5
{ lat:        232, common_pid:       2043 } hitcount:          1
{ lat:        233, common_pid:       2036 } hitcount:          5
{ lat:        233, common_pid:       2039 } hitcount:         11
{ lat:        234, common_pid:       2039 } hitcount:          4
{ lat:        234, common_pid:       2038 } hitcount:          2
{ lat:        234, common_pid:       2043 } hitcount:          2
{ lat:        234, common_pid:       2036 } hitcount:         11
{ lat:        234, common_pid:       2040 } hitcount:          1
{ lat:        235, common_pid:       2037 } hitcount:          2
{ lat:        235, common_pid:       2036 } hitcount:          8
{ lat:        235, common_pid:       2043 } hitcount:          2
{ lat:        235, common_pid:       2039 } hitcount:          5
{ lat:        235, common_pid:       2042 } hitcount:          2
{ lat:        235, common_pid:       2040 } hitcount:          4
{ lat:        235, common_pid:       2041 } hitcount:          1
{ lat:        236, common_pid:       2036 } hitcount:          7
{ lat:        236, common_pid:       2037 } hitcount:          1
{ lat:        236, common_pid:       2041 } hitcount:          5
{ lat:        236, common_pid:       2039 } hitcount:          3
{ lat:        236, common_pid:       2043 } hitcount:          9
{ lat:        236, common_pid:       2040 } hitcount:          7
{ lat:        237, common_pid:       2037 } hitcount:          1
{ lat:        237, common_pid:       2040 } hitcount:          1
{ lat:        237, common_pid:       2036 } hitcount:          9
{ lat:        237, common_pid:       2039 } hitcount:          3
{ lat:        237, common_pid:       2043 } hitcount:          8
{ lat:        237, common_pid:       2042 } hitcount:          2
{ lat:        237, common_pid:       2041 } hitcount:          2
{ lat:        238, common_pid:       2043 } hitcount:         10
{ lat:        238, common_pid:       2040 } hitcount:          1
{ lat:        238, common_pid:       2037 } hitcount:          9
{ lat:        238, common_pid:       2038 } hitcount:          1
{ lat:        238, common_pid:       2039 } hitcount:          1
{ lat:        238, common_pid:       2042 } hitcount:          3
{ lat:        238, common_pid:       2036 } hitcount:          7
{ lat:        239, common_pid:       2041 } hitcount:          1
{ lat:        239, common_pid:       2043 } hitcount:         11
{ lat:        239, common_pid:       2037 } hitcount:         11
{ lat:        239, common_pid:       2038 } hitcount:          6
{ lat:        239, common_pid:       2036 } hitcount:          7
{ lat:        239, common_pid:       2040 } hitcount:          1
{ lat:        239, common_pid:       2042 } hitcount:          9
{ lat:        240, common_pid:       2037 } hitcount:         29
{ lat:        240, common_pid:       2043 } hitcount:         15
{ lat:        240, common_pid:       2040 } hitcount:         44
{ lat:        240, common_pid:       2039 } hitcount:          1
{ lat:        240, common_pid:       2041 } hitcount:          2
{ lat:        240, common_pid:       2038 } hitcount:          1
{ lat:        240, common_pid:       2036 } hitcount:         10
{ lat:        240, common_pid:       2042 } hitcount:         13
{ lat:        241, common_pid:       2036 } hitcount:         21
{ lat:        241, common_pid:       2041 } hitcount:         36
{ lat:        241, common_pid:       2037 } hitcount:         34
{ lat:        241, common_pid:       2042 } hitcount:         14
{ lat:        241, common_pid:       2040 } hitcount:         94
{ lat:        241, common_pid:       2039 } hitcount:         12
{ lat:        241, common_pid:       2038 } hitcount:          2
{ lat:        241, common_pid:       2043 } hitcount:         28
{ lat:        242, common_pid:       2040 } hitcount:        109
{ lat:        242, common_pid:       2041 } hitcount:        506
{ lat:        242, common_pid:       2039 } hitcount:        155
{ lat:        242, common_pid:       2042 } hitcount:         21
{ lat:        242, common_pid:       2037 } hitcount:         52
{ lat:        242, common_pid:       2043 } hitcount:         21
{ lat:        242, common_pid:       2036 } hitcount:         16
{ lat:        242, common_pid:       2038 } hitcount:        156
{ lat:        243, common_pid:       2037 } hitcount:         46
{ lat:        243, common_pid:       2039 } hitcount:         40
{ lat:        243, common_pid:       2042 } hitcount:        119
{ lat:        243, common_pid:       2041 } hitcount:        611
{ lat:        243, common_pid:       2036 } hitcount:         69
{ lat:        243, common_pid:       2038 } hitcount:        784
{ lat:        243, common_pid:       2040 } hitcount:        323
{ lat:        243, common_pid:       2043 } hitcount:         14
{ lat:        244, common_pid:       2043 } hitcount:         35
{ lat:        244, common_pid:       2042 } hitcount:        305
{ lat:        244, common_pid:       2039 } hitcount:          8
{ lat:        244, common_pid:       2040 } hitcount:       4515
{ lat:        244, common_pid:       2038 } hitcount:        371
{ lat:        244, common_pid:       2037 } hitcount:         31
{ lat:        244, common_pid:       2036 } hitcount:        114
{ lat:        244, common_pid:       2041 } hitcount:       3396
{ lat:        245, common_pid:       2036 } hitcount:        700
{ lat:        245, common_pid:       2041 } hitcount:       2772
{ lat:        245, common_pid:       2037 } hitcount:        268
{ lat:        245, common_pid:       2039 } hitcount:        472
{ lat:        245, common_pid:       2038 } hitcount:       2758
{ lat:        245, common_pid:       2042 } hitcount:       3833
{ lat:        245, common_pid:       2040 } hitcount:       3105
{ lat:        245, common_pid:       2043 } hitcount:        645
{ lat:        246, common_pid:       2038 } hitcount:       3451
{ lat:        246, common_pid:       2041 } hitcount:        142
{ lat:        246, common_pid:       2037 } hitcount:       5101
{ lat:        246, common_pid:       2040 } hitcount:         68
{ lat:        246, common_pid:       2043 } hitcount:       5099
{ lat:        246, common_pid:       2039 } hitcount:       5608
{ lat:        246, common_pid:       2042 } hitcount:       3723
{ lat:        246, common_pid:       2036 } hitcount:       4738
{ lat:        247, common_pid:       2042 } hitcount:        312
{ lat:        247, common_pid:       2043 } hitcount:       2385
{ lat:        247, common_pid:       2041 } hitcount:        452
{ lat:        247, common_pid:       2038 } hitcount:        792
{ lat:        247, common_pid:       2040 } hitcount:         78
{ lat:        247, common_pid:       2036 } hitcount:       2375
{ lat:        247, common_pid:       2039 } hitcount:       1834
{ lat:        247, common_pid:       2037 } hitcount:       2655
{ lat:        248, common_pid:       2037 } hitcount:         36
{ lat:        248, common_pid:       2042 } hitcount:         11
{ lat:        248, common_pid:       2038 } hitcount:        122
{ lat:        248, common_pid:       2036 } hitcount:        135
{ lat:        248, common_pid:       2039 } hitcount:         26
{ lat:        248, common_pid:       2041 } hitcount:        503
{ lat:        248, common_pid:       2043 } hitcount:         66
{ lat:        248, common_pid:       2040 } hitcount:         46
{ lat:        249, common_pid:       2037 } hitcount:         29
{ lat:        249, common_pid:       2038 } hitcount:          1
{ lat:        249, common_pid:       2043 } hitcount:         29
{ lat:        249, common_pid:       2039 } hitcount:          8
{ lat:        249, common_pid:       2042 } hitcount:         56
{ lat:        249, common_pid:       2040 } hitcount:         27
{ lat:        249, common_pid:       2041 } hitcount:         11
{ lat:        249, common_pid:       2036 } hitcount:         27
{ lat:        250, common_pid:       2038 } hitcount:          1
{ lat:        250, common_pid:       2036 } hitcount:         30
{ lat:        250, common_pid:       2040 } hitcount:         19
{ lat:        250, common_pid:       2043 } hitcount:         22
{ lat:        250, common_pid:       2042 } hitcount:         20
{ lat:        250, common_pid:       2041 } hitcount:          1
{ lat:        250, common_pid:       2039 } hitcount:          6
{ lat:        250, common_pid:       2037 } hitcount:         48
{ lat:        251, common_pid:       2037 } hitcount:         43
{ lat:        251, common_pid:       2039 } hitcount:          1
{ lat:        251, common_pid:       2036 } hitcount:         12
{ lat:        251, common_pid:       2042 } hitcount:          2
{ lat:        251, common_pid:       2041 } hitcount:          1
{ lat:        251, common_pid:       2043 } hitcount:         15
{ lat:        251, common_pid:       2040 } hitcount:          3
{ lat:        252, common_pid:       2040 } hitcount:          1
{ lat:        252, common_pid:       2036 } hitcount:         12
{ lat:        252, common_pid:       2037 } hitcount:         21
{ lat:        252, common_pid:       2043 } hitcount:         14
{ lat:        253, common_pid:       2037 } hitcount:         21
{ lat:        253, common_pid:       2039 } hitcount:          2
{ lat:        253, common_pid:       2036 } hitcount:          9
{ lat:        253, common_pid:       2043 } hitcount:          6
{ lat:        253, common_pid:       2040 } hitcount:          1
{ lat:        254, common_pid:       2036 } hitcount:          8
{ lat:        254, common_pid:       2043 } hitcount:          3
{ lat:        254, common_pid:       2041 } hitcount:          1
{ lat:        254, common_pid:       2042 } hitcount:          1
{ lat:        254, common_pid:       2039 } hitcount:          1
{ lat:        254, common_pid:       2037 } hitcount:         12
{ lat:        255, common_pid:       2043 } hitcount:          1
{ lat:        255, common_pid:       2037 } hitcount:          2
{ lat:        255, common_pid:       2036 } hitcount:          2
{ lat:        255, common_pid:       2039 } hitcount:          8
{ lat:        256, common_pid:       2043 } hitcount:          1
{ lat:        256, common_pid:       2036 } hitcount:          4
{ lat:        256, common_pid:       2039 } hitcount:          6
{ lat:        257, common_pid:       2039 } hitcount:          5
{ lat:        257, common_pid:       2036 } hitcount:          4
{ lat:        258, common_pid:       2039 } hitcount:          5
{ lat:        258, common_pid:       2036 } hitcount:          2
{ lat:        259, common_pid:       2036 } hitcount:          7
{ lat:        259, common_pid:       2039 } hitcount:          7
{ lat:        260, common_pid:       2036 } hitcount:          8
{ lat:        260, common_pid:       2039 } hitcount:          6
{ lat:        261, common_pid:       2036 } hitcount:          5
{ lat:        261, common_pid:       2039 } hitcount:          7
{ lat:        262, common_pid:       2039 } hitcount:          5
{ lat:        262, common_pid:       2036 } hitcount:          5
{ lat:        263, common_pid:       2039 } hitcount:          7
{ lat:        263, common_pid:       2036 } hitcount:          7
{ lat:        264, common_pid:       2039 } hitcount:          9
{ lat:        264, common_pid:       2036 } hitcount:          9
{ lat:        265, common_pid:       2036 } hitcount:          5
{ lat:        265, common_pid:       2039 } hitcount:          1
{ lat:        266, common_pid:       2036 } hitcount:          1
{ lat:        266, common_pid:       2039 } hitcount:          3
{ lat:        267, common_pid:       2036 } hitcount:          1
{ lat:        267, common_pid:       2039 } hitcount:          3
{ lat:        268, common_pid:       2036 } hitcount:          1
{ lat:        268, common_pid:       2039 } hitcount:          6
{ lat:        269, common_pid:       2036 } hitcount:          1
{ lat:        269, common_pid:       2043 } hitcount:          1
{ lat:        269, common_pid:       2039 } hitcount:          2
{ lat:        270, common_pid:       2040 } hitcount:          1
{ lat:        270, common_pid:       2039 } hitcount:          6
{ lat:        271, common_pid:       2041 } hitcount:          1
{ lat:        271, common_pid:       2039 } hitcount:          5
{ lat:        272, common_pid:       2039 } hitcount:         10
{ lat:        273, common_pid:       2039 } hitcount:          8
{ lat:        274, common_pid:       2039 } hitcount:          2
{ lat:        275, common_pid:       2039 } hitcount:          1
{ lat:        276, common_pid:       2039 } hitcount:          2
{ lat:        276, common_pid:       2037 } hitcount:          1
{ lat:        276, common_pid:       2038 } hitcount:          1
{ lat:        277, common_pid:       2039 } hitcount:          1
{ lat:        277, common_pid:       2042 } hitcount:          1
{ lat:        278, common_pid:       2039 } hitcount:          1
{ lat:        279, common_pid:       2039 } hitcount:          4
{ lat:        279, common_pid:       2043 } hitcount:          1
{ lat:        280, common_pid:       2039 } hitcount:          3
{ lat:        283, common_pid:       2036 } hitcount:          2
{ lat:        284, common_pid:       2039 } hitcount:          1
{ lat:        284, common_pid:       2043 } hitcount:          1
{ lat:        288, common_pid:       2039 } hitcount:          1
{ lat:        289, common_pid:       2039 } hitcount:          1
{ lat:        300, common_pid:       2039 } hitcount:          1
{ lat:        384, common_pid:       2039 } hitcount:          1

Totals:
    Hits: 67625
    Entries: 278
    Dropped: 0





Note, the writes are around the sleep, so ideally they will all be of 250
microseconds. If you are wondering how there are several that are under
250 microseconds, that is because the way cyclictest works, is if one
iteration comes in late, the next one will set the timer to wake up less that
250. That is, if an iteration came in 50 microseconds late, the next wake up
will be at 200 microseconds.

But this could easily be done in userspace. To make this even more
interesting, we can mix the histogram between events that happened in the
kernel with trace_marker:

# cd /sys/kernel/tracing
# echo 'latency u64 lat' > synthetic_events
# echo 'hist:keys=pid:ts0=common_timestamp.usecs' > events/sched/sched_waking/trigger
# echo 'hist:keys=common_pid:lat=common_timestamp.usecs-$ts0:onmatch(sched.sched_waking).latency($lat) if buf == "end"' > events/ftrace/print/trigger
# echo 'hist:keys=lat,common_pid:sort=lat' > events/synthetic/latency/trigger





The difference this time is that instead of using the trace_marker to start
the latency, the sched_waking event is used, matching the common_pid for the
trace_marker write with the pid that is being woken by sched_waking.

After running cyclictest again with the same parameters, we now have:

# cat events/synthetic/latency/hist
# event histogram
#
# trigger info: hist:keys=lat,common_pid:vals=hitcount:sort=lat:size=2048 [active]
#

{ lat:          7, common_pid:       2302 } hitcount:        640
{ lat:          7, common_pid:       2299 } hitcount:         42
{ lat:          7, common_pid:       2303 } hitcount:         18
{ lat:          7, common_pid:       2305 } hitcount:        166
{ lat:          7, common_pid:       2306 } hitcount:          1
{ lat:          7, common_pid:       2301 } hitcount:         91
{ lat:          7, common_pid:       2300 } hitcount:         17
{ lat:          8, common_pid:       2303 } hitcount:       8296
{ lat:          8, common_pid:       2304 } hitcount:       6864
{ lat:          8, common_pid:       2305 } hitcount:       9464
{ lat:          8, common_pid:       2301 } hitcount:       9213
{ lat:          8, common_pid:       2306 } hitcount:       6246
{ lat:          8, common_pid:       2302 } hitcount:       8797
{ lat:          8, common_pid:       2299 } hitcount:       8771
{ lat:          8, common_pid:       2300 } hitcount:       8119
{ lat:          9, common_pid:       2305 } hitcount:       1519
{ lat:          9, common_pid:       2299 } hitcount:       2346
{ lat:          9, common_pid:       2303 } hitcount:       2841
{ lat:          9, common_pid:       2301 } hitcount:       1846
{ lat:          9, common_pid:       2304 } hitcount:       3861
{ lat:          9, common_pid:       2302 } hitcount:       1210
{ lat:          9, common_pid:       2300 } hitcount:       2762
{ lat:          9, common_pid:       2306 } hitcount:       4247
{ lat:         10, common_pid:       2299 } hitcount:         16
{ lat:         10, common_pid:       2306 } hitcount:        333
{ lat:         10, common_pid:       2303 } hitcount:         16
{ lat:         10, common_pid:       2304 } hitcount:        168
{ lat:         10, common_pid:       2302 } hitcount:        240
{ lat:         10, common_pid:       2301 } hitcount:         28
{ lat:         10, common_pid:       2300 } hitcount:         95
{ lat:         10, common_pid:       2305 } hitcount:         18
{ lat:         11, common_pid:       2303 } hitcount:          5
{ lat:         11, common_pid:       2305 } hitcount:          8
{ lat:         11, common_pid:       2306 } hitcount:        221
{ lat:         11, common_pid:       2302 } hitcount:         76
{ lat:         11, common_pid:       2304 } hitcount:         26
{ lat:         11, common_pid:       2300 } hitcount:        125
{ lat:         11, common_pid:       2299 } hitcount:          2
{ lat:         12, common_pid:       2305 } hitcount:          3
{ lat:         12, common_pid:       2300 } hitcount:          6
{ lat:         12, common_pid:       2306 } hitcount:         90
{ lat:         12, common_pid:       2302 } hitcount:          4
{ lat:         12, common_pid:       2303 } hitcount:          1
{ lat:         12, common_pid:       2304 } hitcount:        122
{ lat:         13, common_pid:       2300 } hitcount:         12
{ lat:         13, common_pid:       2301 } hitcount:          1
{ lat:         13, common_pid:       2306 } hitcount:         32
{ lat:         13, common_pid:       2302 } hitcount:          5
{ lat:         13, common_pid:       2305 } hitcount:          1
{ lat:         13, common_pid:       2303 } hitcount:          1
{ lat:         13, common_pid:       2304 } hitcount:         61
{ lat:         14, common_pid:       2303 } hitcount:          4
{ lat:         14, common_pid:       2306 } hitcount:          5
{ lat:         14, common_pid:       2305 } hitcount:          4
{ lat:         14, common_pid:       2304 } hitcount:         62
{ lat:         14, common_pid:       2302 } hitcount:         19
{ lat:         14, common_pid:       2300 } hitcount:         33
{ lat:         14, common_pid:       2299 } hitcount:          1
{ lat:         14, common_pid:       2301 } hitcount:          4
{ lat:         15, common_pid:       2305 } hitcount:          1
{ lat:         15, common_pid:       2302 } hitcount:         25
{ lat:         15, common_pid:       2300 } hitcount:         11
{ lat:         15, common_pid:       2299 } hitcount:          5
{ lat:         15, common_pid:       2301 } hitcount:          1
{ lat:         15, common_pid:       2304 } hitcount:          8
{ lat:         15, common_pid:       2303 } hitcount:          1
{ lat:         15, common_pid:       2306 } hitcount:          6
{ lat:         16, common_pid:       2302 } hitcount:         31
{ lat:         16, common_pid:       2306 } hitcount:          3
{ lat:         16, common_pid:       2300 } hitcount:          5
{ lat:         17, common_pid:       2302 } hitcount:          6
{ lat:         17, common_pid:       2303 } hitcount:          1
{ lat:         18, common_pid:       2304 } hitcount:          1
{ lat:         18, common_pid:       2302 } hitcount:          8
{ lat:         18, common_pid:       2299 } hitcount:          1
{ lat:         18, common_pid:       2301 } hitcount:          1
{ lat:         19, common_pid:       2303 } hitcount:          4
{ lat:         19, common_pid:       2304 } hitcount:          5
{ lat:         19, common_pid:       2302 } hitcount:          4
{ lat:         19, common_pid:       2299 } hitcount:          3
{ lat:         19, common_pid:       2306 } hitcount:          1
{ lat:         19, common_pid:       2300 } hitcount:          4
{ lat:         19, common_pid:       2305 } hitcount:          5
{ lat:         20, common_pid:       2299 } hitcount:          2
{ lat:         20, common_pid:       2302 } hitcount:          3
{ lat:         20, common_pid:       2305 } hitcount:          1
{ lat:         20, common_pid:       2300 } hitcount:          2
{ lat:         20, common_pid:       2301 } hitcount:          2
{ lat:         20, common_pid:       2303 } hitcount:          3
{ lat:         21, common_pid:       2305 } hitcount:          1
{ lat:         21, common_pid:       2299 } hitcount:          5
{ lat:         21, common_pid:       2303 } hitcount:          4
{ lat:         21, common_pid:       2302 } hitcount:          7
{ lat:         21, common_pid:       2300 } hitcount:          1
{ lat:         21, common_pid:       2301 } hitcount:          5
{ lat:         21, common_pid:       2304 } hitcount:          2
{ lat:         22, common_pid:       2302 } hitcount:          5
{ lat:         22, common_pid:       2303 } hitcount:          1
{ lat:         22, common_pid:       2306 } hitcount:          3
{ lat:         22, common_pid:       2301 } hitcount:          2
{ lat:         22, common_pid:       2300 } hitcount:          1
{ lat:         22, common_pid:       2299 } hitcount:          1
{ lat:         22, common_pid:       2305 } hitcount:          1
{ lat:         22, common_pid:       2304 } hitcount:          1
{ lat:         23, common_pid:       2299 } hitcount:          1
{ lat:         23, common_pid:       2306 } hitcount:          2
{ lat:         23, common_pid:       2302 } hitcount:          6
{ lat:         24, common_pid:       2302 } hitcount:          3
{ lat:         24, common_pid:       2300 } hitcount:          1
{ lat:         24, common_pid:       2306 } hitcount:          2
{ lat:         24, common_pid:       2305 } hitcount:          1
{ lat:         24, common_pid:       2299 } hitcount:          1
{ lat:         25, common_pid:       2300 } hitcount:          1
{ lat:         25, common_pid:       2302 } hitcount:          4
{ lat:         26, common_pid:       2302 } hitcount:          2
{ lat:         27, common_pid:       2305 } hitcount:          1
{ lat:         27, common_pid:       2300 } hitcount:          1
{ lat:         27, common_pid:       2302 } hitcount:          3
{ lat:         28, common_pid:       2306 } hitcount:          1
{ lat:         28, common_pid:       2302 } hitcount:          4
{ lat:         29, common_pid:       2302 } hitcount:          1
{ lat:         29, common_pid:       2300 } hitcount:          2
{ lat:         29, common_pid:       2306 } hitcount:          1
{ lat:         29, common_pid:       2304 } hitcount:          1
{ lat:         30, common_pid:       2302 } hitcount:          4
{ lat:         31, common_pid:       2302 } hitcount:          6
{ lat:         32, common_pid:       2302 } hitcount:          1
{ lat:         33, common_pid:       2299 } hitcount:          1
{ lat:         33, common_pid:       2302 } hitcount:          3
{ lat:         34, common_pid:       2302 } hitcount:          2
{ lat:         35, common_pid:       2302 } hitcount:          1
{ lat:         35, common_pid:       2304 } hitcount:          1
{ lat:         36, common_pid:       2302 } hitcount:          4
{ lat:         37, common_pid:       2302 } hitcount:          6
{ lat:         38, common_pid:       2302 } hitcount:          2
{ lat:         39, common_pid:       2302 } hitcount:          2
{ lat:         39, common_pid:       2304 } hitcount:          1
{ lat:         40, common_pid:       2304 } hitcount:          2
{ lat:         40, common_pid:       2302 } hitcount:          5
{ lat:         41, common_pid:       2304 } hitcount:          1
{ lat:         41, common_pid:       2302 } hitcount:          8
{ lat:         42, common_pid:       2302 } hitcount:          6
{ lat:         42, common_pid:       2304 } hitcount:          1
{ lat:         43, common_pid:       2302 } hitcount:          3
{ lat:         43, common_pid:       2304 } hitcount:          4
{ lat:         44, common_pid:       2302 } hitcount:          6
{ lat:         45, common_pid:       2302 } hitcount:          5
{ lat:         46, common_pid:       2302 } hitcount:          5
{ lat:         47, common_pid:       2302 } hitcount:          7
{ lat:         48, common_pid:       2301 } hitcount:          1
{ lat:         48, common_pid:       2302 } hitcount:          9
{ lat:         49, common_pid:       2302 } hitcount:          3
{ lat:         50, common_pid:       2302 } hitcount:          1
{ lat:         50, common_pid:       2301 } hitcount:          1
{ lat:         51, common_pid:       2302 } hitcount:          2
{ lat:         51, common_pid:       2301 } hitcount:          1
{ lat:         61, common_pid:       2302 } hitcount:          1
{ lat:        110, common_pid:       2302 } hitcount:          1

Totals:
    Hits: 89565
    Entries: 158
    Dropped: 0





This doesn’t tell us any information about how late cyclictest may have
woken up, but it does show us a nice histogram of how long it took from
the time that cyclictest was woken to the time it made it into user space.









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Hardware Latency Detector
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Hardware Latency Detector


Introduction

The tracer hwlat_detector is a special purpose tracer that is used to
detect large system latencies induced by the behavior of certain underlying
hardware or firmware, independent of Linux itself. The code was developed
originally to detect SMIs (System Management Interrupts) on x86 systems,
however there is nothing x86 specific about this patchset. It was
originally written for use by the “RT” patch since the Real Time
kernel is highly latency sensitive.

SMIs are not serviced by the Linux kernel, which means that it does not
even know that they are occuring. SMIs are instead set up by BIOS code
and are serviced by BIOS code, usually for “critical” events such as
management of thermal sensors and fans. Sometimes though, SMIs are used for
other tasks and those tasks can spend an inordinate amount of time in the
handler (sometimes measured in milliseconds). Obviously this is a problem if
you are trying to keep event service latencies down in the microsecond range.

The hardware latency detector works by hogging one of the cpus for configurable
amounts of time (with interrupts disabled), polling the CPU Time Stamp Counter
for some period, then looking for gaps in the TSC data. Any gap indicates a
time when the polling was interrupted and since the interrupts are disabled,
the only thing that could do that would be an SMI or other hardware hiccup
(or an NMI, but those can be tracked).

Note that the hwlat detector should NEVER be used in a production environment.
It is intended to be run manually to determine if the hardware platform has a
problem with long system firmware service routines.




Usage

Write the ASCII text “hwlat” into the current_tracer file of the tracing system
(mounted at /sys/kernel/tracing or /sys/kernel/tracing). It is possible to
redefine the threshold in microseconds (us) above which latency spikes will
be taken into account.

Example:

# echo hwlat > /sys/kernel/tracing/current_tracer
# echo 100 > /sys/kernel/tracing/tracing_thresh





The /sys/kernel/tracing/hwlat_detector interface contains the following files:



	
	width - time period to sample with CPUs held (usecs)

	must be less than the total window size (enforced)







	window - total period of sampling, width being inside (usecs)








By default the width is set to 500,000 and window to 1,000,000, meaning that
for every 1,000,000 usecs (1s) the hwlat detector will spin for 500,000 usecs
(0.5s). If tracing_thresh contains zero when hwlat tracer is enabled, it will
change to a default of 10 usecs. If any latencies that exceed the threshold is
observed then the data will be written to the tracing ring buffer.

The minimum sleep time between periods is 1 millisecond. Even if width
is less than 1 millisecond apart from window, to allow the system to not
be totally starved.

If tracing_thresh was zero when hwlat detector was started, it will be set
back to zero if another tracer is loaded. Note, the last value in
tracing_thresh that hwlat detector had will be saved and this value will
be restored in tracing_thresh if it is still zero when hwlat detector is
started again.

The following tracing directory files are used by the hwlat_detector:

in /sys/kernel/tracing:



	tracing_threshold    - minimum latency value to be considered (usecs)

	tracing_max_latency  - maximum hardware latency actually observed (usecs)

	tracing_cpumask      - the CPUs to move the hwlat thread across

	hwlat_detector/width - specified amount of time to spin within window (usecs)

	hwlat_detector/window        - amount of time between (width) runs (usecs)






The hwlat detector’s kernel thread will migrate across each CPU specified in
tracing_cpumask between each window. To limit the migration, either modify
tracing_cpumask, or modify the hwlat kernel thread (named [hwlatd]) CPU
affinity directly, and the migration will stop.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Intel(R) Trace Hub (TH)
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
Intel(R) Trace Hub (TH)


Overview

Intel(R) Trace Hub (TH) is a set of hardware blocks that produce,
switch and output trace data from multiple hardware and software
sources over several types of trace output ports encoded in System
Trace Protocol (MIPI STPv2) and is intended to perform full system
debugging. For more information on the hardware, see Intel(R) Trace
Hub developer’s manual [1].

It consists of trace sources, trace destinations (outputs) and a
switch (Global Trace Hub, GTH). These devices are placed on a bus of
their own (“intel_th”), where they can be discovered and configured
via sysfs attributes.


	Currently, the following Intel TH subdevices (blocks) are supported:

	
	Software Trace Hub (STH), trace source, which is a System Trace
Module (STM) device,

	Memory Storage Unit (MSU), trace output, which allows storing
trace hub output in system memory,

	Parallel Trace Interface output (PTI), trace output to an external
debug host via a PTI port,

	Global Trace Hub (GTH), which is a switch and a central component
of Intel(R) Trace Hub architecture.







Common attributes for output devices are described in
Documentation/ABI/testing/sysfs-bus-intel_th-output-devices, the most
notable of them is “active”, which enables or disables trace output
into that particular output device.

GTH allows directing different STP masters into different output ports
via its “masters” attribute group. More detailed GTH interface
description is at Documentation/ABI/testing/sysfs-bus-intel_th-devices-gth.

STH registers an stm class device, through which it provides interface
to userspace and kernelspace software trace sources. See
Documentation/trace/stm.rst for more information on that.

MSU can be configured to collect trace data into a system memory
buffer, which can later on be read from its device nodes via read() or
mmap() interface.

On the whole, Intel(R) Trace Hub does not require any special
userspace software to function; everything can be configured, started
and collected via sysfs attributes, and device nodes.

[1] https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf




Bus and Subdevices

For each Intel TH device in the system a bus of its own is
created and assigned an id number that reflects the order in which TH
devices were emumerated. All TH subdevices (devices on intel_th bus)
begin with this id: 0-gth, 0-msc0, 0-msc1, 0-pti, 0-sth, which is
followed by device’s name and an optional index.

Output devices also get a device node in /dev/intel_thN, where N is
the Intel TH device id. For example, MSU’s memory buffers, when
allocated, are accessible via /dev/intel_th0/msc{0,1}.




Quick example

# figure out which GTH port is the first memory controller:

$ cat /sys/bus/intel_th/devices/0-msc0/port
0





# looks like it’s port 0, configure master 33 to send data to port 0:

$ echo 0 > /sys/bus/intel_th/devices/0-gth/masters/33





# allocate a 2-windowed multiblock buffer on the first memory
# controller, each with 64 pages:

$ echo multi > /sys/bus/intel_th/devices/0-msc0/mode
$ echo 64,64 > /sys/bus/intel_th/devices/0-msc0/nr_pages





# enable wrapping for this controller, too:

$ echo 1 > /sys/bus/intel_th/devices/0-msc0/wrap





# and enable tracing into this port:

$ echo 1 > /sys/bus/intel_th/devices/0-msc0/active





# .. send data to master 33, see stm.txt for more details ..
# .. wait for traces to pile up ..
# .. and stop the trace:

$ echo 0 > /sys/bus/intel_th/devices/0-msc0/active





# and now you can collect the trace from the device node:

$ cat /dev/intel_th0/msc0 > my_stp_trace








Host Debugger Mode

It is possible to configure the Trace Hub and control its trace
capture from a remote debug host, which should be connected via one of
the hardware debugging interfaces, which will then be used to both
control Intel Trace Hub and transfer its trace data to the debug host.

The driver needs to be told that such an arrangement is taking place
so that it does not touch any capture/port configuration and avoids
conflicting with the debug host’s configuration accesses. The only
activity that the driver will perform in this mode is collecting
software traces to the Software Trace Hub (an stm class device). The
user is still responsible for setting up adequate master/channel
mappings that the decoder on the receiving end would recognize.

In order to enable the host mode, set the ‘host_mode’ parameter of the
‘intel_th’ kernel module to ‘y’. None of the virtual output devices
will show up on the intel_th bus. Also, trace configuration and
capture controlling attribute groups of the ‘gth’ device will not be
exposed. The ‘sth’ device will operate as usual.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    System Trace Module
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Tracing Technologies »
 
      

    


    
      
          
            
  
System Trace Module

System Trace Module (STM) is a device described in MIPI STP specs as
STP trace stream generator. STP (System Trace Protocol) is a trace
protocol multiplexing data from multiple trace sources, each one of
which is assigned a unique pair of master and channel. While some of
these masters and channels are statically allocated to certain
hardware trace sources, others are available to software. Software
trace sources are usually free to pick for themselves any
master/channel combination from this pool.

On the receiving end of this STP stream (the decoder side), trace
sources can only be identified by master/channel combination, so in
order for the decoder to be able to make sense of the trace that
involves multiple trace sources, it needs to be able to map those
master/channel pairs to the trace sources that it understands.

For instance, it is helpful to know that syslog messages come on
master 7 channel 15, while arbitrary user applications can use masters
48 to 63 and channels 0 to 127.

To solve this mapping problem, stm class provides a policy management
mechanism via configfs, that allows defining rules that map string
identifiers to ranges of masters and channels. If these rules (policy)
are consistent with what decoder expects, it will be able to properly
process the trace data.

This policy is a tree structure containing rules (policy_node) that
have a name (string identifier) and a range of masters and channels
associated with it, located in “stp-policy” subsystem directory in
configfs. The topmost directory’s name (the policy) is formatted as
the STM device name to which this policy applies and and arbitrary
string identifier separated by a stop. From the examle above, a rule
may look like this:

$ ls /config/stp-policy/dummy_stm.my-policy/user
channels masters
$ cat /config/stp-policy/dummy_stm.my-policy/user/masters
48 63
$ cat /config/stp-policy/dummy_stm.my-policy/user/channels
0 127





which means that the master allocation pool for this rule consists of
masters 48 through 63 and channel allocation pool has channels 0
through 127 in it. Now, any producer (trace source) identifying itself
with “user” identification string will be allocated a master and
channel from within these ranges.

These rules can be nested, for example, one can define a rule “dummy”
under “user” directory from the example above and this new rule will
be used for trace sources with the id string of “user/dummy”.

Trace sources have to open the stm class device’s node and write their
trace data into its file descriptor.

In order to find an appropriate policy node for a given trace source,
several mechanisms can be used. First, a trace source can explicitly
identify itself by calling an STP_POLICY_ID_SET ioctl on the character
device’s file descriptor, providing their id string, before they write
any data there. Secondly, if they chose not to perform the explicit
identification (because you may not want to patch existing software
to do this), they can just start writing the data, at which point the
stm core will try to find a policy node with the name matching the
task’s name (e.g., “syslogd”) and if one exists, it will be used.
Thirdly, if the task name can’t be found among the policy nodes, the
catch-all entry “default” will be used, if it exists. This entry also
needs to be created and configured by the system administrator or
whatever tools are taking care of the policy configuration. Finally,
if all the above steps failed, the write() to an stm file descriptor
will return a error (EINVAL).

Previously, if no policy nodes were found for a trace source, the stm
class would silently fall back to allocating the first available
contiguous range of master/channels from the beginning of the device’s
master/channel range. The new requirement for a policy node to exist
will help programmers and sysadmins identify gaps in configuration
and have better control over the un-identified sources.

Some STM devices may allow direct mapping of the channel mmio regions
to userspace for zero-copy writing. One mappable page (in terms of
mmu) will usually contain multiple channels’ mmios, so the user will
need to allocate that many channels to themselves (via the
aforementioned ioctl() call) to be able to do this. That is, if your
stm device’s channel mmio region is 64 bytes and hardware page size is
4096 bytes, after a successful STP_POLICY_ID_SET ioctl() call with
width==64, you should be able to mmap() one page on this file
descriptor and obtain direct access to an mmio region for 64 channels.

Examples of STM devices are Intel(R) Trace Hub [1] and Coresight STM
[2].


stm_source

For kernel-based trace sources, there is “stm_source” device
class. Devices of this class can be connected and disconnected to/from
stm devices at runtime via a sysfs attribute called “stm_source_link”
by writing the name of the desired stm device there, for example:

$ echo dummy_stm.0 > /sys/class/stm_source/console/stm_source_link





For examples on how to use stm_source interface in the kernel, refer
to stm_console, stm_heartbeat or stm_ftrace drivers.

Each stm_source device will need to assume a master and a range of
channels, depending on how many channels it requires. These are
allocated for the device according to the policy configuration. If
there’s a node in the root of the policy directory that matches the
stm_source device’s name (for example, “console”), this node will be
used to allocate master and channel numbers. If there’s no such policy
node, the stm core will use the catch-all entry “default”, if one
exists. If neither policy nodes exist, the write() to stm_source_link
will return an error.




stm_console

One implementation of this interface also used in the example above is
the “stm_console” driver, which basically provides a one-way console
for kernel messages over an stm device.

To configure the master/channel pair that will be assigned to this
console in the STP stream, create a “console” policy entry (see the
beginning of this text on how to do that). When initialized, it will
consume one channel.




stm_ftrace

This is another “stm_source” device, once the stm_ftrace has been
linked with an stm device, and if “function” tracer is enabled,
function address and parent function address which Ftrace subsystem
would store into ring buffer will be exported via the stm device at
the same time.

Currently only Ftrace “function” tracer is supported.


	[1] https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf

	[2] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0444b/index.html









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Linux Memory Management Documentation
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »
 
      

    


    
      
          
            
  
Linux Memory Management Documentation

This is a collection of documents about Linux memory management (mm) subsystem.


User guides for MM features

The following documents provide guides for controlling and tuning
various features of the Linux memory management



	Automatically bind swap device to numa node

	zswap








Kernel developers MM documentation

The below documents describe MM internals with different level of
details ranging from notes and mailing list responses to elaborate
descriptions of data structures and algorithms.



	Active MM

	Memory Balancing

	Cleancache

	Frontswap

	High Memory Handling

	Heterogeneous Memory Management (HMM)

	hwpoison

	Hugetlbfs Reservation

	Kernel Samepage Merging

	When do you need to notify inside page table lock ?

	What is NUMA?

	Overcommit Accounting

	Page migration

	Page fragments

	page owner: Tracking about who allocated each page

	remap_file_pages() system call

	Short users guide for SLUB

	Split page table lock

	Transparent Hugepage Support

	Unevictable LRU Infrastructure

	z3fold

	zsmalloc











          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Automatically bind swap device to numa node
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Automatically bind swap device to numa node

If the system has more than one swap device and swap device has the node
information, we can make use of this information to decide which swap
device to use in get_swap_pages() to get better performance.


How to use this feature

Swap device has priority and that decides the order of it to be used. To make
use of automatically binding, there is no need to manipulate priority settings
for swap devices. e.g. on a 2 node machine, assume 2 swap devices swapA and
swapB, with swapA attached to node 0 and swapB attached to node 1, are going
to be swapped on. Simply swapping them on by doing:

# swapon /dev/swapA
# swapon /dev/swapB





Then node 0 will use the two swap devices in the order of swapA then swapB and
node 1 will use the two swap devices in the order of swapB then swapA. Note
that the order of them being swapped on doesn’t matter.

A more complex example on a 4 node machine. Assume 6 swap devices are going to
be swapped on: swapA and swapB are attached to node 0, swapC is attached to
node 1, swapD and swapE are attached to node 2 and swapF is attached to node3.
The way to swap them on is the same as above:

# swapon /dev/swapA
# swapon /dev/swapB
# swapon /dev/swapC
# swapon /dev/swapD
# swapon /dev/swapE
# swapon /dev/swapF





Then node 0 will use them in the order of:

swapA/swapB -> swapC -> swapD -> swapE -> swapF





swapA and swapB will be used in a round robin mode before any other swap device.

node 1 will use them in the order of:

swapC -> swapA -> swapB -> swapD -> swapE -> swapF





node 2 will use them in the order of:

swapD/swapE -> swapA -> swapB -> swapC -> swapF





Similaly, swapD and swapE will be used in a round robin mode before any
other swap devices.

node 3 will use them in the order of:

swapF -> swapA -> swapB -> swapC -> swapD -> swapE








Implementation details

The current code uses a priority based list, swap_avail_list, to decide
which swap device to use and if multiple swap devices share the same
priority, they are used round robin. This change here replaces the single
global swap_avail_list with a per-numa-node list, i.e. for each numa node,
it sees its own priority based list of available swap devices. Swap
device’s priority can be promoted on its matching node’s swap_avail_list.

The current swap device’s priority is set as: user can set a >=0 value,
or the system will pick one starting from -1 then downwards. The priority
value in the swap_avail_list is the negated value of the swap device’s
due to plist being sorted from low to high. The new policy doesn’t change
the semantics for priority >=0 cases, the previous starting from -1 then
downwards now becomes starting from -2 then downwards and -1 is reserved
as the promoted value. So if multiple swap devices are attached to the same
node, they will all be promoted to priority -1 on that node’s plist and will
be used round robin before any other swap devices.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    zswap
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
zswap


Overview

Zswap is a lightweight compressed cache for swap pages. It takes pages that are
in the process of being swapped out and attempts to compress them into a
dynamically allocated RAM-based memory pool.  zswap basically trades CPU cycles
for potentially reduced swap I/O. This trade-off can also result in a
significant performance improvement if reads from the compressed cache are
faster than reads from a swap device.


注解

Zswap is a new feature as of v3.11 and interacts heavily with memory
reclaim.  This interaction has not been fully explored on the large set of
potential configurations and workloads that exist.  For this reason, zswap
is a work in progress and should be considered experimental.

Some potential benefits:




	Desktop/laptop users with limited RAM capacities can mitigate the
performance impact of swapping.

	Overcommitted guests that share a common I/O resource can
dramatically reduce their swap I/O pressure, avoiding heavy handed I/O
throttling by the hypervisor.This allows more work to get done with less
impact to the guest workload and guests sharing the I/O subsystem

	Users with SSDs as swap devices can extend the life of the device by
drastically reducing life-shortening writes.



Zswap evicts pages from compressed cache on an LRU basis to the backing swap
device when the compressed pool reaches its size limit.  This requirement had
been identified in prior community discussions.

Zswap is disabled by default but can be enabled at boot time by setting
the enabled attribute to 1 at boot time. ie: zswap.enabled=1.  Zswap
can also be enabled and disabled at runtime using the sysfs interface.
An example command to enable zswap at runtime, assuming sysfs is mounted
at /sys, is:

echo 1 > /sys/module/zswap/parameters/enabled





When zswap is disabled at runtime it will stop storing pages that are
being swapped out.  However, it will _not_ immediately write out or fault
back into memory all of the pages stored in the compressed pool.  The
pages stored in zswap will remain in the compressed pool until they are
either invalidated or faulted back into memory.  In order to force all
pages out of the compressed pool, a swapoff on the swap device(s) will
fault back into memory all swapped out pages, including those in the
compressed pool.




Design

Zswap receives pages for compression through the Frontswap API and is able to
evict pages from its own compressed pool on an LRU basis and write them back to
the backing swap device in the case that the compressed pool is full.

Zswap makes use of zpool for the managing the compressed memory pool.  Each
allocation in zpool is not directly accessible by address.  Rather, a handle is
returned by the allocation routine and that handle must be mapped before being
accessed.  The compressed memory pool grows on demand and shrinks as compressed
pages are freed.  The pool is not preallocated.  By default, a zpool
of type zbud is created, but it can be selected at boot time by
setting the zpool attribute, e.g. zswap.zpool=zbud. It can
also be changed at runtime using the sysfs zpool attribute, e.g.:

echo zbud > /sys/module/zswap/parameters/zpool





The zbud type zpool allocates exactly 1 page to store 2 compressed pages, which
means the compression ratio will always be 2:1 or worse (because of half-full
zbud pages).  The zsmalloc type zpool has a more complex compressed page
storage method, and it can achieve greater storage densities.  However,
zsmalloc does not implement compressed page eviction, so once zswap fills it
cannot evict the oldest page, it can only reject new pages.

When a swap page is passed from frontswap to zswap, zswap maintains a mapping
of the swap entry, a combination of the swap type and swap offset, to the zpool
handle that references that compressed swap page.  This mapping is achieved
with a red-black tree per swap type.  The swap offset is the search key for the
tree nodes.

During a page fault on a PTE that is a swap entry, frontswap calls the zswap
load function to decompress the page into the page allocated by the page fault
handler.

Once there are no PTEs referencing a swap page stored in zswap (i.e. the count
in the swap_map goes to 0) the swap code calls the zswap invalidate function,
via frontswap, to free the compressed entry.

Zswap seeks to be simple in its policies.  Sysfs attributes allow for one user
controlled policy:


	max_pool_percent - The maximum percentage of memory that the compressed
pool can occupy.



The default compressor is lzo, but it can be selected at boot time by
setting the compressor attribute, e.g. zswap.compressor=lzo.
It can also be changed at runtime using the sysfs “compressor”
attribute, e.g.:

echo lzo > /sys/module/zswap/parameters/compressor





When the zpool and/or compressor parameter is changed at runtime, any existing
compressed pages are not modified; they are left in their own zpool.  When a
request is made for a page in an old zpool, it is uncompressed using its
original compressor.  Once all pages are removed from an old zpool, the zpool
and its compressor are freed.

Some of the pages in zswap are same-value filled pages (i.e. contents of the
page have same value or repetitive pattern). These pages include zero-filled
pages and they are handled differently. During store operation, a page is
checked if it is a same-value filled page before compressing it. If true, the
compressed length of the page is set to zero and the pattern or same-filled
value is stored.

Same-value filled pages identification feature is enabled by default and can be
disabled at boot time by setting the same_filled_pages_enabled attribute
to 0, e.g. zswap.same_filled_pages_enabled=0. It can also be enabled and
disabled at runtime using the sysfs same_filled_pages_enabled
attribute, e.g.:

echo 1 > /sys/module/zswap/parameters/same_filled_pages_enabled





When zswap same-filled page identification is disabled at runtime, it will stop
checking for the same-value filled pages during store operation. However, the
existing pages which are marked as same-value filled pages remain stored
unchanged in zswap until they are either loaded or invalidated.

A debugfs interface is provided for various statistic about pool size, number
of pages stored, same-value filled pages and various counters for the reasons
pages are rejected.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Active MM
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Active MM

List:       linux-kernel
Subject:    Re: active_mm
From:       Linus Torvalds <torvalds () transmeta ! com>
Date:       1999-07-30 21:36:24

Cc'd to linux-kernel, because I don't write explanations all that often,
and when I do I feel better about more people reading them.

On Fri, 30 Jul 1999, David Mosberger wrote:
>
> Is there a brief description someplace on how "mm" vs. "active_mm" in
> the task_struct are supposed to be used?  (My apologies if this was
> discussed on the mailing lists---I just returned from vacation and
> wasn't able to follow linux-kernel for a while).

Basically, the new setup is:

 - we have "real address spaces" and "anonymous address spaces". The
   difference is that an anonymous address space doesn't care about the
   user-level page tables at all, so when we do a context switch into an
   anonymous address space we just leave the previous address space
   active.

   The obvious use for a "anonymous address space" is any thread that
   doesn't need any user mappings - all kernel threads basically fall into
   this category, but even "real" threads can temporarily say that for
   some amount of time they are not going to be interested in user space,
   and that the scheduler might as well try to avoid wasting time on
   switching the VM state around. Currently only the old-style bdflush
   sync does that.

 - "tsk->mm" points to the "real address space". For an anonymous process,
   tsk->mm will be NULL, for the logical reason that an anonymous process
   really doesn't _have_ a real address space at all.

 - however, we obviously need to keep track of which address space we
   "stole" for such an anonymous user. For that, we have "tsk->active_mm",
   which shows what the currently active address space is.

   The rule is that for a process with a real address space (ie tsk->mm is
   non-NULL) the active_mm obviously always has to be the same as the real
   one.

   For a anonymous process, tsk->mm == NULL, and tsk->active_mm is the
   "borrowed" mm while the anonymous process is running. When the
   anonymous process gets scheduled away, the borrowed address space is
   returned and cleared.

To support all that, the "struct mm_struct" now has two counters: a
"mm_users" counter that is how many "real address space users" there are,
and a "mm_count" counter that is the number of "lazy" users (ie anonymous
users) plus one if there are any real users.

Usually there is at least one real user, but it could be that the real
user exited on another CPU while a lazy user was still active, so you do
actually get cases where you have a address space that is _only_ used by
lazy users. That is often a short-lived state, because once that thread
gets scheduled away in favour of a real thread, the "zombie" mm gets
released because "mm_users" becomes zero.

Also, a new rule is that _nobody_ ever has "init_mm" as a real MM any
more. "init_mm" should be considered just a "lazy context when no other
context is available", and in fact it is mainly used just at bootup when
no real VM has yet been created. So code that used to check

       if (current->mm == &init_mm)

should generally just do

       if (!current->mm)

instead (which makes more sense anyway - the test is basically one of "do
we have a user context", and is generally done by the page fault handler
and things like that).

Anyway, I put a pre-patch-2.3.13-1 on ftp.kernel.org just a moment ago,
because it slightly changes the interfaces to accommodate the alpha (who
would have thought it, but the alpha actually ends up having one of the
ugliest context switch codes - unlike the other architectures where the MM
and register state is separate, the alpha PALcode joins the two, and you
need to switch both together).

(From http://marc.info/?l=linux-kernel&m=93337278602211&w=2)









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Memory Balancing
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Memory Balancing

Started Jan 2000 by Kanoj Sarcar <kanoj@sgi.com>

Memory balancing is needed for !__GFP_ATOMIC and !__GFP_KSWAPD_RECLAIM as
well as for non __GFP_IO allocations.

The first reason why a caller may avoid reclaim is that the caller can not
sleep due to holding a spinlock or is in interrupt context. The second may
be that the caller is willing to fail the allocation without incurring the
overhead of page reclaim. This may happen for opportunistic high-order
allocation requests that have order-0 fallback options. In such cases,
the caller may also wish to avoid waking kswapd.

__GFP_IO allocation requests are made to prevent file system deadlocks.

In the absence of non sleepable allocation requests, it seems detrimental
to be doing balancing. Page reclamation can be kicked off lazily, that
is, only when needed (aka zone free memory is 0), instead of making it
a proactive process.

That being said, the kernel should try to fulfill requests for direct
mapped pages from the direct mapped pool, instead of falling back on
the dma pool, so as to keep the dma pool filled for dma requests (atomic
or not). A similar argument applies to highmem and direct mapped pages.
OTOH, if there is a lot of free dma pages, it is preferable to satisfy
regular memory requests by allocating one from the dma pool, instead
of incurring the overhead of regular zone balancing.

In 2.2, memory balancing/page reclamation would kick off only when the
_total_ number of free pages fell below 1/64 th of total memory. With the
right ratio of dma and regular memory, it is quite possible that balancing
would not be done even when the dma zone was completely empty. 2.2 has
been running production machines of varying memory sizes, and seems to be
doing fine even with the presence of this problem. In 2.3, due to
HIGHMEM, this problem is aggravated.

In 2.3, zone balancing can be done in one of two ways: depending on the
zone size (and possibly of the size of lower class zones), we can decide
at init time how many free pages we should aim for while balancing any
zone. The good part is, while balancing, we do not need to look at sizes
of lower class zones, the bad part is, we might do too frequent balancing
due to ignoring possibly lower usage in the lower class zones. Also,
with a slight change in the allocation routine, it is possible to reduce
the memclass() macro to be a simple equality.

Another possible solution is that we balance only when the free memory
of a zone _and_ all its lower class zones falls below 1/64th of the
total memory in the zone and its lower class zones. This fixes the 2.2
balancing problem, and stays as close to 2.2 behavior as possible. Also,
the balancing algorithm works the same way on the various architectures,
which have different numbers and types of zones. If we wanted to get
fancy, we could assign different weights to free pages in different
zones in the future.

Note that if the size of the regular zone is huge compared to dma zone,
it becomes less significant to consider the free dma pages while
deciding whether to balance the regular zone. The first solution
becomes more attractive then.

The appended patch implements the second solution. It also “fixes” two
problems: first, kswapd is woken up as in 2.2 on low memory conditions
for non-sleepable allocations. Second, the HIGHMEM zone is also balanced,
so as to give a fighting chance for replace_with_highmem() to get a
HIGHMEM page, as well as to ensure that HIGHMEM allocations do not
fall back into regular zone. This also makes sure that HIGHMEM pages
are not leaked (for example, in situations where a HIGHMEM page is in
the swapcache but is not being used by anyone)

kswapd also needs to know about the zones it should balance. kswapd is
primarily needed in a situation where balancing can not be done,
probably because all allocation requests are coming from intr context
and all process contexts are sleeping. For 2.3, kswapd does not really
need to balance the highmem zone, since intr context does not request
highmem pages. kswapd looks at the zone_wake_kswapd field in the zone
structure to decide whether a zone needs balancing.

Page stealing from process memory and shm is done if stealing the page would
alleviate memory pressure on any zone in the page’s node that has fallen below
its watermark.

watemark[WMARK_MIN/WMARK_LOW/WMARK_HIGH]/low_on_memory/zone_wake_kswapd: These
are per-zone fields, used to determine when a zone needs to be balanced. When
the number of pages falls below watermark[WMARK_MIN], the hysteric field
low_on_memory gets set. This stays set till the number of free pages becomes
watermark[WMARK_HIGH]. When low_on_memory is set, page allocation requests will
try to free some pages in the zone (providing GFP_WAIT is set in the request).
Orthogonal to this, is the decision to poke kswapd to free some zone pages.
That decision is not hysteresis based, and is done when the number of free
pages is below watermark[WMARK_LOW]; in which case zone_wake_kswapd is also set.

(Good) Ideas that I have heard:


	Dynamic experience should influence balancing: number of failed requests
for a zone can be tracked and fed into the balancing scheme (jalvo@mbay.net)

	Implement a replace_with_highmem()-like replace_with_regular() to preserve
dma pages. (lkd@tantalophile.demon.co.uk)







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Cleancache
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Cleancache


Motivation

Cleancache is a new optional feature provided by the VFS layer that
potentially dramatically increases page cache effectiveness for
many workloads in many environments at a negligible cost.

Cleancache can be thought of as a page-granularity victim cache for clean
pages that the kernel’s pageframe replacement algorithm (PFRA) would like
to keep around, but can’t since there isn’t enough memory.  So when the
PFRA “evicts” a page, it first attempts to use cleancache code to
put the data contained in that page into “transcendent memory”, memory
that is not directly accessible or addressable by the kernel and is
of unknown and possibly time-varying size.

Later, when a cleancache-enabled filesystem wishes to access a page
in a file on disk, it first checks cleancache to see if it already
contains it; if it does, the page of data is copied into the kernel
and a disk access is avoided.

Transcendent memory “drivers” for cleancache are currently implemented
in Xen (using hypervisor memory) and zcache (using in-kernel compressed
memory) and other implementations are in development.

FAQs are included below.




Implementation Overview

A cleancache “backend” that provides transcendent memory registers itself
to the kernel’s cleancache “frontend” by calling cleancache_register_ops,
passing a pointer to a cleancache_ops structure with funcs set appropriately.
The functions provided must conform to certain semantics as follows:

Most important, cleancache is “ephemeral”.  Pages which are copied into
cleancache have an indefinite lifetime which is completely unknowable
by the kernel and so may or may not still be in cleancache at any later time.
Thus, as its name implies, cleancache is not suitable for dirty pages.
Cleancache has complete discretion over what pages to preserve and what
pages to discard and when.

Mounting a cleancache-enabled filesystem should call “init_fs” to obtain a
pool id which, if positive, must be saved in the filesystem’s superblock;
a negative return value indicates failure.  A “put_page” will copy a
(presumably about-to-be-evicted) page into cleancache and associate it with
the pool id, a file key, and a page index into the file.  (The combination
of a pool id, a file key, and an index is sometimes called a “handle”.)
A “get_page” will copy the page, if found, from cleancache into kernel memory.
An “invalidate_page” will ensure the page no longer is present in cleancache;
an “invalidate_inode” will invalidate all pages associated with the specified
file; and, when a filesystem is unmounted, an “invalidate_fs” will invalidate
all pages in all files specified by the given pool id and also surrender
the pool id.

An “init_shared_fs”, like init_fs, obtains a pool id but tells cleancache
to treat the pool as shared using a 128-bit UUID as a key.  On systems
that may run multiple kernels (such as hard partitioned or virtualized
systems) that may share a clustered filesystem, and where cleancache
may be shared among those kernels, calls to init_shared_fs that specify the
same UUID will receive the same pool id, thus allowing the pages to
be shared.  Note that any security requirements must be imposed outside
of the kernel (e.g. by “tools” that control cleancache).  Or a
cleancache implementation can simply disable shared_init by always
returning a negative value.

If a get_page is successful on a non-shared pool, the page is invalidated
(thus making cleancache an “exclusive” cache).  On a shared pool, the page
is NOT invalidated on a successful get_page so that it remains accessible to
other sharers.  The kernel is responsible for ensuring coherency between
cleancache (shared or not), the page cache, and the filesystem, using
cleancache invalidate operations as required.

Note that cleancache must enforce put-put-get coherency and get-get
coherency.  For the former, if two puts are made to the same handle but
with different data, say AAA by the first put and BBB by the second, a
subsequent get can never return the stale data (AAA).  For get-get coherency,
if a get for a given handle fails, subsequent gets for that handle will
never succeed unless preceded by a successful put with that handle.

Last, cleancache provides no SMP serialization guarantees; if two
different Linux threads are simultaneously putting and invalidating a page
with the same handle, the results are indeterminate.  Callers must
lock the page to ensure serial behavior.




Cleancache Performance Metrics

If properly configured, monitoring of cleancache is done via debugfs in
the /sys/kernel/debug/cleancache directory.  The effectiveness of cleancache
can be measured (across all filesystems) with:


	succ_gets

	number of gets that were successful

	failed_gets

	number of gets that failed

	puts

	number of puts attempted (all “succeed”)

	invalidates

	number of invalidates attempted



A backend implementation may provide additional metrics.




FAQ


	Where’s the value? (Andrew Morton)



Cleancache provides a significant performance benefit to many workloads
in many environments with negligible overhead by improving the
effectiveness of the pagecache.  Clean pagecache pages are
saved in transcendent memory (RAM that is otherwise not directly
addressable to the kernel); fetching those pages later avoids “refaults”
and thus disk reads.

Cleancache (and its sister code “frontswap”) provide interfaces for
this transcendent memory (aka “tmem”), which conceptually lies between
fast kernel-directly-addressable RAM and slower DMA/asynchronous devices.
Disallowing direct kernel or userland reads/writes to tmem
is ideal when data is transformed to a different form and size (such
as with compression) or secretly moved (as might be useful for write-
balancing for some RAM-like devices).  Evicted page-cache pages (and
swap pages) are a great use for this kind of slower-than-RAM-but-much-
faster-than-disk transcendent memory, and the cleancache (and frontswap)
“page-object-oriented” specification provides a nice way to read and
write – and indirectly “name” – the pages.

In the virtual case, the whole point of virtualization is to statistically
multiplex physical resources across the varying demands of multiple
virtual machines.  This is really hard to do with RAM and efforts to
do it well with no kernel change have essentially failed (except in some
well-publicized special-case workloads).  Cleancache – and frontswap –
with a fairly small impact on the kernel, provide a huge amount
of flexibility for more dynamic, flexible RAM multiplexing.
Specifically, the Xen Transcendent Memory backend allows otherwise
“fallow” hypervisor-owned RAM to not only be “time-shared” between multiple
virtual machines, but the pages can be compressed and deduplicated to
optimize RAM utilization.  And when guest OS’s are induced to surrender
underutilized RAM (e.g. with “self-ballooning”), page cache pages
are the first to go, and cleancache allows those pages to be
saved and reclaimed if overall host system memory conditions allow.

And the identical interface used for cleancache can be used in
physical systems as well.  The zcache driver acts as a memory-hungry
device that stores pages of data in a compressed state.  And
the proposed “RAMster” driver shares RAM across multiple physical
systems.


	Why does cleancache have its sticky fingers so deep inside the
filesystems and VFS? (Andrew Morton and Christoph Hellwig)



The core hooks for cleancache in VFS are in most cases a single line
and the minimum set are placed precisely where needed to maintain
coherency (via cleancache_invalidate operations) between cleancache,
the page cache, and disk.  All hooks compile into nothingness if
cleancache is config’ed off and turn into a function-pointer-
compare-to-NULL if config’ed on but no backend claims the ops
functions, or to a compare-struct-element-to-negative if a
backend claims the ops functions but a filesystem doesn’t enable
cleancache.

Some filesystems are built entirely on top of VFS and the hooks
in VFS are sufficient, so don’t require an “init_fs” hook; the
initial implementation of cleancache didn’t provide this hook.
But for some filesystems (such as btrfs), the VFS hooks are
incomplete and one or more hooks in fs-specific code are required.
And for some other filesystems, such as tmpfs, cleancache may
be counterproductive.  So it seemed prudent to require a filesystem
to “opt in” to use cleancache, which requires adding a hook in
each filesystem.  Not all filesystems are supported by cleancache
only because they haven’t been tested.  The existing set should
be sufficient to validate the concept, the opt-in approach means
that untested filesystems are not affected, and the hooks in the
existing filesystems should make it very easy to add more
filesystems in the future.

The total impact of the hooks to existing fs and mm files is only
about 40 lines added (not counting comments and blank lines).


	Why not make cleancache asynchronous and batched so it can more
easily interface with real devices with DMA instead of copying each
individual page? (Minchan Kim)



The one-page-at-a-time copy semantics simplifies the implementation
on both the frontend and backend and also allows the backend to
do fancy things on-the-fly like page compression and
page deduplication.  And since the data is “gone” (copied into/out
of the pageframe) before the cleancache get/put call returns,
a great deal of race conditions and potential coherency issues
are avoided.  While the interface seems odd for a “real device”
or for real kernel-addressable RAM, it makes perfect sense for
transcendent memory.


	Why is non-shared cleancache “exclusive”?  And where is the
page “invalidated” after a “get”? (Minchan Kim)



The main reason is to free up space in transcendent memory and
to avoid unnecessary cleancache_invalidate calls.  If you want inclusive,
the page can be “put” immediately following the “get”.  If
put-after-get for inclusive becomes common, the interface could
be easily extended to add a “get_no_invalidate” call.

The invalidate is done by the cleancache backend implementation.


	What’s the performance impact?



Performance analysis has been presented at OLS‘09 and LCA‘10.
Briefly, performance gains can be significant on most workloads,
especially when memory pressure is high (e.g. when RAM is
overcommitted in a virtual workload); and because the hooks are
invoked primarily in place of or in addition to a disk read/write,
overhead is negligible even in worst case workloads.  Basically
cleancache replaces I/O with memory-copy-CPU-overhead; on older
single-core systems with slow memory-copy speeds, cleancache
has little value, but in newer multicore machines, especially
consolidated/virtualized machines, it has great value.


	How do I add cleancache support for filesystem X? (Boaz Harrash)



Filesystems that are well-behaved and conform to certain
restrictions can utilize cleancache simply by making a call to
cleancache_init_fs at mount time.  Unusual, misbehaving, or
poorly layered filesystems must either add additional hooks
and/or undergo extensive additional testing... or should just
not enable the optional cleancache.

Some points for a filesystem to consider:



	The FS should be block-device-based (e.g. a ram-based FS such
as tmpfs should not enable cleancache)

	To ensure coherency/correctness, the FS must ensure that all
file removal or truncation operations either go through VFS or
add hooks to do the equivalent cleancache “invalidate” operations

	To ensure coherency/correctness, either inode numbers must
be unique across the lifetime of the on-disk file OR the
FS must provide an “encode_fh” function.

	The FS must call the VFS superblock alloc and deactivate routines
or add hooks to do the equivalent cleancache calls done there.

	To maximize performance, all pages fetched from the FS should
go through the do_mpag_readpage routine or the FS should add
hooks to do the equivalent (cf. btrfs)

	Currently, the FS blocksize must be the same as PAGESIZE.  This
is not an architectural restriction, but no backends currently
support anything different.

	A clustered FS should invoke the “shared_init_fs” cleancache
hook to get best performance for some backends.







	Why not use the KVA of the inode as the key? (Christoph Hellwig)



If cleancache would use the inode virtual address instead of
inode/filehandle, the pool id could be eliminated.  But, this
won’t work because cleancache retains pagecache data pages
persistently even when the inode has been pruned from the
inode unused list, and only invalidates the data page if the file
gets removed/truncated.  So if cleancache used the inode kva,
there would be potential coherency issues if/when the inode
kva is reused for a different file.  Alternately, if cleancache
invalidated the pages when the inode kva was freed, much of the value
of cleancache would be lost because the cache of pages in cleanache
is potentially much larger than the kernel pagecache and is most
useful if the pages survive inode cache removal.


	Why is a global variable required?



The cleancache_enabled flag is checked in all of the frequently-used
cleancache hooks.  The alternative is a function call to check a static
variable. Since cleancache is enabled dynamically at runtime, systems
that don’t enable cleancache would suffer thousands (possibly
tens-of-thousands) of unnecessary function calls per second.  So the
global variable allows cleancache to be enabled by default at compile
time, but have insignificant performance impact when cleancache remains
disabled at runtime.


	Does cleanache work with KVM?



The memory model of KVM is sufficiently different that a cleancache
backend may have less value for KVM.  This remains to be tested,
especially in an overcommitted system.


	Does cleancache work in userspace?  It sounds useful for
memory hungry caches like web browsers.  (Jamie Lokier)



No plans yet, though we agree it sounds useful, at least for
apps that bypass the page cache (e.g. O_DIRECT).

Last updated: Dan Magenheimer, April 13 2011







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Frontswap
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Frontswap

Frontswap provides a “transcendent memory” interface for swap pages.
In some environments, dramatic performance savings may be obtained because
swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk.

(Note, frontswap – and Cleancache (merged at 3.0) – are the “frontends”
and the only necessary changes to the core kernel for transcendent memory;
all other supporting code – the “backends” – is implemented as drivers.
See the LWN.net article Transcendent memory in a nutshell [https://lwn.net/Articles/454795/]
for a detailed overview of frontswap and related kernel parts)

Frontswap is so named because it can be thought of as the opposite of
a “backing” store for a swap device.  The storage is assumed to be
a synchronous concurrency-safe page-oriented “pseudo-RAM device” conforming
to the requirements of transcendent memory (such as Xen’s “tmem”, or
in-kernel compressed memory, aka “zcache”, or future RAM-like devices);
this pseudo-RAM device is not directly accessible or addressable by the
kernel and is of unknown and possibly time-varying size.  The driver
links itself to frontswap by calling frontswap_register_ops to set the
frontswap_ops funcs appropriately and the functions it provides must
conform to certain policies as follows:

An “init” prepares the device to receive frontswap pages associated
with the specified swap device number (aka “type”).  A “store” will
copy the page to transcendent memory and associate it with the type and
offset associated with the page. A “load” will copy the page, if found,
from transcendent memory into kernel memory, but will NOT remove the page
from transcendent memory.  An “invalidate_page” will remove the page
from transcendent memory and an “invalidate_area” will remove ALL pages
associated with the swap type (e.g., like swapoff) and notify the “device”
to refuse further stores with that swap type.

Once a page is successfully stored, a matching load on the page will normally
succeed.  So when the kernel finds itself in a situation where it needs
to swap out a page, it first attempts to use frontswap.  If the store returns
success, the data has been successfully saved to transcendent memory and
a disk write and, if the data is later read back, a disk read are avoided.
If a store returns failure, transcendent memory has rejected the data, and the
page can be written to swap as usual.

If a backend chooses, frontswap can be configured as a “writethrough
cache” by calling frontswap_writethrough().  In this mode, the reduction
in swap device writes is lost (and also a non-trivial performance advantage)
in order to allow the backend to arbitrarily “reclaim” space used to
store frontswap pages to more completely manage its memory usage.

Note that if a page is stored and the page already exists in transcendent memory
(a “duplicate” store), either the store succeeds and the data is overwritten,
or the store fails AND the page is invalidated.  This ensures stale data may
never be obtained from frontswap.

If properly configured, monitoring of frontswap is done via debugfs in
the /sys/kernel/debug/frontswap directory.  The effectiveness of
frontswap can be measured (across all swap devices) with:


	failed_stores

	how many store attempts have failed

	loads

	how many loads were attempted (all should succeed)

	succ_stores

	how many store attempts have succeeded

	invalidates

	how many invalidates were attempted



A backend implementation may provide additional metrics.


FAQ


	Where’s the value?



When a workload starts swapping, performance falls through the floor.
Frontswap significantly increases performance in many such workloads by
providing a clean, dynamic interface to read and write swap pages to
“transcendent memory” that is otherwise not directly addressable to the kernel.
This interface is ideal when data is transformed to a different form
and size (such as with compression) or secretly moved (as might be
useful for write-balancing for some RAM-like devices).  Swap pages (and
evicted page-cache pages) are a great use for this kind of slower-than-RAM-
but-much-faster-than-disk “pseudo-RAM device” and the frontswap (and
cleancache) interface to transcendent memory provides a nice way to read
and write – and indirectly “name” – the pages.

Frontswap – and cleancache – with a fairly small impact on the kernel,
provides a huge amount of flexibility for more dynamic, flexible RAM
utilization in various system configurations:

In the single kernel case, aka “zcache”, pages are compressed and
stored in local memory, thus increasing the total anonymous pages
that can be safely kept in RAM.  Zcache essentially trades off CPU
cycles used in compression/decompression for better memory utilization.
Benchmarks have shown little or no impact when memory pressure is
low while providing a significant performance improvement (25%+)
on some workloads under high memory pressure.

“RAMster” builds on zcache by adding “peer-to-peer” transcendent memory
support for clustered systems.  Frontswap pages are locally compressed
as in zcache, but then “remotified” to another system’s RAM.  This
allows RAM to be dynamically load-balanced back-and-forth as needed,
i.e. when system A is overcommitted, it can swap to system B, and
vice versa.  RAMster can also be configured as a memory server so
many servers in a cluster can swap, dynamically as needed, to a single
server configured with a large amount of RAM... without pre-configuring
how much of the RAM is available for each of the clients!

In the virtual case, the whole point of virtualization is to statistically
multiplex physical resources across the varying demands of multiple
virtual machines.  This is really hard to do with RAM and efforts to do
it well with no kernel changes have essentially failed (except in some
well-publicized special-case workloads).
Specifically, the Xen Transcendent Memory backend allows otherwise
“fallow” hypervisor-owned RAM to not only be “time-shared” between multiple
virtual machines, but the pages can be compressed and deduplicated to
optimize RAM utilization.  And when guest OS’s are induced to surrender
underutilized RAM (e.g. with “selfballooning”), sudden unexpected
memory pressure may result in swapping; frontswap allows those pages
to be swapped to and from hypervisor RAM (if overall host system memory
conditions allow), thus mitigating the potentially awful performance impact
of unplanned swapping.

A KVM implementation is underway and has been RFC’ed to lkml.  And,
using frontswap, investigation is also underway on the use of NVM as
a memory extension technology.


	Sure there may be performance advantages in some situations, but
what’s the space/time overhead of frontswap?



If CONFIG_FRONTSWAP is disabled, every frontswap hook compiles into
nothingness and the only overhead is a few extra bytes per swapon’ed
swap device.  If CONFIG_FRONTSWAP is enabled but no frontswap “backend”
registers, there is one extra global variable compared to zero for
every swap page read or written.  If CONFIG_FRONTSWAP is enabled
AND a frontswap backend registers AND the backend fails every “store”
request (i.e. provides no memory despite claiming it might),
CPU overhead is still negligible – and since every frontswap fail
precedes a swap page write-to-disk, the system is highly likely
to be I/O bound and using a small fraction of a percent of a CPU
will be irrelevant anyway.

As for space, if CONFIG_FRONTSWAP is enabled AND a frontswap backend
registers, one bit is allocated for every swap page for every swap
device that is swapon’d.  This is added to the EIGHT bits (which
was sixteen until about 2.6.34) that the kernel already allocates
for every swap page for every swap device that is swapon’d.  (Hugh
Dickins has observed that frontswap could probably steal one of
the existing eight bits, but let’s worry about that minor optimization
later.)  For very large swap disks (which are rare) on a standard
4K pagesize, this is 1MB per 32GB swap.

When swap pages are stored in transcendent memory instead of written
out to disk, there is a side effect that this may create more memory
pressure that can potentially outweigh the other advantages.  A
backend, such as zcache, must implement policies to carefully (but
dynamically) manage memory limits to ensure this doesn’t happen.


	OK, how about a quick overview of what this frontswap patch does
in terms that a kernel hacker can grok?



Let’s assume that a frontswap “backend” has registered during
kernel initialization; this registration indicates that this
frontswap backend has access to some “memory” that is not directly
accessible by the kernel.  Exactly how much memory it provides is
entirely dynamic and random.

Whenever a swap-device is swapon’d frontswap_init() is called,
passing the swap device number (aka “type”) as a parameter.
This notifies frontswap to expect attempts to “store” swap pages
associated with that number.

Whenever the swap subsystem is readying a page to write to a swap
device (c.f swap_writepage()), frontswap_store is called.  Frontswap
consults with the frontswap backend and if the backend says it does NOT
have room, frontswap_store returns -1 and the kernel swaps the page
to the swap device as normal.  Note that the response from the frontswap
backend is unpredictable to the kernel; it may choose to never accept a
page, it could accept every ninth page, or it might accept every
page.  But if the backend does accept a page, the data from the page
has already been copied and associated with the type and offset,
and the backend guarantees the persistence of the data.  In this case,
frontswap sets a bit in the “frontswap_map” for the swap device
corresponding to the page offset on the swap device to which it would
otherwise have written the data.

When the swap subsystem needs to swap-in a page (swap_readpage()),
it first calls frontswap_load() which checks the frontswap_map to
see if the page was earlier accepted by the frontswap backend.  If
it was, the page of data is filled from the frontswap backend and
the swap-in is complete.  If not, the normal swap-in code is
executed to obtain the page of data from the real swap device.

So every time the frontswap backend accepts a page, a swap device read
and (potentially) a swap device write are replaced by a “frontswap backend
store” and (possibly) a “frontswap backend loads”, which are presumably much
faster.


	Can’t frontswap be configured as a “special” swap device that is
just higher priority than any real swap device (e.g. like zswap,
or maybe swap-over-nbd/NFS)?



No.  First, the existing swap subsystem doesn’t allow for any kind of
swap hierarchy.  Perhaps it could be rewritten to accommodate a hierarchy,
but this would require fairly drastic changes.  Even if it were
rewritten, the existing swap subsystem uses the block I/O layer which
assumes a swap device is fixed size and any page in it is linearly
addressable.  Frontswap barely touches the existing swap subsystem,
and works around the constraints of the block I/O subsystem to provide
a great deal of flexibility and dynamicity.

For example, the acceptance of any swap page by the frontswap backend is
entirely unpredictable. This is critical to the definition of frontswap
backends because it grants completely dynamic discretion to the
backend.  In zcache, one cannot know a priori how compressible a page is.
“Poorly” compressible pages can be rejected, and “poorly” can itself be
defined dynamically depending on current memory constraints.

Further, frontswap is entirely synchronous whereas a real swap
device is, by definition, asynchronous and uses block I/O.  The
block I/O layer is not only unnecessary, but may perform “optimizations”
that are inappropriate for a RAM-oriented device including delaying
the write of some pages for a significant amount of time.  Synchrony is
required to ensure the dynamicity of the backend and to avoid thorny race
conditions that would unnecessarily and greatly complicate frontswap
and/or the block I/O subsystem.  That said, only the initial “store”
and “load” operations need be synchronous.  A separate asynchronous thread
is free to manipulate the pages stored by frontswap.  For example,
the “remotification” thread in RAMster uses standard asynchronous
kernel sockets to move compressed frontswap pages to a remote machine.
Similarly, a KVM guest-side implementation could do in-guest compression
and use “batched” hypercalls.

In a virtualized environment, the dynamicity allows the hypervisor
(or host OS) to do “intelligent overcommit”.  For example, it can
choose to accept pages only until host-swapping might be imminent,
then force guests to do their own swapping.

There is a downside to the transcendent memory specifications for
frontswap:  Since any “store” might fail, there must always be a real
slot on a real swap device to swap the page.  Thus frontswap must be
implemented as a “shadow” to every swapon’d device with the potential
capability of holding every page that the swap device might have held
and the possibility that it might hold no pages at all.  This means
that frontswap cannot contain more pages than the total of swapon’d
swap devices.  For example, if NO swap device is configured on some
installation, frontswap is useless.  Swapless portable devices
can still use frontswap but a backend for such devices must configure
some kind of “ghost” swap device and ensure that it is never used.


	Why this weird definition about “duplicate stores”?  If a page
has been previously successfully stored, can’t it always be
successfully overwritten?



Nearly always it can, but no, sometimes it cannot.  Consider an example
where data is compressed and the original 4K page has been compressed
to 1K.  Now an attempt is made to overwrite the page with data that
is non-compressible and so would take the entire 4K.  But the backend
has no more space.  In this case, the store must be rejected.  Whenever
frontswap rejects a store that would overwrite, it also must invalidate
the old data and ensure that it is no longer accessible.  Since the
swap subsystem then writes the new data to the read swap device,
this is the correct course of action to ensure coherency.


	What is frontswap_shrink for?



When the (non-frontswap) swap subsystem swaps out a page to a real
swap device, that page is only taking up low-value pre-allocated disk
space.  But if frontswap has placed a page in transcendent memory, that
page may be taking up valuable real estate.  The frontswap_shrink
routine allows code outside of the swap subsystem to force pages out
of the memory managed by frontswap and back into kernel-addressable memory.
For example, in RAMster, a “suction driver” thread will attempt
to “repatriate” pages sent to a remote machine back to the local machine;
this is driven using the frontswap_shrink mechanism when memory pressure
subsides.


	Why does the frontswap patch create the new include file swapfile.h?



The frontswap code depends on some swap-subsystem-internal data
structures that have, over the years, moved back and forth between
static and global.  This seemed a reasonable compromise:  Define
them as global but declare them in a new include file that isn’t
included by the large number of source files that include swap.h.

Dan Magenheimer, last updated April 9, 2012







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    High Memory Handling
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
High Memory Handling

By: Peter Zijlstra <a.p.zijlstra@chello.nl>



	What Is High Memory?

	Temporary Virtual Mappings

	Using kmap_atomic

	Cost of Temporary Mappings

	i386 PAE






What Is High Memory?

High memory (highmem) is used when the size of physical memory approaches or
exceeds the maximum size of virtual memory.  At that point it becomes
impossible for the kernel to keep all of the available physical memory mapped
at all times.  This means the kernel needs to start using temporary mappings of
the pieces of physical memory that it wants to access.

The part of (physical) memory not covered by a permanent mapping is what we
refer to as ‘highmem’.  There are various architecture dependent constraints on
where exactly that border lies.

In the i386 arch, for example, we choose to map the kernel into every process’s
VM space so that we don’t have to pay the full TLB invalidation costs for
kernel entry/exit.  This means the available virtual memory space (4GiB on
i386) has to be divided between user and kernel space.

The traditional split for architectures using this approach is 3:1, 3GiB for
userspace and the top 1GiB for kernel space:

+--------+ 0xffffffff
| Kernel |
+--------+ 0xc0000000
|        |
| User   |
|        |
+--------+ 0x00000000





This means that the kernel can at most map 1GiB of physical memory at any one
time, but because we need virtual address space for other things - including
temporary maps to access the rest of the physical memory - the actual direct
map will typically be less (usually around ~896MiB).

Other architectures that have mm context tagged TLBs can have separate kernel
and user maps.  Some hardware (like some ARMs), however, have limited virtual
space when they use mm context tags.




Temporary Virtual Mappings

The kernel contains several ways of creating temporary mappings:


	vmap().  This can be used to make a long duration mapping of multiple
physical pages into a contiguous virtual space.  It needs global
synchronization to unmap.



	kmap().  This permits a short duration mapping of a single page.  It needs
global synchronization, but is amortized somewhat.  It is also prone to
deadlocks when using in a nested fashion, and so it is not recommended for
new code.



	kmap_atomic().  This permits a very short duration mapping of a single
page.  Since the mapping is restricted to the CPU that issued it, it
performs well, but the issuing task is therefore required to stay on that
CPU until it has finished, lest some other task displace its mappings.

kmap_atomic() may also be used by interrupt contexts, since it is does not
sleep and the caller may not sleep until after kunmap_atomic() is called.

It may be assumed that k[un]map_atomic() won’t fail.








Using kmap_atomic

When and where to use kmap_atomic() is straightforward.  It is used when code
wants to access the contents of a page that might be allocated from high memory
(see __GFP_HIGHMEM), for example a page in the pagecache.  The API has two
functions, and they can be used in a manner similar to the following:

/* Find the page of interest. */
struct page *page = find_get_page(mapping, offset);

/* Gain access to the contents of that page. */
void *vaddr = kmap_atomic(page);

/* Do something to the contents of that page. */
memset(vaddr, 0, PAGE_SIZE);

/* Unmap that page. */
kunmap_atomic(vaddr);





Note that the kunmap_atomic() call takes the result of the kmap_atomic() call
not the argument.

If you need to map two pages because you want to copy from one page to
another you need to keep the kmap_atomic calls strictly nested, like:

vaddr1 = kmap_atomic(page1);
vaddr2 = kmap_atomic(page2);

memcpy(vaddr1, vaddr2, PAGE_SIZE);

kunmap_atomic(vaddr2);
kunmap_atomic(vaddr1);








Cost of Temporary Mappings

The cost of creating temporary mappings can be quite high.  The arch has to
manipulate the kernel’s page tables, the data TLB and/or the MMU’s registers.

If CONFIG_HIGHMEM is not set, then the kernel will try and create a mapping
simply with a bit of arithmetic that will convert the page struct address into
a pointer to the page contents rather than juggling mappings about.  In such a
case, the unmap operation may be a null operation.

If CONFIG_MMU is not set, then there can be no temporary mappings and no
highmem.  In such a case, the arithmetic approach will also be used.




i386 PAE

The i386 arch, under some circumstances, will permit you to stick up to 64GiB
of RAM into your 32-bit machine.  This has a number of consequences:


	Linux needs a page-frame structure for each page in the system and the
pageframes need to live in the permanent mapping, which means:

	you can have 896M/sizeof(struct page) page-frames at most; with struct
page being 32-bytes that would end up being something in the order of 112G
worth of pages; the kernel, however, needs to store more than just
page-frames in that memory...

	PAE makes your page tables larger - which slows the system down as more
data has to be accessed to traverse in TLB fills and the like.  One
advantage is that PAE has more PTE bits and can provide advanced features
like NX and PAT.



The general recommendation is that you don’t use more than 8GiB on a 32-bit
machine - although more might work for you and your workload, you’re pretty
much on your own - don’t expect kernel developers to really care much if things
come apart.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Heterogeneous Memory Management (HMM)
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Heterogeneous Memory Management (HMM)

Provide infrastructure and helpers to integrate non-conventional memory (device
memory like GPU on board memory) into regular kernel path, with the cornerstone
of this being specialized struct page for such memory (see sections 5 to 7 of
this document).

HMM also provides optional helpers for SVM (Share Virtual Memory), i.e.,
allowing a device to transparently access program address coherently with
the CPU meaning that any valid pointer on the CPU is also a valid pointer
for the device. This is becoming mandatory to simplify the use of advanced
heterogeneous computing where GPU, DSP, or FPGA are used to perform various
computations on behalf of a process.

This document is divided as follows: in the first section I expose the problems
related to using device specific memory allocators. In the second section, I
expose the hardware limitations that are inherent to many platforms. The third
section gives an overview of the HMM design. The fourth section explains how
CPU page-table mirroring works and the purpose of HMM in this context. The
fifth section deals with how device memory is represented inside the kernel.
Finally, the last section presents a new migration helper that allows lever-
aging the device DMA engine.



	Problems of using a device specific memory allocator

	I/O bus, device memory characteristics

	Shared address space and migration

	Address space mirroring implementation and API

	Represent and manage device memory from core kernel point of view

	Migration to and from device memory

	Memory cgroup (memcg) and rss accounting






Problems of using a device specific memory allocator

Devices with a large amount of on board memory (several gigabytes) like GPUs
have historically managed their memory through dedicated driver specific APIs.
This creates a disconnect between memory allocated and managed by a device
driver and regular application memory (private anonymous, shared memory, or
regular file backed memory). From here on I will refer to this aspect as split
address space. I use shared address space to refer to the opposite situation:
i.e., one in which any application memory region can be used by a device
transparently.

Split address space happens because device can only access memory allocated
through device specific API. This implies that all memory objects in a program
are not equal from the device point of view which complicates large programs
that rely on a wide set of libraries.

Concretely this means that code that wants to leverage devices like GPUs needs
to copy object between generically allocated memory (malloc, mmap private, mmap
share) and memory allocated through the device driver API (this still ends up
with an mmap but of the device file).

For flat data sets (array, grid, image, ...) this isn’t too hard to achieve but
complex data sets (list, tree, ...) are hard to get right. Duplicating a
complex data set needs to re-map all the pointer relations between each of its
elements. This is error prone and program gets harder to debug because of the
duplicate data set and addresses.

Split address space also means that libraries cannot transparently use data
they are getting from the core program or another library and thus each library
might have to duplicate its input data set using the device specific memory
allocator. Large projects suffer from this and waste resources because of the
various memory copies.

Duplicating each library API to accept as input or output memory allocated by
each device specific allocator is not a viable option. It would lead to a
combinatorial explosion in the library entry points.

Finally, with the advance of high level language constructs (in C++ but in
other languages too) it is now possible for the compiler to leverage GPUs and
other devices without programmer knowledge. Some compiler identified patterns
are only do-able with a shared address space. It is also more reasonable to use
a shared address space for all other patterns.




I/O bus, device memory characteristics

I/O buses cripple shared address spaces due to a few limitations. Most I/O
buses only allow basic memory access from device to main memory; even cache
coherency is often optional. Access to device memory from CPU is even more
limited. More often than not, it is not cache coherent.

If we only consider the PCIE bus, then a device can access main memory (often
through an IOMMU) and be cache coherent with the CPUs. However, it only allows
a limited set of atomic operations from device on main memory. This is worse
in the other direction: the CPU can only access a limited range of the device
memory and cannot perform atomic operations on it. Thus device memory cannot
be considered the same as regular memory from the kernel point of view.

Another crippling factor is the limited bandwidth (~32GBytes/s with PCIE 4.0
and 16 lanes). This is 33 times less than the fastest GPU memory (1 TBytes/s).
The final limitation is latency. Access to main memory from the device has an
order of magnitude higher latency than when the device accesses its own memory.

Some platforms are developing new I/O buses or additions/modifications to PCIE
to address some of these limitations (OpenCAPI, CCIX). They mainly allow two-
way cache coherency between CPU and device and allow all atomic operations the
architecture supports. Sadly, not all platforms are following this trend and
some major architectures are left without hardware solutions to these problems.

So for shared address space to make sense, not only must we allow devices to
access any memory but we must also permit any memory to be migrated to device
memory while device is using it (blocking CPU access while it happens).




Shared address space and migration

HMM intends to provide two main features. First one is to share the address
space by duplicating the CPU page table in the device page table so the same
address points to the same physical memory for any valid main memory address in
the process address space.

To achieve this, HMM offers a set of helpers to populate the device page table
while keeping track of CPU page table updates. Device page table updates are
not as easy as CPU page table updates. To update the device page table, you must
allocate a buffer (or use a pool of pre-allocated buffers) and write GPU
specific commands in it to perform the update (unmap, cache invalidations, and
flush, ...). This cannot be done through common code for all devices. Hence
why HMM provides helpers to factor out everything that can be while leaving the
hardware specific details to the device driver.

The second mechanism HMM provides is a new kind of ZONE_DEVICE memory that
allows allocating a struct page for each page of the device memory. Those pages
are special because the CPU cannot map them. However, they allow migrating
main memory to device memory using existing migration mechanisms and everything
looks like a page is swapped out to disk from the CPU point of view. Using a
struct page gives the easiest and cleanest integration with existing mm mech-
anisms. Here again, HMM only provides helpers, first to hotplug new ZONE_DEVICE
memory for the device memory and second to perform migration. Policy decisions
of what and when to migrate things is left to the device driver.

Note that any CPU access to a device page triggers a page fault and a migration
back to main memory. For example, when a page backing a given CPU address A is
migrated from a main memory page to a device page, then any CPU access to
address A triggers a page fault and initiates a migration back to main memory.

With these two features, HMM not only allows a device to mirror process address
space and keeping both CPU and device page table synchronized, but also lever-
ages device memory by migrating the part of the data set that is actively being
used by the device.




Address space mirroring implementation and API

Address space mirroring’s main objective is to allow duplication of a range of
CPU page table into a device page table; HMM helps keep both synchronized. A
device driver that wants to mirror a process address space must start with the
registration of an hmm_mirror struct:

int hmm_mirror_register(struct hmm_mirror *mirror,
                        struct mm_struct *mm);
int hmm_mirror_register_locked(struct hmm_mirror *mirror,
                               struct mm_struct *mm);





The locked variant is to be used when the driver is already holding mmap_sem
of the mm in write mode. The mirror struct has a set of callbacks that are used
to propagate CPU page tables:

struct hmm_mirror_ops {
    /* sync_cpu_device_pagetables() - synchronize page tables
     *
     * @mirror: pointer to struct hmm_mirror
     * @update_type: type of update that occurred to the CPU page table
     * @start: virtual start address of the range to update
     * @end: virtual end address of the range to update
     *
     * This callback ultimately originates from mmu_notifiers when the CPU
     * page table is updated. The device driver must update its page table
     * in response to this callback. The update argument tells what action
     * to perform.
     *
     * The device driver must not return from this callback until the device
     * page tables are completely updated (TLBs flushed, etc); this is a
     * synchronous call.
     */
     void (*update)(struct hmm_mirror *mirror,
                    enum hmm_update action,
                    unsigned long start,
                    unsigned long end);
};





The device driver must perform the update action to the range (mark range
read only, or fully unmap, ...). The device must be done with the update before
the driver callback returns.

When the device driver wants to populate a range of virtual addresses, it can
use either:

int hmm_vma_get_pfns(struct vm_area_struct *vma,
                    struct hmm_range *range,
                    unsigned long start,
                    unsigned long end,
                    hmm_pfn_t *pfns);
int hmm_vma_fault(struct vm_area_struct *vma,
                  struct hmm_range *range,
                  unsigned long start,
                  unsigned long end,
                  hmm_pfn_t *pfns,
                  bool write,
                  bool block);





The first one (hmm_vma_get_pfns()) will only fetch present CPU page table
entries and will not trigger a page fault on missing or non-present entries.
The second one does trigger a page fault on missing or read-only entry if the
write parameter is true. Page faults use the generic mm page fault code path
just like a CPU page fault.

Both functions copy CPU page table entries into their pfns array argument. Each
entry in that array corresponds to an address in the virtual range. HMM
provides a set of flags to help the driver identify special CPU page table
entries.

Locking with the update() callback is the most important aspect the driver must
respect in order to keep things properly synchronized. The usage pattern is:

int driver_populate_range(...)
{
     struct hmm_range range;
     ...
again:
     ret = hmm_vma_get_pfns(vma, &range, start, end, pfns);
     if (ret)
         return ret;
     take_lock(driver->update);
     if (!hmm_vma_range_done(vma, &range)) {
         release_lock(driver->update);
         goto again;
     }

     // Use pfns array content to update device page table

     release_lock(driver->update);
     return 0;
}





The driver->update lock is the same lock that the driver takes inside its
update() callback. That lock must be held before hmm_vma_range_done() to avoid
any race with a concurrent CPU page table update.

HMM implements all this on top of the mmu_notifier API because we wanted a
simpler API and also to be able to perform optimizations latter on like doing
concurrent device updates in multi-devices scenario.

HMM also serves as an impedance mismatch between how CPU page table updates
are done (by CPU write to the page table and TLB flushes) and how devices
update their own page table. Device updates are a multi-step process. First,
appropriate commands are written to a buffer, then this buffer is scheduled for
execution on the device. It is only once the device has executed commands in
the buffer that the update is done. Creating and scheduling the update command
buffer can happen concurrently for multiple devices. Waiting for each device to
report commands as executed is serialized (there is no point in doing this
concurrently).




Represent and manage device memory from core kernel point of view

Several different designs were tried to support device memory. First one used
a device specific data structure to keep information about migrated memory and
HMM hooked itself in various places of mm code to handle any access to
addresses that were backed by device memory. It turns out that this ended up
replicating most of the fields of struct page and also needed many kernel code
paths to be updated to understand this new kind of memory.

Most kernel code paths never try to access the memory behind a page
but only care about struct page contents. Because of this, HMM switched to
directly using struct page for device memory which left most kernel code paths
unaware of the difference. We only need to make sure that no one ever tries to
map those pages from the CPU side.

HMM provides a set of helpers to register and hotplug device memory as a new
region needing a struct page. This is offered through a very simple API:

struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
                                  struct device *device,
                                  unsigned long size);
void hmm_devmem_remove(struct hmm_devmem *devmem);





The hmm_devmem_ops is where most of the important things are:

struct hmm_devmem_ops {
    void (*free)(struct hmm_devmem *devmem, struct page *page);
    int (*fault)(struct hmm_devmem *devmem,
                 struct vm_area_struct *vma,
                 unsigned long addr,
                 struct page *page,
                 unsigned flags,
                 pmd_t *pmdp);
};





The first callback (free()) happens when the last reference on a device page is
dropped. This means the device page is now free and no longer used by anyone.
The second callback happens whenever the CPU tries to access a device page
which it cannot do. This second callback must trigger a migration back to
system memory.




Migration to and from device memory

Because the CPU cannot access device memory, migration must use the device DMA
engine to perform copy from and to device memory. For this we need a new
migration helper:

int migrate_vma(const struct migrate_vma_ops *ops,
                struct vm_area_struct *vma,
                unsigned long mentries,
                unsigned long start,
                unsigned long end,
                unsigned long *src,
                unsigned long *dst,
                void *private);





Unlike other migration functions it works on a range of virtual address, there
are two reasons for that. First, device DMA copy has a high setup overhead cost
and thus batching multiple pages is needed as otherwise the migration overhead
makes the whole exercise pointless. The second reason is because the
migration might be for a range of addresses the device is actively accessing.

The migrate_vma_ops struct defines two callbacks. First one (alloc_and_copy())
controls destination memory allocation and copy operation. Second one is there
to allow the device driver to perform cleanup operations after migration:

struct migrate_vma_ops {
    void (*alloc_and_copy)(struct vm_area_struct *vma,
                           const unsigned long *src,
                           unsigned long *dst,
                           unsigned long start,
                           unsigned long end,
                           void *private);
    void (*finalize_and_map)(struct vm_area_struct *vma,
                             const unsigned long *src,
                             const unsigned long *dst,
                             unsigned long start,
                             unsigned long end,
                             void *private);
};





It is important to stress that these migration helpers allow for holes in the
virtual address range. Some pages in the range might not be migrated for all
the usual reasons (page is pinned, page is locked, ...). This helper does not
fail but just skips over those pages.

The alloc_and_copy() might decide to not migrate all pages in the
range (for reasons under the callback control). For those, the callback just
has to leave the corresponding dst entry empty.

Finally, the migration of the struct page might fail (for file backed page) for
various reasons (failure to freeze reference, or update page cache, ...). If
that happens, then the finalize_and_map() can catch any pages that were not
migrated. Note those pages were still copied to a new page and thus we wasted
bandwidth but this is considered as a rare event and a price that we are
willing to pay to keep all the code simpler.




Memory cgroup (memcg) and rss accounting

For now device memory is accounted as any regular page in rss counters (either
anonymous if device page is used for anonymous, file if device page is used for
file backed page or shmem if device page is used for shared memory). This is a
deliberate choice to keep existing applications, that might start using device
memory without knowing about it, running unimpacted.

A drawback is that the OOM killer might kill an application using a lot of
device memory and not a lot of regular system memory and thus not freeing much
system memory. We want to gather more real world experience on how applications
and system react under memory pressure in the presence of device memory before
deciding to account device memory differently.

Same decision was made for memory cgroup. Device memory pages are accounted
against same memory cgroup a regular page would be accounted to. This does
simplify migration to and from device memory. This also means that migration
back from device memory to regular memory cannot fail because it would
go above memory cgroup limit. We might revisit this choice latter on once we
get more experience in how device memory is used and its impact on memory
resource control.

Note that device memory can never be pinned by device driver nor through GUP
and thus such memory is always free upon process exit. Or when last reference
is dropped in case of shared memory or file backed memory.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    hwpoison
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
hwpoison


What is hwpoison?

Upcoming Intel CPUs have support for recovering from some memory errors
(MCA recovery). This requires the OS to declare a page “poisoned”,
kill the processes associated with it and avoid using it in the future.

This patchkit implements the necessary infrastructure in the VM.

To quote the overview comment:



	High level machine check handler. Handles pages reported by the

	hardware as being corrupted usually due to a 2bit ECC memory or cache

	failure.

	

	This focusses on pages detected as corrupted in the background.

	When the current CPU tries to consume corruption the currently

	running process can just be killed directly instead. This implies

	that if the error cannot be handled for some reason it’s safe to

	just ignore it because no corruption has been consumed yet. Instead

	when that happens another machine check will happen.

	

	Handles page cache pages in various states. The tricky part

	here is that we can access any page asynchronous to other VM

	users, because memory failures could happen anytime and anywhere,

	possibly violating some of their assumptions. This is why this code

	has to be extremely careful. Generally it tries to use normal locking

	rules, as in get the standard locks, even if that means the

	error handling takes potentially a long time.

	

	Some of the operations here are somewhat inefficient and have non

	linear algorithmic complexity, because the data structures have not

	been optimized for this case. This is in particular the case

	for the mapping from a vma to a process. Since this case is expected

	to be rare we hope we can get away with this.






The code consists of a the high level handler in mm/memory-failure.c,
a new page poison bit and various checks in the VM to handle poisoned
pages.

The main target right now is KVM guests, but it works for all kinds
of applications. KVM support requires a recent qemu-kvm release.

For the KVM use there was need for a new signal type so that
KVM can inject the machine check into the guest with the proper
address. This in theory allows other applications to handle
memory failures too. The expection is that near all applications
won’t do that, but some very specialized ones might.




Failure recovery modes

There are two (actually three) modes memory failure recovery can be in:


	vm.memory_failure_recovery sysctl set to zero:

	All memory failures cause a panic. Do not attempt recovery.
(on x86 this can be also affected by the tolerant level of the
MCE subsystem)

	early kill

	(can be controlled globally and per process)
Send SIGBUS to the application as soon as the error is detected
This allows applications who can process memory errors in a gentle
way (e.g. drop affected object)
This is the mode used by KVM qemu.

	late kill

	Send SIGBUS when the application runs into the corrupted page.
This is best for memory error unaware applications and default
Note some pages are always handled as late kill.






User control


	vm.memory_failure_recovery

	See sysctl.txt

	vm.memory_failure_early_kill

	Enable early kill mode globally

	PR_MCE_KILL

	Set early/late kill mode/revert to system default


	arg1: PR_MCE_KILL_CLEAR:

	Revert to system default

	arg1: PR_MCE_KILL_SET:

	arg2 defines thread specific mode


	PR_MCE_KILL_EARLY:

	Early kill

	PR_MCE_KILL_LATE:

	Late kill

	PR_MCE_KILL_DEFAULT

	Use system global default







Note that if you want to have a dedicated thread which handles
the SIGBUS(BUS_MCEERR_AO) on behalf of the process, you should
call prctl(PR_MCE_KILL_EARLY) on the designated thread. Otherwise,
the SIGBUS is sent to the main thread.



	PR_MCE_KILL_GET

	return current mode






Testing


	madvise(MADV_HWPOISON, ....) (as root) - Poison a page in the
process for testing



	hwpoison-inject module through debugfs /sys/kernel/debug/hwpoison/


	corrupt-pfn

	Inject hwpoison fault at PFN echoed into this file. This does
some early filtering to avoid corrupted unintended pages in test suites.



	unpoison-pfn

	Software-unpoison page at PFN echoed into this file. This way
a page can be reused again.  This only works for Linux
injected failures, not for real memory failures.





Note these injection interfaces are not stable and might change between
kernel versions


	corrupt-filter-dev-major, corrupt-filter-dev-minor

	Only handle memory failures to pages associated with the file
system defined by block device major/minor.  -1U is the
wildcard value.  This should be only used for testing with
artificial injection.



	corrupt-filter-memcg

	Limit injection to pages owned by memgroup. Specified by inode
number of the memcg.

Example:

mkdir /sys/fs/cgroup/mem/hwpoison

usemem -m 100 -s 1000 &
echo `jobs -p` > /sys/fs/cgroup/mem/hwpoison/tasks

memcg_ino=$(ls -id /sys/fs/cgroup/mem/hwpoison | cut -f1 -d' ')
echo $memcg_ino > /debug/hwpoison/corrupt-filter-memcg

page-types -p `pidof init`   --hwpoison  # shall do nothing
page-types -p `pidof usemem` --hwpoison  # poison its pages







	corrupt-filter-flags-mask, corrupt-filter-flags-value

	When specified, only poison pages if ((page_flags & mask) ==
value).  This allows stress testing of many kinds of
pages. The page_flags are the same as in /proc/kpageflags. The
flag bits are defined in include/linux/kernel-page-flags.h and
documented in Documentation/admin-guide/mm/pagemap.rst







	Architecture specific MCE injector

x86 has mce-inject, mce-test

Some portable hwpoison test programs in mce-test, see below.








References


	http://halobates.de/mce-lc09-2.pdf

	Overview presentation from LinuxCon 09

	git://git.kernel.org/pub/scm/utils/cpu/mce/mce-test.git

	Test suite (hwpoison specific portable tests in tsrc)

	git://git.kernel.org/pub/scm/utils/cpu/mce/mce-inject.git

	x86 specific injector






Limitations


	Not all page types are supported and never will. Most kernel internal
objects cannot be recovered, only LRU pages for now.

	Right now hugepage support is missing.



—
Andi Kleen, Oct 2009







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Hugetlbfs Reservation
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Hugetlbfs Reservation


Overview

Huge pages as described at HugeTLB Pages are typically
preallocated for application use.  These huge pages are instantiated in a
task’s address space at page fault time if the VMA indicates huge pages are
to be used.  If no huge page exists at page fault time, the task is sent
a SIGBUS and often dies an unhappy death.  Shortly after huge page support
was added, it was determined that it would be better to detect a shortage
of huge pages at mmap() time.  The idea is that if there were not enough
huge pages to cover the mapping, the mmap() would fail.  This was first
done with a simple check in the code at mmap() time to determine if there
were enough free huge pages to cover the mapping.  Like most things in the
kernel, the code has evolved over time.  However, the basic idea was to
‘reserve’ huge pages at mmap() time to ensure that huge pages would be
available for page faults in that mapping.  The description below attempts to
describe how huge page reserve processing is done in the v4.10 kernel.




Audience

This description is primarily targeted at kernel developers who are modifying
hugetlbfs code.




The Data Structures


	resv_huge_pages

	This is a global (per-hstate) count of reserved huge pages.  Reserved
huge pages are only available to the task which reserved them.
Therefore, the number of huge pages generally available is computed
as (free_huge_pages - resv_huge_pages).

	Reserve Map

	A reserve map is described by the structure:

struct resv_map {
        struct kref refs;
        spinlock_t lock;
        struct list_head regions;
        long adds_in_progress;
        struct list_head region_cache;
        long region_cache_count;
};





There is one reserve map for each huge page mapping in the system.
The regions list within the resv_map describes the regions within
the mapping.  A region is described as:

struct file_region {
        struct list_head link;
        long from;
        long to;
};





The ‘from’ and ‘to’ fields of the file region structure are huge page
indices into the mapping.  Depending on the type of mapping, a
region in the reserv_map may indicate reservations exist for the
range, or reservations do not exist.



	Flags for MAP_PRIVATE Reservations

	These are stored in the bottom bits of the reservation map pointer.


	#define HPAGE_RESV_OWNER    (1UL << 0)

	Indicates this task is the owner of the reservations
associated with the mapping.

	#define HPAGE_RESV_UNMAPPED (1UL << 1)

	Indicates task originally mapping this range (and creating
reserves) has unmapped a page from this task (the child)
due to a failed COW.





	Page Flags

	The PagePrivate page flag is used to indicate that a huge page
reservation must be restored when the huge page is freed.  More
details will be discussed in the “Freeing huge pages” section.






Reservation Map Location (Private or Shared)

A huge page mapping or segment is either private or shared.  If private,
it is typically only available to a single address space (task).  If shared,
it can be mapped into multiple address spaces (tasks).  The location and
semantics of the reservation map is significantly different for two types
of mappings.  Location differences are:


	For private mappings, the reservation map hangs off the the VMA structure.
Specifically, vma->vm_private_data.  This reserve map is created at the
time the mapping (mmap(MAP_PRIVATE)) is created.

	For shared mappings, the reservation map hangs off the inode.  Specifically,
inode->i_mapping->private_data.  Since shared mappings are always backed
by files in the hugetlbfs filesystem, the hugetlbfs code ensures each inode
contains a reservation map.  As a result, the reservation map is allocated
when the inode is created.






Creating Reservations

Reservations are created when a huge page backed shared memory segment is
created (shmget(SHM_HUGETLB)) or a mapping is created via mmap(MAP_HUGETLB).
These operations result in a call to the routine hugetlb_reserve_pages():

int hugetlb_reserve_pages(struct inode *inode,
                          long from, long to,
                          struct vm_area_struct *vma,
                          vm_flags_t vm_flags)





The first thing hugetlb_reserve_pages() does is check for the NORESERVE
flag was specified in either the shmget() or mmap() call.  If NORESERVE
was specified, then this routine returns immediately as no reservation
are desired.

The arguments ‘from’ and ‘to’ are huge page indices into the mapping or
underlying file.  For shmget(), ‘from’ is always 0 and ‘to’ corresponds to
the length of the segment/mapping.  For mmap(), the offset argument could
be used to specify the offset into the underlying file.  In such a case
the ‘from’ and ‘to’ arguments have been adjusted by this offset.

One of the big differences between PRIVATE and SHARED mappings is the way
in which reservations are represented in the reservation map.


	For shared mappings, an entry in the reservation map indicates a reservation
exists or did exist for the corresponding page.  As reservations are
consumed, the reservation map is not modified.

	For private mappings, the lack of an entry in the reservation map indicates
a reservation exists for the corresponding page.  As reservations are
consumed, entries are added to the reservation map.  Therefore, the
reservation map can also be used to determine which reservations have
been consumed.



For private mappings, hugetlb_reserve_pages() creates the reservation map and
hangs it off the VMA structure.  In addition, the HPAGE_RESV_OWNER flag is set
to indicate this VMA owns the reservations.

The reservation map is consulted to determine how many huge page reservations
are needed for the current mapping/segment.  For private mappings, this is
always the value (to - from).  However, for shared mappings it is possible that some reservations may already exist within the range (to - from).  See the
section Reservation Map Modifications
for details on how this is accomplished.

The mapping may be associated with a subpool.  If so, the subpool is consulted
to ensure there is sufficient space for the mapping.  It is possible that the
subpool has set aside reservations that can be used for the mapping.  See the
section Subpool Reservations for more details.

After consulting the reservation map and subpool, the number of needed new
reservations is known.  The routine hugetlb_acct_memory() is called to check
for and take the requested number of reservations.  hugetlb_acct_memory()
calls into routines that potentially allocate and adjust surplus page counts.
However, within those routines the code is simply checking to ensure there
are enough free huge pages to accommodate the reservation.  If there are,
the global reservation count resv_huge_pages is adjusted something like the
following:

if (resv_needed <= (resv_huge_pages - free_huge_pages))
        resv_huge_pages += resv_needed;





Note that the global lock hugetlb_lock is held when checking and adjusting
these counters.

If there were enough free huge pages and the global count resv_huge_pages
was adjusted, then the reservation map associated with the mapping is
modified to reflect the reservations.  In the case of a shared mapping, a
file_region will exist that includes the range ‘from’ ‘to’.  For private
mappings, no modifications are made to the reservation map as lack of an
entry indicates a reservation exists.

If hugetlb_reserve_pages() was successful, the global reservation count and
reservation map associated with the mapping will be modified as required to
ensure reservations exist for the range ‘from’ - ‘to’.




Consuming Reservations/Allocating a Huge Page

Reservations are consumed when huge pages associated with the reservations
are allocated and instantiated in the corresponding mapping.  The allocation
is performed within the routine alloc_huge_page():

struct page *alloc_huge_page(struct vm_area_struct *vma,
                             unsigned long addr, int avoid_reserve)





alloc_huge_page is passed a VMA pointer and a virtual address, so it can
consult the reservation map to determine if a reservation exists.  In addition,
alloc_huge_page takes the argument avoid_reserve which indicates reserves
should not be used even if it appears they have been set aside for the
specified address.  The avoid_reserve argument is most often used in the case
of Copy on Write and Page Migration where additional copies of an existing
page are being allocated.

The helper routine vma_needs_reservation() is called to determine if a
reservation exists for the address within the mapping(vma).  See the section
Reservation Map Helper Routines for detailed
information on what this routine does.
The value returned from vma_needs_reservation() is generally
0 or 1.  0 if a reservation exists for the address, 1 if no reservation exists.
If a reservation does not exist, and there is a subpool associated with the
mapping the subpool is consulted to determine if it contains reservations.
If the subpool contains reservations, one can be used for this allocation.
However, in every case the avoid_reserve argument overrides the use of
a reservation for the allocation.  After determining whether a reservation
exists and can be used for the allocation, the routine dequeue_huge_page_vma()
is called.  This routine takes two arguments related to reservations:


	avoid_reserve, this is the same value/argument passed to alloc_huge_page()

	chg, even though this argument is of type long only the values 0 or 1 are
passed to dequeue_huge_page_vma.  If the value is 0, it indicates a
reservation exists (see the section “Memory Policy and Reservations” for
possible issues).  If the value is 1, it indicates a reservation does not
exist and the page must be taken from the global free pool if possible.



The free lists associated with the memory policy of the VMA are searched for
a free page.  If a page is found, the value free_huge_pages is decremented
when the page is removed from the free list.  If there was a reservation
associated with the page, the following adjustments are made:

SetPagePrivate(page);   /* Indicates allocating this page consumed
                         * a reservation, and if an error is
                         * encountered such that the page must be
                         * freed, the reservation will be restored. */
resv_huge_pages--;      /* Decrement the global reservation count */





Note, if no huge page can be found that satisfies the VMA’s memory policy
an attempt will be made to allocate one using the buddy allocator.  This
brings up the issue of surplus huge pages and overcommit which is beyond
the scope reservations.  Even if a surplus page is allocated, the same
reservation based adjustments as above will be made: SetPagePrivate(page) and
resv_huge_pages–.

After obtaining a new huge page, (page)->private is set to the value of
the subpool associated with the page if it exists.  This will be used for
subpool accounting when the page is freed.

The routine vma_commit_reservation() is then called to adjust the reserve
map based on the consumption of the reservation.  In general, this involves
ensuring the page is represented within a file_region structure of the region
map.  For shared mappings where the the reservation was present, an entry
in the reserve map already existed so no change is made.  However, if there
was no reservation in a shared mapping or this was a private mapping a new
entry must be created.

It is possible that the reserve map could have been changed between the call
to vma_needs_reservation() at the beginning of alloc_huge_page() and the
call to vma_commit_reservation() after the page was allocated.  This would
be possible if hugetlb_reserve_pages was called for the same page in a shared
mapping.  In such cases, the reservation count and subpool free page count
will be off by one.  This rare condition can be identified by comparing the
return value from vma_needs_reservation and vma_commit_reservation.  If such
a race is detected, the subpool and global reserve counts are adjusted to
compensate.  See the section
Reservation Map Helper Routines for more
information on these routines.




Instantiate Huge Pages

After huge page allocation, the page is typically added to the page tables
of the allocating task.  Before this, pages in a shared mapping are added
to the page cache and pages in private mappings are added to an anonymous
reverse mapping.  In both cases, the PagePrivate flag is cleared.  Therefore,
when a huge page that has been instantiated is freed no adjustment is made
to the global reservation count (resv_huge_pages).




Freeing Huge Pages

Huge page freeing is performed by the routine free_huge_page().  This routine
is the destructor for hugetlbfs compound pages.  As a result, it is only
passed a pointer to the page struct.  When a huge page is freed, reservation
accounting may need to be performed.  This would be the case if the page was
associated with a subpool that contained reserves, or the page is being freed
on an error path where a global reserve count must be restored.

The page->private field points to any subpool associated with the page.
If the PagePrivate flag is set, it indicates the global reserve count should
be adjusted (see the section
Consuming Reservations/Allocating a Huge Page
for information on how these are set).

The routine first calls hugepage_subpool_put_pages() for the page.  If this
routine returns a value of 0 (which does not equal the value passed 1) it
indicates reserves are associated with the subpool, and this newly free page
must be used to keep the number of subpool reserves above the minimum size.
Therefore, the global resv_huge_pages counter is incremented in this case.

If the PagePrivate flag was set in the page, the global resv_huge_pages counter
will always be incremented.




Subpool Reservations

There is a struct hstate associated with each huge page size.  The hstate
tracks all huge pages of the specified size.  A subpool represents a subset
of pages within a hstate that is associated with a mounted hugetlbfs
filesystem.

When a hugetlbfs filesystem is mounted a min_size option can be specified
which indicates the minimum number of huge pages required by the filesystem.
If this option is specified, the number of huge pages corresponding to
min_size are reserved for use by the filesystem.  This number is tracked in
the min_hpages field of a struct hugepage_subpool.  At mount time,
hugetlb_acct_memory(min_hpages) is called to reserve the specified number of
huge pages.  If they can not be reserved, the mount fails.

The routines hugepage_subpool_get/put_pages() are called when pages are
obtained from or released back to a subpool.  They perform all subpool
accounting, and track any reservations associated with the subpool.
hugepage_subpool_get/put_pages are passed the number of huge pages by which
to adjust the subpool ‘used page’ count (down for get, up for put).  Normally,
they return the same value that was passed or an error if not enough pages
exist in the subpool.

However, if reserves are associated with the subpool a return value less
than the passed value may be returned.  This return value indicates the
number of additional global pool adjustments which must be made.  For example,
suppose a subpool contains 3 reserved huge pages and someone asks for 5.
The 3 reserved pages associated with the subpool can be used to satisfy part
of the request.  But, 2 pages must be obtained from the global pools.  To
relay this information to the caller, the value 2 is returned.  The caller
is then responsible for attempting to obtain the additional two pages from
the global pools.




COW and Reservations

Since shared mappings all point to and use the same underlying pages, the
biggest reservation concern for COW is private mappings.  In this case,
two tasks can be pointing at the same previously allocated page.  One task
attempts to write to the page, so a new page must be allocated so that each
task points to its own page.

When the page was originally allocated, the reservation for that page was
consumed.  When an attempt to allocate a new page is made as a result of
COW, it is possible that no free huge pages are free and the allocation
will fail.

When the private mapping was originally created, the owner of the mapping
was noted by setting the HPAGE_RESV_OWNER bit in the pointer to the reservation
map of the owner.  Since the owner created the mapping, the owner owns all
the reservations associated with the mapping.  Therefore, when a write fault
occurs and there is no page available, different action is taken for the owner
and non-owner of the reservation.

In the case where the faulting task is not the owner, the fault will fail and
the task will typically receive a SIGBUS.

If the owner is the faulting task, we want it to succeed since it owned the
original reservation.  To accomplish this, the page is unmapped from the
non-owning task.  In this way, the only reference is from the owning task.
In addition, the HPAGE_RESV_UNMAPPED bit is set in the reservation map pointer
of the non-owning task.  The non-owning task may receive a SIGBUS if it later
faults on a non-present page.  But, the original owner of the
mapping/reservation will behave as expected.




Reservation Map Modifications

The following low level routines are used to make modifications to a
reservation map.  Typically, these routines are not called directly.  Rather,
a reservation map helper routine is called which calls one of these low level
routines.  These low level routines are fairly well documented in the source
code (mm/hugetlb.c).  These routines are:

long region_chg(struct resv_map *resv, long f, long t);
long region_add(struct resv_map *resv, long f, long t);
void region_abort(struct resv_map *resv, long f, long t);
long region_count(struct resv_map *resv, long f, long t);





Operations on the reservation map typically involve two operations:


	region_chg() is called to examine the reserve map and determine how
many pages in the specified range [f, t) are NOT currently represented.

The calling code performs global checks and allocations to determine if
there are enough huge pages for the operation to succeed.



	
	If the operation can succeed, region_add() is called to actually modify
the reservation map for the same range [f, t) previously passed to
region_chg().

	If the operation can not succeed, region_abort is called for the same
range [f, t) to abort the operation.







Note that this is a two step process where region_add() and region_abort()
are guaranteed to succeed after a prior call to region_chg() for the same
range.  region_chg() is responsible for pre-allocating any data structures
necessary to ensure the subsequent operations (specifically region_add()))
will succeed.

As mentioned above, region_chg() determines the number of pages in the range
which are NOT currently represented in the map.  This number is returned to
the caller.  region_add() returns the number of pages in the range added to
the map.  In most cases, the return value of region_add() is the same as the
return value of region_chg().  However, in the case of shared mappings it is
possible for changes to the reservation map to be made between the calls to
region_chg() and region_add().  In this case, the return value of region_add()
will not match the return value of region_chg().  It is likely that in such
cases global counts and subpool accounting will be incorrect and in need of
adjustment.  It is the responsibility of the caller to check for this condition
and make the appropriate adjustments.

The routine region_del() is called to remove regions from a reservation map.
It is typically called in the following situations:


	When a file in the hugetlbfs filesystem is being removed, the inode will
be released and the reservation map freed.  Before freeing the reservation
map, all the individual file_region structures must be freed.  In this case
region_del is passed the range [0, LONG_MAX).

	When a hugetlbfs file is being truncated.  In this case, all allocated pages
after the new file size must be freed.  In addition, any file_region entries
in the reservation map past the new end of file must be deleted.  In this
case, region_del is passed the range [new_end_of_file, LONG_MAX).

	When a hole is being punched in a hugetlbfs file.  In this case, huge pages
are removed from the middle of the file one at a time.  As the pages are
removed, region_del() is called to remove the corresponding entry from the
reservation map.  In this case, region_del is passed the range
[page_idx, page_idx + 1).



In every case, region_del() will return the number of pages removed from the
reservation map.  In VERY rare cases, region_del() can fail.  This can only
happen in the hole punch case where it has to split an existing file_region
entry and can not allocate a new structure.  In this error case, region_del()
will return -ENOMEM.  The problem here is that the reservation map will
indicate that there is a reservation for the page.  However, the subpool and
global reservation counts will not reflect the reservation.  To handle this
situation, the routine hugetlb_fix_reserve_counts() is called to adjust the
counters so that they correspond with the reservation map entry that could
not be deleted.

region_count() is called when unmapping a private huge page mapping.  In
private mappings, the lack of a entry in the reservation map indicates that
a reservation exists.  Therefore, by counting the number of entries in the
reservation map we know how many reservations were consumed and how many are
outstanding (outstanding = (end - start) - region_count(resv, start, end)).
Since the mapping is going away, the subpool and global reservation counts
are decremented by the number of outstanding reservations.




Reservation Map Helper Routines

Several helper routines exist to query and modify the reservation maps.
These routines are only interested with reservations for a specific huge
page, so they just pass in an address instead of a range.  In addition,
they pass in the associated VMA.  From the VMA, the type of mapping (private
or shared) and the location of the reservation map (inode or VMA) can be
determined.  These routines simply call the underlying routines described
in the section “Reservation Map Modifications”.  However, they do take into
account the ‘opposite’ meaning of reservation map entries for private and
shared mappings and hide this detail from the caller:

long vma_needs_reservation(struct hstate *h,
                           struct vm_area_struct *vma,
                           unsigned long addr)





This routine calls region_chg() for the specified page.  If no reservation
exists, 1 is returned.  If a reservation exists, 0 is returned:

long vma_commit_reservation(struct hstate *h,
                            struct vm_area_struct *vma,
                            unsigned long addr)





This calls region_add() for the specified page.  As in the case of region_chg
and region_add, this routine is to be called after a previous call to
vma_needs_reservation.  It will add a reservation entry for the page.  It
returns 1 if the reservation was added and 0 if not.  The return value should
be compared with the return value of the previous call to
vma_needs_reservation.  An unexpected difference indicates the reservation
map was modified between calls:

void vma_end_reservation(struct hstate *h,
                         struct vm_area_struct *vma,
                         unsigned long addr)





This calls region_abort() for the specified page.  As in the case of region_chg
and region_abort, this routine is to be called after a previous call to
vma_needs_reservation.  It will abort/end the in progress reservation add
operation:

long vma_add_reservation(struct hstate *h,
                         struct vm_area_struct *vma,
                         unsigned long addr)





This is a special wrapper routine to help facilitate reservation cleanup
on error paths.  It is only called from the routine restore_reserve_on_error().
This routine is used in conjunction with vma_needs_reservation in an attempt
to add a reservation to the reservation map.  It takes into account the
different reservation map semantics for private and shared mappings.  Hence,
region_add is called for shared mappings (as an entry present in the map
indicates a reservation), and region_del is called for private mappings (as
the absence of an entry in the map indicates a reservation).  See the section
“Reservation cleanup in error paths” for more information on what needs to
be done on error paths.




Reservation Cleanup in Error Paths

As mentioned in the section
Reservation Map Helper Routines, reservation
map modifications are performed in two steps.  First vma_needs_reservation
is called before a page is allocated.  If the allocation is successful,
then vma_commit_reservation is called.  If not, vma_end_reservation is called.
Global and subpool reservation counts are adjusted based on success or failure
of the operation and all is well.

Additionally, after a huge page is instantiated the PagePrivate flag is
cleared so that accounting when the page is ultimately freed is correct.

However, there are several instances where errors are encountered after a huge
page is allocated but before it is instantiated.  In this case, the page
allocation has consumed the reservation and made the appropriate subpool,
reservation map and global count adjustments.  If the page is freed at this
time (before instantiation and clearing of PagePrivate), then free_huge_page
will increment the global reservation count.  However, the reservation map
indicates the reservation was consumed.  This resulting inconsistent state
will cause the ‘leak’ of a reserved huge page.  The global reserve count will
be  higher than it should and prevent allocation of a pre-allocated page.

The routine restore_reserve_on_error() attempts to handle this situation.  It
is fairly well documented.  The intention of this routine is to restore
the reservation map to the way it was before the page allocation.   In this
way, the state of the reservation map will correspond to the global reservation
count after the page is freed.

The routine restore_reserve_on_error itself may encounter errors while
attempting to restore the reservation map entry.  In this case, it will
simply clear the PagePrivate flag of the page.  In this way, the global
reserve count will not be incremented when the page is freed.  However, the
reservation map will continue to look as though the reservation was consumed.
A page can still be allocated for the address, but it will not use a reserved
page as originally intended.

There is some code (most notably userfaultfd) which can not call
restore_reserve_on_error.  In this case, it simply modifies the PagePrivate
so that a reservation will not be leaked when the huge page is freed.




Reservations and Memory Policy

Per-node huge page lists existed in struct hstate when git was first used
to manage Linux code.  The concept of reservations was added some time later.
When reservations were added, no attempt was made to take memory policy
into account.  While cpusets are not exactly the same as memory policy, this
comment in hugetlb_acct_memory sums up the interaction between reservations
and cpusets/memory policy:

/*
 * When cpuset is configured, it breaks the strict hugetlb page
 * reservation as the accounting is done on a global variable. Such
 * reservation is completely rubbish in the presence of cpuset because
 * the reservation is not checked against page availability for the
 * current cpuset. Application can still potentially OOM'ed by kernel
 * with lack of free htlb page in cpuset that the task is in.
 * Attempt to enforce strict accounting with cpuset is almost
 * impossible (or too ugly) because cpuset is too fluid that
 * task or memory node can be dynamically moved between cpusets.
 *
 * The change of semantics for shared hugetlb mapping with cpuset is
 * undesirable. However, in order to preserve some of the semantics,
 * we fall back to check against current free page availability as
 * a best attempt and hopefully to minimize the impact of changing
 * semantics that cpuset has.
 */





Huge page reservations were added to prevent unexpected page allocation
failures (OOM) at page fault time.  However, if an application makes use
of cpusets or memory policy there is no guarantee that huge pages will be
available on the required nodes.  This is true even if there are a sufficient
number of global reservations.




Hugetlbfs regression testing

The most complete set of hugetlb tests are in the libhugetlbfs repository.
If you modify any hugetlb related code, use the libhugetlbfs test suite
to check for regressions.  In addition, if you add any new hugetlb
functionality, please add appropriate tests to libhugetlbfs.

–
Mike Kravetz, 7 April 2017







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Kernel Samepage Merging
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Kernel Samepage Merging

KSM is a memory-saving de-duplication feature, enabled by CONFIG_KSM=y,
added to the Linux kernel in 2.6.32.  See mm/ksm.c for its implementation,
and http://lwn.net/Articles/306704/ and http://lwn.net/Articles/330589/

The userspace interface of KSM is described in Documentation/admin-guide/mm/ksm.rst


Design


Overview


错误

kernel-doc missing






Reverse mapping

KSM maintains reverse mapping information for KSM pages in the stable
tree.

If a KSM page is shared between less than max_page_sharing VMAs,
the node of the stable tree that represents such KSM page points to a
list of struct rmap_item and the page->mapping of the
KSM page points to the stable tree node.

When the sharing passes this threshold, KSM adds a second dimension to
the stable tree. The tree node becomes a “chain” that links one or
more “dups”. Each “dup” keeps reverse mapping information for a KSM
page with page->mapping pointing to that “dup”.

Every “chain” and all “dups” linked into a “chain” enforce the
invariant that they represent the same write protected memory content,
even if each “dup” will be pointed by a different KSM page copy of
that content.

This way the stable tree lookup computational complexity is unaffected
if compared to an unlimited list of reverse mappings. It is still
enforced that there cannot be KSM page content duplicates in the
stable tree itself.

The deduplication limit enforced by max_page_sharing is required
to avoid the virtual memory rmap lists to grow too large. The rmap
walk has O(N) complexity where N is the number of rmap_items
(i.e. virtual mappings) that are sharing the page, which is in turn
capped by max_page_sharing. So this effectively spreads the linear
O(N) computational complexity from rmap walk context over different
KSM pages. The ksmd walk over the stable_node “chains” is also O(N),
but N is the number of stable_node “dups”, not the number of
rmap_items, so it has not a significant impact on ksmd performance. In
practice the best stable_node “dup” candidate will be kept and found
at the head of the “dups” list.

High values of max_page_sharing result in faster memory merging
(because there will be fewer stable_node dups queued into the
stable_node chain->hlist to check for pruning) and higher
deduplication factor at the expense of slower worst case for rmap
walks for any KSM page which can happen during swapping, compaction,
NUMA balancing and page migration.

The stable_node_dups/stable_node_chains ratio is also affected by the
max_page_sharing tunable, and an high ratio may indicate fragmentation
in the stable_node dups, which could be solved by introducing
fragmentation algorithms in ksmd which would refile rmap_items from
one stable_node dup to another stable_node dup, in order to free up
stable_node “dups” with few rmap_items in them, but that may increase
the ksmd CPU usage and possibly slowdown the readonly computations on
the KSM pages of the applications.

The whole list of stable_node “dups” linked in the stable_node
“chains” is scanned periodically in order to prune stale stable_nodes.
The frequency of such scans is defined by
stable_node_chains_prune_millisecs sysfs tunable.




Reference


错误

kernel-doc missing



–
Izik Eidus,
Hugh Dickins, 17 Nov 2009









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    When do you need to notify inside page table lock ?
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
When do you need to notify inside page table lock ?

When clearing a pte/pmd we are given a choice to notify the event through
(notify version of *_clear_flush call mmu_notifier_invalidate_range) under
the page table lock. But that notification is not necessary in all cases.

For secondary TLB (non CPU TLB) like IOMMU TLB or device TLB (when device use
thing like ATS/PASID to get the IOMMU to walk the CPU page table to access a
process virtual address space). There is only 2 cases when you need to notify
those secondary TLB while holding page table lock when clearing a pte/pmd:



	page backing address is free before mmu_notifier_invalidate_range_end()

	a page table entry is updated to point to a new page (COW, write fault
on zero page, __replace_page(), ...)






Case A is obvious you do not want to take the risk for the device to write to
a page that might now be used by some completely different task.

Case B is more subtle. For correctness it requires the following sequence to
happen:



	take page table lock

	clear page table entry and notify ([pmd/pte]p_huge_clear_flush_notify())

	set page table entry to point to new page






If clearing the page table entry is not followed by a notify before setting
the new pte/pmd value then you can break memory model like C11 or C++11 for
the device.

Consider the following scenario (device use a feature similar to ATS/PASID):

Two address addrA and addrB such that |addrA - addrB| >= PAGE_SIZE we assume
they are write protected for COW (other case of B apply too).

[Time N] --------------------------------------------------------------------
CPU-thread-0  {try to write to addrA}
CPU-thread-1  {try to write to addrB}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA and populate device TLB}
DEV-thread-2  {read addrB and populate device TLB}
[Time N+1] ------------------------------------------------------------------
CPU-thread-0  {COW_step0: {mmu_notifier_invalidate_range_start(addrA)}}
CPU-thread-1  {COW_step0: {mmu_notifier_invalidate_range_start(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+2] ------------------------------------------------------------------
CPU-thread-0  {COW_step1: {update page table to point to new page for addrA}}
CPU-thread-1  {COW_step1: {update page table to point to new page for addrB}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ------------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {write to addrA which is a write to new page}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+3] ------------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {preempted}
CPU-thread-2  {}
CPU-thread-3  {write to addrB which is a write to new page}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+4] ------------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {COW_step3: {mmu_notifier_invalidate_range_end(addrB)}}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {}
DEV-thread-2  {}
[Time N+5] ------------------------------------------------------------------
CPU-thread-0  {preempted}
CPU-thread-1  {}
CPU-thread-2  {}
CPU-thread-3  {}
DEV-thread-0  {read addrA from old page}
DEV-thread-2  {read addrB from new page}





So here because at time N+2 the clear page table entry was not pair with a
notification to invalidate the secondary TLB, the device see the new value for
addrB before seing the new value for addrA. This break total memory ordering
for the device.

When changing a pte to write protect or to point to a new write protected page
with same content (KSM) it is fine to delay the mmu_notifier_invalidate_range
call to mmu_notifier_invalidate_range_end() outside the page table lock. This
is true even if the thread doing the page table update is preempted right after
releasing page table lock but before call mmu_notifier_invalidate_range_end().





          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    What is NUMA?
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  Started Nov 1999 by Kanoj Sarcar <kanoj@sgi.com>


What is NUMA?

This question can be answered from a couple of perspectives:  the
hardware view and the Linux software view.

From the hardware perspective, a NUMA system is a computer platform that
comprises multiple components or assemblies each of which may contain 0
or more CPUs, local memory, and/or IO buses.  For brevity and to
disambiguate the hardware view of these physical components/assemblies
from the software abstraction thereof, we’ll call the components/assemblies
‘cells’ in this document.

Each of the ‘cells’ may be viewed as an SMP [symmetric multi-processor] subset
of the system–although some components necessary for a stand-alone SMP system
may not be populated on any given cell.   The cells of the NUMA system are
connected together with some sort of system interconnect–e.g., a crossbar or
point-to-point link are common types of NUMA system interconnects.  Both of
these types of interconnects can be aggregated to create NUMA platforms with
cells at multiple distances from other cells.

For Linux, the NUMA platforms of interest are primarily what is known as Cache
Coherent NUMA or ccNUMA systems.   With ccNUMA systems, all memory is visible
to and accessible from any CPU attached to any cell and cache coherency
is handled in hardware by the processor caches and/or the system interconnect.

Memory access time and effective memory bandwidth varies depending on how far
away the cell containing the CPU or IO bus making the memory access is from the
cell containing the target memory.  For example, access to memory by CPUs
attached to the same cell will experience faster access times and higher
bandwidths than accesses to memory on other, remote cells.  NUMA platforms
can have cells at multiple remote distances from any given cell.

Platform vendors don’t build NUMA systems just to make software developers’
lives interesting.  Rather, this architecture is a means to provide scalable
memory bandwidth.  However, to achieve scalable memory bandwidth, system and
application software must arrange for a large majority of the memory references
[cache misses] to be to “local” memory–memory on the same cell, if any–or
to the closest cell with memory.

This leads to the Linux software view of a NUMA system:

Linux divides the system’s hardware resources into multiple software
abstractions called “nodes”.  Linux maps the nodes onto the physical cells
of the hardware platform, abstracting away some of the details for some
architectures.  As with physical cells, software nodes may contain 0 or more
CPUs, memory and/or IO buses.  And, again, memory accesses to memory on
“closer” nodes–nodes that map to closer cells–will generally experience
faster access times and higher effective bandwidth than accesses to more
remote cells.

For some architectures, such as x86, Linux will “hide” any node representing a
physical cell that has no memory attached, and reassign any CPUs attached to
that cell to a node representing a cell that does have memory.  Thus, on
these architectures, one cannot assume that all CPUs that Linux associates with
a given node will see the same local memory access times and bandwidth.

In addition, for some architectures, again x86 is an example, Linux supports
the emulation of additional nodes.  For NUMA emulation, linux will carve up
the existing nodes–or the system memory for non-NUMA platforms–into multiple
nodes.  Each emulated node will manage a fraction of the underlying cells’
physical memory.  NUMA emluation is useful for testing NUMA kernel and
application features on non-NUMA platforms, and as a sort of memory resource
management mechanism when used together with cpusets.
[see Documentation/cgroup-v1/cpusets.txt]

For each node with memory, Linux constructs an independent memory management
subsystem, complete with its own free page lists, in-use page lists, usage
statistics and locks to mediate access.  In addition, Linux constructs for
each memory zone [one or more of DMA, DMA32, NORMAL, HIGH_MEMORY, MOVABLE],
an ordered “zonelist”.  A zonelist specifies the zones/nodes to visit when a
selected zone/node cannot satisfy the allocation request.  This situation,
when a zone has no available memory to satisfy a request, is called
“overflow” or “fallback”.

Because some nodes contain multiple zones containing different types of
memory, Linux must decide whether to order the zonelists such that allocations
fall back to the same zone type on a different node, or to a different zone
type on the same node.  This is an important consideration because some zones,
such as DMA or DMA32, represent relatively scarce resources.  Linux chooses
a default Node ordered zonelist. This means it tries to fallback to other zones
from the same node before using remote nodes which are ordered by NUMA distance.

By default, Linux will attempt to satisfy memory allocation requests from the
node to which the CPU that executes the request is assigned.  Specifically,
Linux will attempt to allocate from the first node in the appropriate zonelist
for the node where the request originates.  This is called “local allocation.”
If the “local” node cannot satisfy the request, the kernel will examine other
nodes’ zones in the selected zonelist looking for the first zone in the list
that can satisfy the request.

Local allocation will tend to keep subsequent access to the allocated memory
“local” to the underlying physical resources and off the system interconnect–
as long as the task on whose behalf the kernel allocated some memory does not
later migrate away from that memory.  The Linux scheduler is aware of the
NUMA topology of the platform–embodied in the “scheduling domains” data
structures [see Documentation/scheduler/sched-domains.txt]–and the scheduler
attempts to minimize task migration to distant scheduling domains.  However,
the scheduler does not take a task’s NUMA footprint into account directly.
Thus, under sufficient imbalance, tasks can migrate between nodes, remote
from their initial node and kernel data structures.

System administrators and application designers can restrict a task’s migration
to improve NUMA locality using various CPU affinity command line interfaces,
such as taskset(1) and numactl(1), and program interfaces such as
sched_setaffinity(2).  Further, one can modify the kernel’s default local
allocation behavior using Linux NUMA memory policy.
[see Documentation/admin-guide/mm/numa_memory_policy.rst.]

System administrators can restrict the CPUs and nodes’ memories that a non-
privileged user can specify in the scheduling or NUMA commands and functions
using control groups and CPUsets.  [see Documentation/cgroup-v1/cpusets.txt]

On architectures that do not hide memoryless nodes, Linux will include only
zones [nodes] with memory in the zonelists.  This means that for a memoryless
node the “local memory node”–the node of the first zone in CPU’s node’s
zonelist–will not be the node itself.  Rather, it will be the node that the
kernel selected as the nearest node with memory when it built the zonelists.
So, default, local allocations will succeed with the kernel supplying the
closest available memory.  This is a consequence of the same mechanism that
allows such allocations to fallback to other nearby nodes when a node that
does contain memory overflows.

Some kernel allocations do not want or cannot tolerate this allocation fallback
behavior.  Rather they want to be sure they get memory from the specified node
or get notified that the node has no free memory.  This is usually the case when
a subsystem allocates per CPU memory resources, for example.

A typical model for making such an allocation is to obtain the node id of the
node to which the “current CPU” is attached using one of the kernel’s
numa_node_id() or CPU_to_node() functions and then request memory from only
the node id returned.  When such an allocation fails, the requesting subsystem
may revert to its own fallback path.  The slab kernel memory allocator is an
example of this.  Or, the subsystem may choose to disable or not to enable
itself on allocation failure.  The kernel profiling subsystem is an example of
this.

If the architecture supports–does not hide–memoryless nodes, then CPUs
attached to memoryless nodes would always incur the fallback path overhead
or some subsystems would fail to initialize if they attempted to allocated
memory exclusively from a node without memory.  To support such
architectures transparently, kernel subsystems can use the numa_mem_id()
or cpu_to_mem() function to locate the “local memory node” for the calling or
specified CPU.  Again, this is the same node from which default, local page
allocations will be attempted.





          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Overcommit Accounting
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Overcommit Accounting

The Linux kernel supports the following overcommit handling modes


	0

	Heuristic overcommit handling. Obvious overcommits of address
space are refused. Used for a typical system. It ensures a
seriously wild allocation fails while allowing overcommit to
reduce swap usage.  root is allowed to allocate slightly more
memory in this mode. This is the default.

	1

	Always overcommit. Appropriate for some scientific
applications. Classic example is code using sparse arrays and
just relying on the virtual memory consisting almost entirely
of zero pages.

	2

	Don’t overcommit. The total address space commit for the
system is not permitted to exceed swap + a configurable amount
(default is 50%) of physical RAM.  Depending on the amount you
use, in most situations this means a process will not be
killed while accessing pages but will receive errors on memory
allocation as appropriate.

Useful for applications that want to guarantee their memory
allocations will be available in the future without having to
initialize every page.





The overcommit policy is set via the sysctl vm.overcommit_memory.

The overcommit amount can be set via vm.overcommit_ratio (percentage)
or vm.overcommit_kbytes (absolute value).

The current overcommit limit and amount committed are viewable in
/proc/meminfo as CommitLimit and Committed_AS respectively.


Gotchas

The C language stack growth does an implicit mremap. If you want absolute
guarantees and run close to the edge you MUST mmap your stack for the
largest size you think you will need. For typical stack usage this does
not matter much but it’s a corner case if you really really care

In mode 2 the MAP_NORESERVE flag is ignored.




How It Works

The overcommit is based on the following rules


	For a file backed map

	
SHARED or READ-only   -       0 cost (the file is the map not swap)

PRIVATE WRITABLE      -       size of mapping per instance





	For an anonymous or /dev/zero map

	
SHARED                        -       size of mapping

PRIVATE READ-only     -       0 cost (but of little use)

PRIVATE WRITABLE      -       size of mapping per instance





	Additional accounting

	
Pages made writable copies by mmap

shmfs memory drawn from the same pool










Status


	We account mmap memory mappings

	We account mprotect changes in commit

	We account mremap changes in size

	We account brk

	We account munmap

	We report the commit status in /proc

	Account and check on fork

	Review stack handling/building on exec

	SHMfs accounting

	Implement actual limit enforcement






To Do


	Account ptrace pages (this is hard)









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Page migration
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Page migration

Page migration allows the moving of the physical location of pages between
nodes in a numa system while the process is running. This means that the
virtual addresses that the process sees do not change. However, the
system rearranges the physical location of those pages.

The main intend of page migration is to reduce the latency of memory access
by moving pages near to the processor where the process accessing that memory
is running.

Page migration allows a process to manually relocate the node on which its
pages are located through the MF_MOVE and MF_MOVE_ALL options while setting
a new memory policy via mbind(). The pages of process can also be relocated
from another process using the sys_migrate_pages() function call. The
migrate_pages function call takes two sets of nodes and moves pages of a
process that are located on the from nodes to the destination nodes.
Page migration functions are provided by the numactl package by Andi Kleen
(a version later than 0.9.3 is required. Get it from
ftp://oss.sgi.com/www/projects/libnuma/download/). numactl provides libnuma
which provides an interface similar to other numa functionality for page
migration.  cat /proc/<pid>/numa_maps allows an easy review of where the
pages of a process are located. See also the numa_maps documentation in the
proc(5) man page.

Manual migration is useful if for example the scheduler has relocated
a process to a processor on a distant node. A batch scheduler or an
administrator may detect the situation and move the pages of the process
nearer to the new processor. The kernel itself does only provide
manual page migration support. Automatic page migration may be implemented
through user space processes that move pages. A special function call
“move_pages” allows the moving of individual pages within a process.
A NUMA profiler may f.e. obtain a log showing frequent off node
accesses and may use the result to move pages to more advantageous
locations.

Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset (See
Documentation/cgroup-v1/cpusets.txt).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
of processes in a cpuset are moved if the allowed memory nodes of a
cpuset are changed.

Page migration allows the preservation of the relative location of pages
within a group of nodes for all migration techniques which will preserve a
particular memory allocation pattern generated even after migrating a
process. This is necessary in order to preserve the memory latencies.
Processes will run with similar performance after migration.

Page migration occurs in several steps. First a high level
description for those trying to use migrate_pages() from the kernel
(for userspace usage see the Andi Kleen’s numactl package mentioned above)
and then a low level description of how the low level details work.


In kernel use of migrate_pages()


	Remove pages from the LRU.

Lists of pages to be migrated are generated by scanning over
pages and moving them into lists. This is done by
calling isolate_lru_page().
Calling isolate_lru_page increases the references to the page
so that it cannot vanish while the page migration occurs.
It also prevents the swapper or other scans to encounter
the page.



	We need to have a function of type new_page_t that can be
passed to migrate_pages(). This function should figure out
how to allocate the correct new page given the old page.



	The migrate_pages() function is called which attempts
to do the migration. It will call the function to allocate
the new page for each page that is considered for
moving.








How migrate_pages() works

migrate_pages() does several passes over its list of pages. A page is moved
if all references to a page are removable at the time. The page has
already been removed from the LRU via isolate_lru_page() and the refcount
is increased so that the page cannot be freed while page migration occurs.

Steps:


	Lock the page to be migrated

	Ensure that writeback is complete.

	Lock the new page that we want to move to. It is locked so that accesses to
this (not yet uptodate) page immediately lock while the move is in progress.

	All the page table references to the page are converted to migration
entries. This decreases the mapcount of a page. If the resulting
mapcount is not zero then we do not migrate the page. All user space
processes that attempt to access the page will now wait on the page lock.

	The i_pages lock is taken. This will cause all processes trying
to access the page via the mapping to block on the spinlock.

	The refcount of the page is examined and we back out if references remain
otherwise we know that we are the only one referencing this page.

	The radix tree is checked and if it does not contain the pointer to this
page then we back out because someone else modified the radix tree.

	The new page is prepped with some settings from the old page so that
accesses to the new page will discover a page with the correct settings.

	The radix tree is changed to point to the new page.

	The reference count of the old page is dropped because the address space
reference is gone. A reference to the new page is established because
the new page is referenced by the address space.

	The i_pages lock is dropped. With that lookups in the mapping
become possible again. Processes will move from spinning on the lock
to sleeping on the locked new page.

	The page contents are copied to the new page.

	The remaining page flags are copied to the new page.

	The old page flags are cleared to indicate that the page does
not provide any information anymore.

	Queued up writeback on the new page is triggered.

	If migration entries were page then replace them with real ptes. Doing
so will enable access for user space processes not already waiting for
the page lock.




	The page locks are dropped from the old and new page.
Processes waiting on the page lock will redo their page faults
and will reach the new page.

	The new page is moved to the LRU and can be scanned by the swapper
etc again.






Non-LRU page migration

Although original migration aimed for reducing the latency of memory access
for NUMA, compaction who want to create high-order page is also main customer.

Current problem of the implementation is that it is designed to migrate only
LRU pages. However, there are potential non-lru pages which can be migrated
in drivers, for example, zsmalloc, virtio-balloon pages.

For virtio-balloon pages, some parts of migration code path have been hooked
up and added virtio-balloon specific functions to intercept migration logics.
It’s too specific to a driver so other drivers who want to make their pages
movable would have to add own specific hooks in migration path.

To overclome the problem, VM supports non-LRU page migration which provides
generic functions for non-LRU movable pages without driver specific hooks
migration path.

If a driver want to make own pages movable, it should define three functions
which are function pointers of struct address_space_operations.


	bool (*isolate_page) (struct page *page, isolate_mode_t mode);

What VM expects on isolate_page function of driver is to return true
if driver isolates page successfully. On returing true, VM marks the page
as PG_isolated so concurrent isolation in several CPUs skip the page
for isolation. If a driver cannot isolate the page, it should return false.

Once page is successfully isolated, VM uses page.lru fields so driver
shouldn’t expect to preserve values in that fields.





2. int (*migratepage) (struct address_space *mapping,
|       struct page *newpage, struct page *oldpage, enum migrate_mode);


After isolation, VM calls migratepage of driver with isolated page.
The function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage. Keep in mind that you should
indicate to the VM the oldpage is no longer movable via __ClearPageMovable()
under page_lock if you migrated the oldpage successfully and returns
MIGRATEPAGE_SUCCESS. If driver cannot migrate the page at the moment, driver
can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time
because VM interprets -EAGAIN as “temporal migration failure”. On returning
any error except -EAGAIN, VM will give up the page migration without retrying
in this time.

Driver shouldn’t touch page.lru field VM using in the functions.





	void (*putback_page)(struct page *);

If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver’s putback_page with migration failed page.
In this function, driver should put the isolated page back to the own data
structure.



	non-lru movable page flags

There are two page flags for supporting non-lru movable page.


	PG_movable

Driver should use the below function to make page movable under page_lock:

void __SetPageMovable(struct page *page, struct address_space *mapping)





It needs argument of address_space for registering migration
family functions which will be called by VM. Exactly speaking,
PG_movable is not a real flag of struct page. Rather than, VM
reuses page->mapping’s lower bits to represent it.










	::

	

#define PAGE_MAPPING_MOVABLE 0x2
page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;


so driver shouldn’t access page->mapping directly. Instead, driver should
use page_mapping which mask off the low two bits of page->mapping under
page lock so it can get right struct address_space.

For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn’t guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page.
As well, if driver releases the page after isolation by VM, page->mapping
doesn’t have stable value although it has PAGE_MAPPING_MOVABLE
(Look at __ClearPageMovable). But __PageMovable is cheap to catch whether
page is LRU or non-lru movable once the page has been isolated. Because
LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also
good for just peeking to test non-lru movable pages before more expensive
checking with lock_page in pfn scanning to select victim.

For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden
destroying of page->mapping.

Driver using __SetPageMovable should clear the flag via __ClearMovablePage
under page_lock before the releasing the page.





	PG_isolated

To prevent concurrent isolation among several CPUs, VM marks isolated page
as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru
movable page, it can skip it. Driver doesn’t need to manipulate the flag
because VM will set/clear it automatically. Keep in mind that if driver
sees PG_isolated page, it means the page have been isolated by VM so it
shouldn’t touch page.lru field.
PG_isolated is alias with PG_reclaim flag so driver shouldn’t use the flag
for own purpose.









Christoph Lameter, May 8, 2006.
Minchan Kim, Mar 28, 2016.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Page fragments
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Page fragments

A page fragment is an arbitrary-length arbitrary-offset area of memory
which resides within a 0 or higher order compound page.  Multiple
fragments within that page are individually refcounted, in the page’s
reference counter.

The page_frag functions, page_frag_alloc and page_frag_free, provide a
simple allocation framework for page fragments.  This is used by the
network stack and network device drivers to provide a backing region of
memory for use as either an sk_buff->head, or to be used in the “frags”
portion of skb_shared_info.

In order to make use of the page fragment APIs a backing page fragment
cache is needed.  This provides a central point for the fragment allocation
and tracks allows multiple calls to make use of a cached page.  The
advantage to doing this is that multiple calls to get_page can be avoided
which can be expensive at allocation time.  However due to the nature of
this caching it is required that any calls to the cache be protected by
either a per-cpu limitation, or a per-cpu limitation and forcing interrupts
to be disabled when executing the fragment allocation.

The network stack uses two separate caches per CPU to handle fragment
allocation.  The netdev_alloc_cache is used by callers making use of the
__netdev_alloc_frag and __netdev_alloc_skb calls.  The napi_alloc_cache is
used by callers of the __napi_alloc_frag and __napi_alloc_skb calls.  The
main difference between these two calls is the context in which they may be
called.  The “netdev” prefixed functions are usable in any context as these
functions will disable interrupts, while the “napi” prefixed functions are
only usable within the softirq context.

Many network device drivers use a similar methodology for allocating page
fragments, but the page fragments are cached at the ring or descriptor
level.  In order to enable these cases it is necessary to provide a generic
way of tearing down a page cache.  For this reason __page_frag_cache_drain
was implemented.  It allows for freeing multiple references from a single
page via a single call.  The advantage to doing this is that it allows for
cleaning up the multiple references that were added to a page in order to
avoid calling get_page per allocation.

Alexander Duyck, Nov 29, 2016.





          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    page owner: Tracking about who allocated each page
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
page owner: Tracking about who allocated each page


Introduction

page owner is for the tracking about who allocated each page.
It can be used to debug memory leak or to find a memory hogger.
When allocation happens, information about allocation such as call stack
and order of pages is stored into certain storage for each page.
When we need to know about status of all pages, we can get and analyze
this information.

Although we already have tracepoint for tracing page allocation/free,
using it for analyzing who allocate each page is rather complex. We need
to enlarge the trace buffer for preventing overlapping until userspace
program launched. And, launched program continually dump out the trace
buffer for later analysis and it would change system behviour with more
possibility rather than just keeping it in memory, so bad for debugging.

page owner can also be used for various purposes. For example, accurate
fragmentation statistics can be obtained through gfp flag information of
each page. It is already implemented and activated if page owner is
enabled. Other usages are more than welcome.

page owner is disabled in default. So, if you’d like to use it, you need
to add “page_owner=on” into your boot cmdline. If the kernel is built
with page owner and page owner is disabled in runtime due to no enabling
boot option, runtime overhead is marginal. If disabled in runtime, it
doesn’t require memory to store owner information, so there is no runtime
memory overhead. And, page owner inserts just two unlikely branches into
the page allocator hotpath and if not enabled, then allocation is done
like as the kernel without page owner. These two unlikely branches should
not affect to allocation performance, especially if the static keys jump
label patching functionality is available. Following is the kernel’s code
size change due to this facility.


	Without page owner:

text    data     bss     dec     hex filename
40662   1493     644   42799    a72f mm/page_alloc.o







	With page owner:

text    data     bss     dec     hex filename
40892   1493     644   43029    a815 mm/page_alloc.o
1427      24       8    1459     5b3 mm/page_ext.o
2722      50       0    2772     ad4 mm/page_owner.o









Although, roughly, 4 KB code is added in total, page_alloc.o increase by
230 bytes and only half of it is in hotpath. Building the kernel with
page owner and turning it on if needed would be great option to debug
kernel memory problem.

There is one notice that is caused by implementation detail. page owner
stores information into the memory from struct page extension. This memory
is initialized some time later than that page allocator starts in sparse
memory system, so, until initialization, many pages can be allocated and
they would have no owner information. To fix it up, these early allocated
pages are investigated and marked as allocated in initialization phase.
Although it doesn’t mean that they have the right owner information,
at least, we can tell whether the page is allocated or not,
more accurately. On 2GB memory x86-64 VM box, 13343 early allocated pages
are catched and marked, although they are mostly allocated from struct
page extension feature. Anyway, after that, no page is left in
un-tracking state.




Usage


	Build user-space helper:

cd tools/vm
make page_owner_sort







	Enable page owner: add “page_owner=on” to boot cmdline.



	Do the job what you want to debug



	Analyze information from page owner:

cat /sys/kernel/debug/page_owner > page_owner_full.txt
grep -v ^PFN page_owner_full.txt > page_owner.txt
./page_owner_sort page_owner.txt sorted_page_owner.txt





See the result about who allocated each page
in the sorted_page_owner.txt.











          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    remap_file_pages() system call
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
remap_file_pages() system call

The remap_file_pages() system call is used to create a nonlinear mapping,
that is, a mapping in which the pages of the file are mapped into a
nonsequential order in memory. The advantage of using remap_file_pages()
over using repeated calls to mmap(2) is that the former approach does not
require the kernel to create additional VMA (Virtual Memory Area) data
structures.

Supporting of nonlinear mapping requires significant amount of non-trivial
code in kernel virtual memory subsystem including hot paths. Also to get
nonlinear mapping work kernel need a way to distinguish normal page table
entries from entries with file offset (pte_file). Kernel reserves flag in
PTE for this purpose. PTE flags are scarce resource especially on some CPU
architectures. It would be nice to free up the flag for other usage.

Fortunately, there are not many users of remap_file_pages() in the wild.
It’s only known that one enterprise RDBMS implementation uses the syscall
on 32-bit systems to map files bigger than can linearly fit into 32-bit
virtual address space. This use-case is not critical anymore since 64-bit
systems are widely available.

The syscall is deprecated and replaced it with an emulation now. The
emulation creates new VMAs instead of nonlinear mappings. It’s going to
work slower for rare users of remap_file_pages() but ABI is preserved.

One side effect of emulation (apart from performance) is that user can hit
vm.max_map_count limit more easily due to additional VMAs. See comment for
DEFAULT_MAX_MAP_COUNT for more details on the limit.





          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Short users guide for SLUB
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Short users guide for SLUB

The basic philosophy of SLUB is very different from SLAB. SLAB
requires rebuilding the kernel to activate debug options for all
slab caches. SLUB always includes full debugging but it is off by default.
SLUB can enable debugging only for selected slabs in order to avoid
an impact on overall system performance which may make a bug more
difficult to find.

In order to switch debugging on one can add an option slub_debug
to the kernel command line. That will enable full debugging for
all slabs.

Typically one would then use the slabinfo command to get statistical
data and perform operation on the slabs. By default slabinfo only lists
slabs that have data in them. See “slabinfo -h” for more options when
running the command. slabinfo can be compiled with

gcc -o slabinfo tools/vm/slabinfo.c





Some of the modes of operation of slabinfo require that slub debugging
be enabled on the command line. F.e. no tracking information will be
available without debugging on and validation can only partially
be performed if debugging was not switched on.


Some more sophisticated uses of slub_debug:

Parameters may be given to slub_debug. If none is specified then full
debugging is enabled. Format:


	slub_debug=<Debug-Options>

	Enable options for all slabs

	slub_debug=<Debug-Options>,<slab name1>,<slab name2>,...

	Enable options only for select slabs (no spaces
after a comma)



Possible debug options are:

F               Sanity checks on (enables SLAB_DEBUG_CONSISTENCY_CHECKS
                Sorry SLAB legacy issues)
Z               Red zoning
P               Poisoning (object and padding)
U               User tracking (free and alloc)
T               Trace (please only use on single slabs)
A               Toggle failslab filter mark for the cache
O               Switch debugging off for caches that would have
                caused higher minimum slab orders
-               Switch all debugging off (useful if the kernel is
                configured with CONFIG_SLUB_DEBUG_ON)





F.e. in order to boot just with sanity checks and red zoning one would specify:

slub_debug=FZ





Trying to find an issue in the dentry cache? Try:

slub_debug=,dentry





to only enable debugging on the dentry cache.  You may use an asterisk at the
end of the slab name, in order to cover all slabs with the same prefix.  For
example, here’s how you can poison the dentry cache as well as all kmalloc
slabs:


slub_debug=P,kmalloc-*,dentry


Red zoning and tracking may realign the slab.  We can just apply sanity checks
to the dentry cache with:

slub_debug=F,dentry





Debugging options may require the minimum possible slab order to increase as
a result of storing the metadata (for example, caches with PAGE_SIZE object
sizes).  This has a higher liklihood of resulting in slab allocation errors
in low memory situations or if there’s high fragmentation of memory.  To
switch off debugging for such caches by default, use:

slub_debug=O





In case you forgot to enable debugging on the kernel command line: It is
possible to enable debugging manually when the kernel is up. Look at the
contents of:

/sys/kernel/slab/<slab name>/





Look at the writable files. Writing 1 to them will enable the
corresponding debug option. All options can be set on a slab that does
not contain objects. If the slab already contains objects then sanity checks
and tracing may only be enabled. The other options may cause the realignment
of objects.

Careful with tracing: It may spew out lots of information and never stop if
used on the wrong slab.


Slab merging

If no debug options are specified then SLUB may merge similar slabs together
in order to reduce overhead and increase cache hotness of objects.
slabinfo -a displays which slabs were merged together.




Slab validation

SLUB can validate all object if the kernel was booted with slub_debug. In
order to do so you must have the slabinfo tool. Then you can do

slabinfo -v





which will test all objects. Output will be generated to the syslog.

This also works in a more limited way if boot was without slab debug.
In that case slabinfo -v simply tests all reachable objects. Usually
these are in the cpu slabs and the partial slabs. Full slabs are not
tracked by SLUB in a non debug situation.




Getting more performance

To some degree SLUB’s performance is limited by the need to take the
list_lock once in a while to deal with partial slabs. That overhead is
governed by the order of the allocation for each slab. The allocations
can be influenced by kernel parameters:


	slub_min_objects

	allows to specify how many objects must at least fit into one
slab in order for the allocation order to be acceptable.  In
general slub will be able to perform this number of
allocations on a slab without consulting centralized resources
(list_lock) where contention may occur.

	slub_min_order

	specifies a minim order of slabs. A similar effect like
slub_min_objects.

	slub_max_order

	specified the order at which slub_min_objects should no
longer be checked. This is useful to avoid SLUB trying to
generate super large order pages to fit slub_min_objects
of a slab cache with large object sizes into one high order
page. Setting command line parameter
debug_guardpage_minorder=N (N > 0), forces setting
slub_max_order to 0, what cause minimum possible order of
slabs allocation.






SLUB Debug output

Here is a sample of slub debug output:

====================================================================
BUG kmalloc-8: Redzone overwritten
--------------------------------------------------------------------

INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc
INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58
INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58
INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554

Bytes b4 0xc90f6d10:  00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
  Object 0xc90f6d20:  31 30 31 39 2e 30 30 35                         1019.005
 Redzone 0xc90f6d28:  00 cc cc cc                                     .
 Padding 0xc90f6d50:  5a 5a 5a 5a 5a 5a 5a 5a                         ZZZZZZZZ

  [<c010523d>] dump_trace+0x63/0x1eb
  [<c01053df>] show_trace_log_lvl+0x1a/0x2f
  [<c010601d>] show_trace+0x12/0x14
  [<c0106035>] dump_stack+0x16/0x18
  [<c017e0fa>] object_err+0x143/0x14b
  [<c017e2cc>] check_object+0x66/0x234
  [<c017eb43>] __slab_free+0x239/0x384
  [<c017f446>] kfree+0xa6/0xc6
  [<c02e2335>] get_modalias+0xb9/0xf5
  [<c02e23b7>] dmi_dev_uevent+0x27/0x3c
  [<c027866a>] dev_uevent+0x1ad/0x1da
  [<c0205024>] kobject_uevent_env+0x20a/0x45b
  [<c020527f>] kobject_uevent+0xa/0xf
  [<c02779f1>] store_uevent+0x4f/0x58
  [<c027758e>] dev_attr_store+0x29/0x2f
  [<c01bec4f>] sysfs_write_file+0x16e/0x19c
  [<c0183ba7>] vfs_write+0xd1/0x15a
  [<c01841d7>] sys_write+0x3d/0x72
  [<c0104112>] sysenter_past_esp+0x5f/0x99
  [<b7f7b410>] 0xb7f7b410
  =======================

FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc





If SLUB encounters a corrupted object (full detection requires the kernel
to be booted with slub_debug) then the following output will be dumped
into the syslog:


	Description of the problem encountered

This will be a message in the system log starting with:

===============================================
BUG <slab cache affected>: <What went wrong>
-----------------------------------------------

INFO: <corruption start>-<corruption_end> <more info>
INFO: Slab <address> <slab information>
INFO: Object <address> <object information>
INFO: Allocated in <kernel function> age=<jiffies since alloc> cpu=<allocated by
   cpu> pid=<pid of the process>
INFO: Freed in <kernel function> age=<jiffies since free> cpu=<freed by cpu>
   pid=<pid of the process>





(Object allocation / free information is only available if SLAB_STORE_USER is
set for the slab. slub_debug sets that option)



	The object contents if an object was involved.

Various types of lines can follow the BUG SLUB line:


	Bytes b4 <address>

 : <bytes>	Shows a few bytes before the object where the problem was detected.
Can be useful if the corruption does not stop with the start of the
object.



	Object <address>

 : <bytes>	The bytes of the object. If the object is inactive then the bytes
typically contain poison values. Any non-poison value shows a
corruption by a write after free.



	Redzone <address>

 : <bytes>	The Redzone following the object. The Redzone is used to detect
writes after the object. All bytes should always have the same
value. If there is any deviation then it is due to a write after
the object boundary.

(Redzone information is only available if SLAB_RED_ZONE is set.
slub_debug sets that option)



	Padding <address>

 : <bytes>	Unused data to fill up the space in order to get the next object
properly aligned. In the debug case we make sure that there are
at least 4 bytes of padding. This allows the detection of writes
before the object.







	A stackdump

The stackdump describes the location where the error was detected. The cause
of the corruption is may be more likely found by looking at the function that
allocated or freed the object.



	Report on how the problem was dealt with in order to ensure the continued
operation of the system.

These are messages in the system log beginning with:

FIX <slab cache affected>: <corrective action taken>





In the above sample SLUB found that the Redzone of an active object has
been overwritten. Here a string of 8 characters was written into a slab that
has the length of 8 characters. However, a 8 character string needs a
terminating 0. That zero has overwritten the first byte of the Redzone field.
After reporting the details of the issue encountered the FIX SLUB message
tells us that SLUB has restored the Redzone to its proper value and then
system operations continue.








Emergency operations

Minimal debugging (sanity checks alone) can be enabled by booting with:

slub_debug=F





This will be generally be enough to enable the resiliency features of slub
which will keep the system running even if a bad kernel component will
keep corrupting objects. This may be important for production systems.
Performance will be impacted by the sanity checks and there will be a
continual stream of error messages to the syslog but no additional memory
will be used (unlike full debugging).

No guarantees. The kernel component still needs to be fixed. Performance
may be optimized further by locating the slab that experiences corruption
and enabling debugging only for that cache

I.e.:

slub_debug=F,dentry





If the corruption occurs by writing after the end of the object then it
may be advisable to enable a Redzone to avoid corrupting the beginning
of other objects:

slub_debug=FZ,dentry








Extended slabinfo mode and plotting


	The slabinfo tool has a special ‘extended’ (‘-X’) mode that includes:

	
	Slabcache Totals

	Slabs sorted by size (up to -N <num> slabs, default 1)

	Slabs sorted by loss (up to -N <num> slabs, default 1)







Additionally, in this mode slabinfo does not dynamically scale
sizes (G/M/K) and reports everything in bytes (this functionality is
also available to other slabinfo modes via ‘-B’ option) which makes
reporting more precise and accurate. Moreover, in some sense the -X’
mode also simplifies the analysis of slabs’ behaviour, because its
output can be plotted using the ``slabinfo-gnuplot.sh` script. So it
pushes the analysis from looking through the numbers (tons of numbers)
to something easier – visual analysis.

To generate plots:


	collect slabinfo extended records, for example:

while [ 1 ]; do slabinfo -X >> FOO_STATS; sleep 1; done







	pass stats file(-s) to slabinfo-gnuplot.sh script:

slabinfo-gnuplot.sh FOO_STATS [FOO_STATS2 .. FOO_STATSN]





The slabinfo-gnuplot.sh script will pre-processes the collected records
and generates 3 png files (and 3 pre-processing cache files) per STATS
file:
- Slabcache Totals: FOO_STATS-totals.png
- Slabs sorted by size: FOO_STATS-slabs-by-size.png
- Slabs sorted by loss: FOO_STATS-slabs-by-loss.png





Another use case, when slabinfo-gnuplot.sh can be useful, is when you
need to compare slabs’ behaviour “prior to” and “after” some code
modification.  To help you out there, slabinfo-gnuplot.sh script
can ‘merge’ the Slabcache Totals sections from different
measurements. To visually compare N plots:


	Collect as many STATS1, STATS2, .. STATSN files as you need:

while [ 1 ]; do slabinfo -X >> STATS<X>; sleep 1; done







	Pre-process those STATS files:

slabinfo-gnuplot.sh STATS1 STATS2 .. STATSN







	Execute slabinfo-gnuplot.sh in ‘-t’ mode, passing all of the
generated pre-processed *-totals:

slabinfo-gnuplot.sh -t STATS1-totals STATS2-totals .. STATSN-totals





This will produce a single plot (png file).

Plots, expectedly, can be large so some fluctuations or small spikes
can go unnoticed. To deal with that, slabinfo-gnuplot.sh has two
options to ‘zoom-in’/’zoom-out’:


	-s %d,%d – overwrites the default image width and heigh

	-r %d,%d – specifies a range of samples to use (for example,
in slabinfo -X >> FOO_STATS; sleep 1; case, using a -r
40,60 range will plot only samples collected between 40th and
60th seconds).







Christoph Lameter, May 30, 2007
Sergey Senozhatsky, October 23, 2015









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Split page table lock
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Split page table lock

Originally, mm->page_table_lock spinlock protected all page tables of the
mm_struct. But this approach leads to poor page fault scalability of
multi-threaded applications due high contention on the lock. To improve
scalability, split page table lock was introduced.

With split page table lock we have separate per-table lock to serialize
access to the table. At the moment we use split lock for PTE and PMD
tables. Access to higher level tables protected by mm->page_table_lock.

There are helpers to lock/unlock a table and other accessor functions:



	
	pte_offset_map_lock()

	maps pte and takes PTE table lock, returns pointer to the taken
lock;







	
	pte_unmap_unlock()

	unlocks and unmaps PTE table;







	
	pte_alloc_map_lock()

	allocates PTE table if needed and take the lock, returns pointer
to taken lock or NULL if allocation failed;







	
	pte_lockptr()

	returns pointer to PTE table lock;







	
	pmd_lock()

	takes PMD table lock, returns pointer to taken lock;







	
	pmd_lockptr()

	returns pointer to PMD table lock;












Split page table lock for PTE tables is enabled compile-time if
CONFIG_SPLIT_PTLOCK_CPUS (usually 4) is less or equal to NR_CPUS.
If split lock is disabled, all tables guaded by mm->page_table_lock.

Split page table lock for PMD tables is enabled, if it’s enabled for PTE
tables and the architecture supports it (see below).


Hugetlb and split page table lock

Hugetlb can support several page sizes. We use split lock only for PMD
level, but not for PUD.

Hugetlb-specific helpers:



	
	huge_pte_lock()

	takes pmd split lock for PMD_SIZE page, mm->page_table_lock
otherwise;







	
	huge_pte_lockptr()

	returns pointer to table lock;















Support of split page table lock by an architecture

There’s no need in special enabling of PTE split page table lock:
everything required is done by pgtable_page_ctor() and pgtable_page_dtor(),
which must be called on PTE table allocation / freeing.

Make sure the architecture doesn’t use slab allocator for page table
allocation: slab uses page->slab_cache for its pages.
This field shares storage with page->ptl.

PMD split lock only makes sense if you have more than two page table
levels.

PMD split lock enabling requires pgtable_pmd_page_ctor() call on PMD table
allocation and pgtable_pmd_page_dtor() on freeing.

Allocation usually happens in pmd_alloc_one(), freeing in pmd_free() and
pmd_free_tlb(), but make sure you cover all PMD table allocation / freeing
paths: i.e X86_PAE preallocate few PMDs on pgd_alloc().

With everything in place you can set CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK.

NOTE: pgtable_page_ctor() and pgtable_pmd_page_ctor() can fail – it must
be handled properly.




page->ptl

page->ptl is used to access split page table lock, where ‘page’ is struct
page of page containing the table. It shares storage with page->private
(and few other fields in union).

To avoid increasing size of struct page and have best performance, we use a
trick:



	if spinlock_t fits into long, we use page->ptr as spinlock, so we
can avoid indirect access and save a cache line.

	if size of spinlock_t is bigger then size of long, we use page->ptl as
pointer to spinlock_t and allocate it dynamically. This allows to use
split lock with enabled DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC, but costs
one more cache line for indirect access;






The spinlock_t allocated in pgtable_page_ctor() for PTE table and in
pgtable_pmd_page_ctor() for PMD table.

Please, never access page->ptl directly – use appropriate helper.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Transparent Hugepage Support
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Transparent Hugepage Support

This document describes design principles Transparent Hugepage (THP)
Support and its interaction with other parts of the memory management.


Design principles


	“graceful fallback”: mm components which don’t have transparent hugepage
knowledge fall back to breaking huge pmd mapping into table of ptes and,
if necessary, split a transparent hugepage. Therefore these components
can continue working on the regular pages or regular pte mappings.

	if a hugepage allocation fails because of memory fragmentation,
regular pages should be gracefully allocated instead and mixed in
the same vma without any failure or significant delay and without
userland noticing

	if some task quits and more hugepages become available (either
immediately in the buddy or through the VM), guest physical memory
backed by regular pages should be relocated on hugepages
automatically (with khugepaged)

	it doesn’t require memory reservation and in turn it uses hugepages
whenever possible (the only possible reservation here is kernelcore=
to avoid unmovable pages to fragment all the memory but such a tweak
is not specific to transparent hugepage support and it’s a generic
feature that applies to all dynamic high order allocations in the
kernel)






get_user_pages and follow_page

get_user_pages and follow_page if run on a hugepage, will return the
head or tail pages as usual (exactly as they would do on
hugetlbfs). Most gup users will only care about the actual physical
address of the page and its temporary pinning to release after the I/O
is complete, so they won’t ever notice the fact the page is huge. But
if any driver is going to mangle over the page structure of the tail
page (like for checking page->mapping or other bits that are relevant
for the head page and not the tail page), it should be updated to jump
to check head page instead. Taking reference on any head/tail page would
prevent page from being split by anyone.


注解

these aren’t new constraints to the GUP API, and they match the
same constrains that applies to hugetlbfs too, so any driver capable
of handling GUP on hugetlbfs will also work fine on transparent
hugepage backed mappings.



In case you can’t handle compound pages if they’re returned by
follow_page, the FOLL_SPLIT bit can be specified as parameter to
follow_page, so that it will split the hugepages before returning
them. Migration for example passes FOLL_SPLIT as parameter to
follow_page because it’s not hugepage aware and in fact it can’t work
at all on hugetlbfs (but it instead works fine on transparent
hugepages thanks to FOLL_SPLIT). migration simply can’t deal with
hugepages being returned (as it’s not only checking the pfn of the
page and pinning it during the copy but it pretends to migrate the
memory in regular page sizes and with regular pte/pmd mappings).




Graceful fallback

Code walking pagetables but unaware about huge pmds can simply call
split_huge_pmd(vma, pmd, addr) where the pmd is the one returned by
pmd_offset. It’s trivial to make the code transparent hugepage aware
by just grepping for “pmd_offset” and adding split_huge_pmd where
missing after pmd_offset returns the pmd. Thanks to the graceful
fallback design, with a one liner change, you can avoid to write
hundred if not thousand of lines of complex code to make your code
hugepage aware.

If you’re not walking pagetables but you run into a physical hugepage
but you can’t handle it natively in your code, you can split it by
calling split_huge_page(page). This is what the Linux VM does before
it tries to swapout the hugepage for example. split_huge_page() can fail
if the page is pinned and you must handle this correctly.

Example to make mremap.c transparent hugepage aware with a one liner
change:

diff --git a/mm/mremap.c b/mm/mremap.c
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -41,6 +41,7 @@ static pmd_t *get_old_pmd(struct mm_stru
                return NULL;

        pmd = pmd_offset(pud, addr);
+       split_huge_pmd(vma, pmd, addr);
        if (pmd_none_or_clear_bad(pmd))
                return NULL;








Locking in hugepage aware code

We want as much code as possible hugepage aware, as calling
split_huge_page() or split_huge_pmd() has a cost.

To make pagetable walks huge pmd aware, all you need to do is to call
pmd_trans_huge() on the pmd returned by pmd_offset. You must hold the
mmap_sem in read (or write) mode to be sure an huge pmd cannot be
created from under you by khugepaged (khugepaged collapse_huge_page
takes the mmap_sem in write mode in addition to the anon_vma lock). If
pmd_trans_huge returns false, you just fallback in the old code
paths. If instead pmd_trans_huge returns true, you have to take the
page table lock (pmd_lock()) and re-run pmd_trans_huge. Taking the
page table lock will prevent the huge pmd to be converted into a
regular pmd from under you (split_huge_pmd can run in parallel to the
pagetable walk). If the second pmd_trans_huge returns false, you
should just drop the page table lock and fallback to the old code as
before. Otherwise you can proceed to process the huge pmd and the
hugepage natively. Once finished you can drop the page table lock.




Refcounts and transparent huge pages

Refcounting on THP is mostly consistent with refcounting on other compound
pages:



	get_page()/put_page() and GUP operate in head page’s ->_refcount.

	->_refcount in tail pages is always zero: get_page_unless_zero() never
succeed on tail pages.

	map/unmap of the pages with PTE entry increment/decrement ->_mapcount
on relevant sub-page of the compound page.

	map/unmap of the whole compound page accounted in compound_mapcount
(stored in first tail page). For file huge pages, we also increment
->_mapcount of all sub-pages in order to have race-free detection of
last unmap of subpages.






PageDoubleMap() indicates that the page is possibly mapped with PTEs.

For anonymous pages PageDoubleMap() also indicates ->_mapcount in all
subpages is offset up by one. This additional reference is required to
get race-free detection of unmap of subpages when we have them mapped with
both PMDs and PTEs.

This is optimization required to lower overhead of per-subpage mapcount
tracking. The alternative is alter ->_mapcount in all subpages on each
map/unmap of the whole compound page.

For anonymous pages, we set PG_double_map when a PMD of the page got split
for the first time, but still have PMD mapping. The additional references
go away with last compound_mapcount.

File pages get PG_double_map set on first map of the page with PTE and
goes away when the page gets evicted from page cache.

split_huge_page internally has to distribute the refcounts in the head
page to the tail pages before clearing all PG_head/tail bits from the page
structures. It can be done easily for refcounts taken by page table
entries. But we don’t have enough information on how to distribute any
additional pins (i.e. from get_user_pages). split_huge_page() fails any
requests to split pinned huge page: it expects page count to be equal to
sum of mapcount of all sub-pages plus one (split_huge_page caller must
have reference for head page).

split_huge_page uses migration entries to stabilize page->_refcount and
page->_mapcount of anonymous pages. File pages just got unmapped.

We safe against physical memory scanners too: the only legitimate way
scanner can get reference to a page is get_page_unless_zero().

All tail pages have zero ->_refcount until atomic_add(). This prevents the
scanner from getting a reference to the tail page up to that point. After the
atomic_add() we don’t care about the ->_refcount value. We already known how
many references should be uncharged from the head page.

For head page get_page_unless_zero() will succeed and we don’t mind. It’s
clear where reference should go after split: it will stay on head page.

Note that split_huge_pmd() doesn’t have any limitation on refcounting:
pmd can be split at any point and never fails.




Partial unmap and deferred_split_huge_page()

Unmapping part of THP (with munmap() or other way) is not going to free
memory immediately. Instead, we detect that a subpage of THP is not in use
in page_remove_rmap() and queue the THP for splitting if memory pressure
comes. Splitting will free up unused subpages.

Splitting the page right away is not an option due to locking context in
the place where we can detect partial unmap. It’s also might be
counterproductive since in many cases partial unmap happens during exit(2) if
a THP crosses a VMA boundary.

Function deferred_split_huge_page() is used to queue page for splitting.
The splitting itself will happen when we get memory pressure via shrinker
interface.







          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    Unevictable LRU Infrastructure
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
Unevictable LRU Infrastructure



	Introduction

	The Unevictable LRU
	The Unevictable Page List

	Memory Control Group Interaction

	Marking Address Spaces Unevictable

	Detecting Unevictable Pages

	Vmscan’s Handling of Unevictable Pages





	MLOCKED Pages
	History

	Basic Management

	mlock()/mlockall() System Call Handling

	Filtering Special VMAs

	munlock()/munlockall() System Call Handling

	Migrating MLOCKED Pages

	Compacting MLOCKED Pages

	MLOCKING Transparent Huge Pages

	mmap(MAP_LOCKED) System Call Handling

	munmap()/exit()/exec() System Call Handling

	try_to_unmap()

	try_to_munlock() Reverse Map Scan

	Page Reclaim in shrink_*_list()










Introduction

This document describes the Linux memory manager’s “Unevictable LRU”
infrastructure and the use of this to manage several types of “unevictable”
pages.

The document attempts to provide the overall rationale behind this mechanism
and the rationale for some of the design decisions that drove the
implementation.  The latter design rationale is discussed in the context of an
implementation description.  Admittedly, one can obtain the implementation
details - the “what does it do?” - by reading the code.  One hopes that the
descriptions below add value by provide the answer to “why does it do that?”.




The Unevictable LRU

The Unevictable LRU facility adds an additional LRU list to track unevictable
pages and to hide these pages from vmscan.  This mechanism is based on a patch
by Larry Woodman of Red Hat to address several scalability problems with page
reclaim in Linux.  The problems have been observed at customer sites on large
memory x86_64 systems.

To illustrate this with an example, a non-NUMA x86_64 platform with 128GB of
main memory will have over 32 million 4k pages in a single zone.  When a large
fraction of these pages are not evictable for any reason [see below], vmscan
will spend a lot of time scanning the LRU lists looking for the small fraction
of pages that are evictable.  This can result in a situation where all CPUs are
spending 100% of their time in vmscan for hours or days on end, with the system
completely unresponsive.

The unevictable list addresses the following classes of unevictable pages:



	Those owned by ramfs.

	Those mapped into SHM_LOCK’d shared memory regions.

	Those mapped into VM_LOCKED [mlock()ed] VMAs.






The infrastructure may also be able to handle other conditions that make pages
unevictable, either by definition or by circumstance, in the future.


The Unevictable Page List

The Unevictable LRU infrastructure consists of an additional, per-zone, LRU list
called the “unevictable” list and an associated page flag, PG_unevictable, to
indicate that the page is being managed on the unevictable list.

The PG_unevictable flag is analogous to, and mutually exclusive with, the
PG_active flag in that it indicates on which LRU list a page resides when
PG_lru is set.

The Unevictable LRU infrastructure maintains unevictable pages on an additional
LRU list for a few reasons:



	We get to “treat unevictable pages just like we treat other pages in the
system - which means we get to use the same code to manipulate them, the
same code to isolate them (for migrate, etc.), the same code to keep track
of the statistics, etc...” [Rik van Riel]

	We want to be able to migrate unevictable pages between nodes for memory
defragmentation, workload management and memory hotplug.  The linux kernel
can only migrate pages that it can successfully isolate from the LRU
lists.  If we were to maintain pages elsewhere than on an LRU-like list,
where they can be found by isolate_lru_page(), we would prevent their
migration, unless we reworked migration code to find the unevictable pages
itself.






The unevictable list does not differentiate between file-backed and anonymous,
swap-backed pages.  This differentiation is only important while the pages are,
in fact, evictable.

The unevictable list benefits from the “arrayification” of the per-zone LRU
lists and statistics originally proposed and posted by Christoph Lameter.

The unevictable list does not use the LRU pagevec mechanism. Rather,
unevictable pages are placed directly on the page’s zone’s unevictable list
under the zone lru_lock.  This allows us to prevent the stranding of pages on
the unevictable list when one task has the page isolated from the LRU and other
tasks are changing the “evictability” state of the page.




Memory Control Group Interaction

The unevictable LRU facility interacts with the memory control group [aka
memory controller; see Documentation/cgroup-v1/memory.txt] by extending the
lru_list enum.

The memory controller data structure automatically gets a per-zone unevictable
list as a result of the “arrayification” of the per-zone LRU lists (one per
lru_list enum element).  The memory controller tracks the movement of pages to
and from the unevictable list.

When a memory control group comes under memory pressure, the controller will
not attempt to reclaim pages on the unevictable list.  This has a couple of
effects:



	Because the pages are “hidden” from reclaim on the unevictable list, the
reclaim process can be more efficient, dealing only with pages that have a
chance of being reclaimed.

	On the other hand, if too many of the pages charged to the control group
are unevictable, the evictable portion of the working set of the tasks in
the control group may not fit into the available memory.  This can cause
the control group to thrash or to OOM-kill tasks.









Marking Address Spaces Unevictable

For facilities such as ramfs none of the pages attached to the address space
may be evicted.  To prevent eviction of any such pages, the AS_UNEVICTABLE
address space flag is provided, and this can be manipulated by a filesystem
using a number of wrapper functions:



	void mapping_set_unevictable(struct address_space *mapping);


Mark the address space as being completely unevictable.






	void mapping_clear_unevictable(struct address_space *mapping);


Mark the address space as being evictable.






	int mapping_unevictable(struct address_space *mapping);


Query the address space, and return true if it is completely
unevictable.











These are currently used in two places in the kernel:



	By ramfs to mark the address spaces of its inodes when they are created,
and this mark remains for the life of the inode.



	By SYSV SHM to mark SHM_LOCK’d address spaces until SHM_UNLOCK is called.

Note that SHM_LOCK is not required to page in the locked pages if they’re
swapped out; the application must touch the pages manually if it wants to
ensure they’re in memory.











Detecting Unevictable Pages

The function page_evictable() in vmscan.c determines whether a page is
evictable or not using the query function outlined above [see section
Marking address spaces unevictable]
to check the AS_UNEVICTABLE flag.

For address spaces that are so marked after being populated (as SHM regions
might be), the lock action (eg: SHM_LOCK) can be lazy, and need not populate
the page tables for the region as does, for example, mlock(), nor need it make
any special effort to push any pages in the SHM_LOCK’d area to the unevictable
list.  Instead, vmscan will do this if and when it encounters the pages during
a reclamation scan.

On an unlock action (such as SHM_UNLOCK), the unlocker (eg: shmctl()) must scan
the pages in the region and “rescue” them from the unevictable list if no other
condition is keeping them unevictable.  If an unevictable region is destroyed,
the pages are also “rescued” from the unevictable list in the process of
freeing them.

page_evictable() also checks for mlocked pages by testing an additional page
flag, PG_mlocked (as wrapped by PageMlocked()), which is set when a page is
faulted into a VM_LOCKED vma, or found in a vma being VM_LOCKED.




Vmscan’s Handling of Unevictable Pages

If unevictable pages are culled in the fault path, or moved to the unevictable
list at mlock() or mmap() time, vmscan will not encounter the pages until they
have become evictable again (via munlock() for example) and have been “rescued”
from the unevictable list.  However, there may be situations where we decide,
for the sake of expediency, to leave a unevictable page on one of the regular
active/inactive LRU lists for vmscan to deal with.  vmscan checks for such
pages in all of the shrink_{active|inactive|page}_list() functions and will
“cull” such pages that it encounters: that is, it diverts those pages to the
unevictable list for the zone being scanned.

There may be situations where a page is mapped into a VM_LOCKED VMA, but the
page is not marked as PG_mlocked.  Such pages will make it all the way to
shrink_page_list() where they will be detected when vmscan walks the reverse
map in try_to_unmap().  If try_to_unmap() returns SWAP_MLOCK,
shrink_page_list() will cull the page at that point.

To “cull” an unevictable page, vmscan simply puts the page back on the LRU list
using putback_lru_page() - the inverse operation to isolate_lru_page() - after
dropping the page lock.  Because the condition which makes the page unevictable
may change once the page is unlocked, putback_lru_page() will recheck the
unevictable state of a page that it places on the unevictable list.  If the
page has become unevictable, putback_lru_page() removes it from the list and
retries, including the page_unevictable() test.  Because such a race is a rare
event and movement of pages onto the unevictable list should be rare, these
extra evictabilty checks should not occur in the majority of calls to
putback_lru_page().






MLOCKED Pages

The unevictable page list is also useful for mlock(), in addition to ramfs and
SYSV SHM.  Note that mlock() is only available in CONFIG_MMU=y situations; in
NOMMU situations, all mappings are effectively mlocked.


History

The “Unevictable mlocked Pages” infrastructure is based on work originally
posted by Nick Piggin in an RFC patch entitled “mm: mlocked pages off LRU”.
Nick posted his patch as an alternative to a patch posted by Christoph Lameter
to achieve the same objective: hiding mlocked pages from vmscan.

In Nick’s patch, he used one of the struct page LRU list link fields as a count
of VM_LOCKED VMAs that map the page.  This use of the link field for a count
prevented the management of the pages on an LRU list, and thus mlocked pages
were not migratable as isolate_lru_page() could not find them, and the LRU list
link field was not available to the migration subsystem.

Nick resolved this by putting mlocked pages back on the lru list before
attempting to isolate them, thus abandoning the count of VM_LOCKED VMAs.  When
Nick’s patch was integrated with the Unevictable LRU work, the count was
replaced by walking the reverse map to determine whether any VM_LOCKED VMAs
mapped the page.  More on this below.




Basic Management

mlocked pages - pages mapped into a VM_LOCKED VMA - are a class of unevictable
pages.  When such a page has been “noticed” by the memory management subsystem,
the page is marked with the PG_mlocked flag.  This can be manipulated using the
PageMlocked() functions.

A PG_mlocked page will be placed on the unevictable list when it is added to
the LRU.  Such pages can be “noticed” by memory management in several places:



	in the mlock()/mlockall() system call handlers;

	in the mmap() system call handler when mmapping a region with the
MAP_LOCKED flag;

	mmapping a region in a task that has called mlockall() with the MCL_FUTURE
flag

	in the fault path, if mlocked pages are “culled” in the fault path,
and when a VM_LOCKED stack segment is expanded; or

	as mentioned above, in vmscan:shrink_page_list() when attempting to
reclaim a page in a VM_LOCKED VMA via try_to_unmap()






all of which result in the VM_LOCKED flag being set for the VMA if it doesn’t
already have it set.

mlocked pages become unlocked and rescued from the unevictable list when:



	mapped in a range unlocked via the munlock()/munlockall() system calls;

	munmap()’d out of the last VM_LOCKED VMA that maps the page, including
unmapping at task exit;

	when the page is truncated from the last VM_LOCKED VMA of an mmapped file;
or

	before a page is COW’d in a VM_LOCKED VMA.









mlock()/mlockall() System Call Handling

Both [do_]mlock() and [do_]mlockall() system call handlers call mlock_fixup()
for each VMA in the range specified by the call.  In the case of mlockall(),
this is the entire active address space of the task.  Note that mlock_fixup()
is used for both mlocking and munlocking a range of memory.  A call to mlock()
an already VM_LOCKED VMA, or to munlock() a VMA that is not VM_LOCKED is
treated as a no-op, and mlock_fixup() simply returns.

If the VMA passes some filtering as described in “Filtering Special Vmas”
below, mlock_fixup() will attempt to merge the VMA with its neighbors or split
off a subset of the VMA if the range does not cover the entire VMA.  Once the
VMA has been merged or split or neither, mlock_fixup() will call
populate_vma_page_range() to fault in the pages via get_user_pages() and to
mark the pages as mlocked via mlock_vma_page().

Note that the VMA being mlocked might be mapped with PROT_NONE.  In this case,
get_user_pages() will be unable to fault in the pages.  That’s okay.  If pages
do end up getting faulted into this VM_LOCKED VMA, we’ll handle them in the
fault path or in vmscan.

Also note that a page returned by get_user_pages() could be truncated or
migrated out from under us, while we’re trying to mlock it.  To detect this,
populate_vma_page_range() checks page_mapping() after acquiring the page lock.
If the page is still associated with its mapping, we’ll go ahead and call
mlock_vma_page().  If the mapping is gone, we just unlock the page and move on.
In the worst case, this will result in a page mapped in a VM_LOCKED VMA
remaining on a normal LRU list without being PageMlocked().  Again, vmscan will
detect and cull such pages.

mlock_vma_page() will call TestSetPageMlocked() for each page returned by
get_user_pages().  We use TestSetPageMlocked() because the page might already
be mlocked by another task/VMA and we don’t want to do extra work.  We
especially do not want to count an mlocked page more than once in the
statistics.  If the page was already mlocked, mlock_vma_page() need do nothing
more.

If the page was NOT already mlocked, mlock_vma_page() attempts to isolate the
page from the LRU, as it is likely on the appropriate active or inactive list
at that time.  If the isolate_lru_page() succeeds, mlock_vma_page() will put
back the page - by calling putback_lru_page() - which will notice that the page
is now mlocked and divert the page to the zone’s unevictable list.  If
mlock_vma_page() is unable to isolate the page from the LRU, vmscan will handle
it later if and when it attempts to reclaim the page.




Filtering Special VMAs

mlock_fixup() filters several classes of “special” VMAs:


	VMAs with VM_IO or VM_PFNMAP set are skipped entirely.  The pages behind
these mappings are inherently pinned, so we don’t need to mark them as
mlocked.  In any case, most of the pages have no struct page in which to so
mark the page.  Because of this, get_user_pages() will fail for these VMAs,
so there is no sense in attempting to visit them.

	VMAs mapping hugetlbfs page are already effectively pinned into memory.  We
neither need nor want to mlock() these pages.  However, to preserve the
prior behavior of mlock() - before the unevictable/mlock changes -
mlock_fixup() will call make_pages_present() in the hugetlbfs VMA range to
allocate the huge pages and populate the ptes.

	VMAs with VM_DONTEXPAND are generally userspace mappings of kernel pages,
such as the VDSO page, relay channel pages, etc. These pages
are inherently unevictable and are not managed on the LRU lists.
mlock_fixup() treats these VMAs the same as hugetlbfs VMAs.  It calls
make_pages_present() to populate the ptes.



Note that for all of these special VMAs, mlock_fixup() does not set the
VM_LOCKED flag.  Therefore, we won’t have to deal with them later during
munlock(), munmap() or task exit.  Neither does mlock_fixup() account these
VMAs against the task’s “locked_vm”.




munlock()/munlockall() System Call Handling

The munlock() and munlockall() system calls are handled by the same functions -
do_mlock[all]() - as the mlock() and mlockall() system calls with the unlock vs
lock operation indicated by an argument.  So, these system calls are also
handled by mlock_fixup().  Again, if called for an already munlocked VMA,
mlock_fixup() simply returns.  Because of the VMA filtering discussed above,
VM_LOCKED will not be set in any “special” VMAs.  So, these VMAs will be
ignored for munlock.

If the VMA is VM_LOCKED, mlock_fixup() again attempts to merge or split off the
specified range.  The range is then munlocked via the function
populate_vma_page_range() - the same function used to mlock a VMA range -
passing a flag to indicate that munlock() is being performed.

Because the VMA access protections could have been changed to PROT_NONE after
faulting in and mlocking pages, get_user_pages() was unreliable for visiting
these pages for munlocking.  Because we don’t want to leave pages mlocked,
get_user_pages() was enhanced to accept a flag to ignore the permissions when
fetching the pages - all of which should be resident as a result of previous
mlocking.

For munlock(), populate_vma_page_range() unlocks individual pages by calling
munlock_vma_page().  munlock_vma_page() unconditionally clears the PG_mlocked
flag using TestClearPageMlocked().  As with mlock_vma_page(),
munlock_vma_page() use the Test*PageMlocked() function to handle the case where
the page might have already been unlocked by another task.  If the page was
mlocked, munlock_vma_page() updates that zone statistics for the number of
mlocked pages.  Note, however, that at this point we haven’t checked whether
the page is mapped by other VM_LOCKED VMAs.

We can’t call try_to_munlock(), the function that walks the reverse map to
check for other VM_LOCKED VMAs, without first isolating the page from the LRU.
try_to_munlock() is a variant of try_to_unmap() and thus requires that the page
not be on an LRU list [more on these below].  However, the call to
isolate_lru_page() could fail, in which case we couldn’t try_to_munlock().  So,
we go ahead and clear PG_mlocked up front, as this might be the only chance we
have.  If we can successfully isolate the page, we go ahead and
try_to_munlock(), which will restore the PG_mlocked flag and update the zone
page statistics if it finds another VMA holding the page mlocked.  If we fail
to isolate the page, we’ll have left a potentially mlocked page on the LRU.
This is fine, because we’ll catch it later if and if vmscan tries to reclaim
the page.  This should be relatively rare.




Migrating MLOCKED Pages

A page that is being migrated has been isolated from the LRU lists and is held
locked across unmapping of the page, updating the page’s address space entry
and copying the contents and state, until the page table entry has been
replaced with an entry that refers to the new page.  Linux supports migration
of mlocked pages and other unevictable pages.  This involves simply moving the
PG_mlocked and PG_unevictable states from the old page to the new page.

Note that page migration can race with mlocking or munlocking of the same page.
This has been discussed from the mlock/munlock perspective in the respective
sections above.  Both processes (migration and m[un]locking) hold the page
locked.  This provides the first level of synchronization.  Page migration
zeros out the page_mapping of the old page before unlocking it, so m[un]lock
can skip these pages by testing the page mapping under page lock.

To complete page migration, we place the new and old pages back onto the LRU
after dropping the page lock.  The “unneeded” page - old page on success, new
page on failure - will be freed when the reference count held by the migration
process is released.  To ensure that we don’t strand pages on the unevictable
list because of a race between munlock and migration, page migration uses the
putback_lru_page() function to add migrated pages back to the LRU.




Compacting MLOCKED Pages

The unevictable LRU can be scanned for compactable regions and the default
behavior is to do so.  /proc/sys/vm/compact_unevictable_allowed controls
this behavior (see Documentation/sysctl/vm.txt).  Once scanning of the
unevictable LRU is enabled, the work of compaction is mostly handled by
the page migration code and the same work flow as described in MIGRATING
MLOCKED PAGES will apply.




MLOCKING Transparent Huge Pages

A transparent huge page is represented by a single entry on an LRU list.
Therefore, we can only make unevictable an entire compound page, not
individual subpages.

If a user tries to mlock() part of a huge page, we want the rest of the
page to be reclaimable.

We cannot just split the page on partial mlock() as split_huge_page() can
fail and new intermittent failure mode for the syscall is undesirable.

We handle this by keeping PTE-mapped huge pages on normal LRU lists: the
PMD on border of VM_LOCKED VMA will be split into PTE table.

This way the huge page is accessible for vmscan. Under memory pressure the
page will be split, subpages which belong to VM_LOCKED VMAs will be moved
to unevictable LRU and the rest can be reclaimed.

See also comment in follow_trans_huge_pmd().




mmap(MAP_LOCKED) System Call Handling

In addition the mlock()/mlockall() system calls, an application can request
that a region of memory be mlocked supplying the MAP_LOCKED flag to the mmap()
call. There is one important and subtle difference here, though. mmap() + mlock()
will fail if the range cannot be faulted in (e.g. because mm_populate fails)
and returns with ENOMEM while mmap(MAP_LOCKED) will not fail. The mmaped
area will still have properties of the locked area - aka. pages will not get
swapped out - but major page faults to fault memory in might still happen.

Furthermore, any mmap() call or brk() call that expands the heap by a
task that has previously called mlockall() with the MCL_FUTURE flag will result
in the newly mapped memory being mlocked.  Before the unevictable/mlock
changes, the kernel simply called make_pages_present() to allocate pages and
populate the page table.

To mlock a range of memory under the unevictable/mlock infrastructure, the
mmap() handler and task address space expansion functions call
populate_vma_page_range() specifying the vma and the address range to mlock.

The callers of populate_vma_page_range() will have already added the memory range
to be mlocked to the task’s “locked_vm”.  To account for filtered VMAs,
populate_vma_page_range() returns the number of pages NOT mlocked.  All of the
callers then subtract a non-negative return value from the task’s locked_vm.  A
negative return value represent an error - for example, from get_user_pages()
attempting to fault in a VMA with PROT_NONE access.  In this case, we leave the
memory range accounted as locked_vm, as the protections could be changed later
and pages allocated into that region.




munmap()/exit()/exec() System Call Handling

When unmapping an mlocked region of memory, whether by an explicit call to
munmap() or via an internal unmap from exit() or exec() processing, we must
munlock the pages if we’re removing the last VM_LOCKED VMA that maps the pages.
Before the unevictable/mlock changes, mlocking did not mark the pages in any
way, so unmapping them required no processing.

To munlock a range of memory under the unevictable/mlock infrastructure, the
munmap() handler and task address space call tear down function
munlock_vma_pages_all().  The name reflects the observation that one always
specifies the entire VMA range when munlock()ing during unmap of a region.
Because of the VMA filtering when mlocking() regions, only “normal” VMAs that
actually contain mlocked pages will be passed to munlock_vma_pages_all().

munlock_vma_pages_all() clears the VM_LOCKED VMA flag and, like mlock_fixup()
for the munlock case, calls __munlock_vma_pages_range() to walk the page table
for the VMA’s memory range and munlock_vma_page() each resident page mapped by
the VMA.  This effectively munlocks the page, only if this is the last
VM_LOCKED VMA that maps the page.




try_to_unmap()

Pages can, of course, be mapped into multiple VMAs.  Some of these VMAs may
have VM_LOCKED flag set.  It is possible for a page mapped into one or more
VM_LOCKED VMAs not to have the PG_mlocked flag set and therefore reside on one
of the active or inactive LRU lists.  This could happen if, for example, a task
in the process of munlocking the page could not isolate the page from the LRU.
As a result, vmscan/shrink_page_list() might encounter such a page as described
in section “vmscan’s handling of unevictable pages”.  To handle this situation,
try_to_unmap() checks for VM_LOCKED VMAs while it is walking a page’s reverse
map.

try_to_unmap() is always called, by either vmscan for reclaim or for page
migration, with the argument page locked and isolated from the LRU.  Separate
functions handle anonymous and mapped file and KSM pages, as these types of
pages have different reverse map lookup mechanisms, with different locking.
In each case, whether rmap_walk_anon() or rmap_walk_file() or rmap_walk_ksm(),
it will call try_to_unmap_one() for every VMA which might contain the page.

When trying to reclaim, if try_to_unmap_one() finds the page in a VM_LOCKED
VMA, it will then mlock the page via mlock_vma_page() instead of unmapping it,
and return SWAP_MLOCK to indicate that the page is unevictable: and the scan
stops there.

mlock_vma_page() is called while holding the page table’s lock (in addition
to the page lock, and the rmap lock): to serialize against concurrent mlock or
munlock or munmap system calls, mm teardown (munlock_vma_pages_all), reclaim,
holepunching, and truncation of file pages and their anonymous COWed pages.




try_to_munlock() Reverse Map Scan


警告

[!] TODO/FIXME: a better name might be page_mlocked() - analogous to the
page_referenced() reverse map walker.



When munlock_vma_page() [see section munlock()/munlockall() System Call
Handling above] tries to munlock a
page, it needs to determine whether or not the page is mapped by any
VM_LOCKED VMA without actually attempting to unmap all PTEs from the
page.  For this purpose, the unevictable/mlock infrastructure
introduced a variant of try_to_unmap() called try_to_munlock().

try_to_munlock() calls the same functions as try_to_unmap() for anonymous and
mapped file and KSM pages with a flag argument specifying unlock versus unmap
processing.  Again, these functions walk the respective reverse maps looking
for VM_LOCKED VMAs.  When such a VMA is found, as in the try_to_unmap() case,
the functions mlock the page via mlock_vma_page() and return SWAP_MLOCK.  This
undoes the pre-clearing of the page’s PG_mlocked done by munlock_vma_page.

Note that try_to_munlock()’s reverse map walk must visit every VMA in a page’s
reverse map to determine that a page is NOT mapped into any VM_LOCKED VMA.
However, the scan can terminate when it encounters a VM_LOCKED VMA.
Although try_to_munlock() might be called a great many times when munlocking a
large region or tearing down a large address space that has been mlocked via
mlockall(), overall this is a fairly rare event.




Page Reclaim in shrink_*_list()

shrink_active_list() culls any obviously unevictable pages - i.e.
!page_evictable(page) - diverting these to the unevictable list.
However, shrink_active_list() only sees unevictable pages that made it onto the
active/inactive lru lists.  Note that these pages do not have PageUnevictable
set - otherwise they would be on the unevictable list and shrink_active_list
would never see them.

Some examples of these unevictable pages on the LRU lists are:



	ramfs pages that have been placed on the LRU lists when first allocated.

	SHM_LOCK’d shared memory pages.  shmctl(SHM_LOCK) does not attempt to
allocate or fault in the pages in the shared memory region.  This happens
when an application accesses the page the first time after SHM_LOCK’ing
the segment.

	mlocked pages that could not be isolated from the LRU and moved to the
unevictable list in mlock_vma_page().






shrink_inactive_list() also diverts any unevictable pages that it finds on the
inactive lists to the appropriate zone’s unevictable list.

shrink_inactive_list() should only see SHM_LOCK’d pages that became SHM_LOCK’d
after shrink_active_list() had moved them to the inactive list, or pages mapped
into VM_LOCKED VMAs that munlock_vma_page() couldn’t isolate from the LRU to
recheck via try_to_munlock().  shrink_inactive_list() won’t notice the latter,
but will pass on to shrink_page_list().

shrink_page_list() again culls obviously unevictable pages that it could
encounter for similar reason to shrink_inactive_list().  Pages mapped into
VM_LOCKED VMAs but without PG_mlocked set will make it all the way to
try_to_unmap().  shrink_page_list() will divert them to the unevictable list
when try_to_unmap() returns SWAP_MLOCK, as discussed above.









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    z3fold
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          下一页 |

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
z3fold

z3fold is a special purpose allocator for storing compressed pages.
It is designed to store up to three compressed pages per physical page.
It is a zbud derivative which allows for higher compression
ratio keeping the simplicity and determinism of its predecessor.

The main differences between z3fold and zbud are:


	unlike zbud, z3fold allows for up to PAGE_SIZE allocations

	z3fold can hold up to 3 compressed pages in its page

	z3fold doesn’t export any API itself and is thus intended to be used
via the zpool API.



To keep the determinism and simplicity, z3fold, just like zbud, always
stores an integral number of compressed pages per page, but it can store
up to 3 pages unlike zbud which can store at most 2. Therefore the
compression ratio goes to around 2.7x while zbud’s one is around 1.7x.

Unlike zbud (but like zsmalloc for that matter) z3fold_alloc() does not
return a dereferenceable pointer. Instead, it returns an unsigned long
handle which encodes actual location of the allocated object.

Keeping effective compression ratio close to zsmalloc’s, z3fold doesn’t
depend on MMU enabled and provides more predictable reclaim behavior
which makes it a better fit for small and response-critical systems.





          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    zsmalloc
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	
          上一页 |

        	The Linux Kernel v4.20.0 文档 »

          	Linux Memory Management Documentation »
 
      

    


    
      
          
            
  
zsmalloc

This allocator is designed for use with zram. Thus, the allocator is
supposed to work well under low memory conditions. In particular, it
never attempts higher order page allocation which is very likely to
fail under memory pressure. On the other hand, if we just use single
(0-order) pages, it would suffer from very high fragmentation –
any object of size PAGE_SIZE/2 or larger would occupy an entire page.
This was one of the major issues with its predecessor (xvmalloc).

To overcome these issues, zsmalloc allocates a bunch of 0-order pages
and links them together using various ‘struct page’ fields. These linked
pages act as a single higher-order page i.e. an object can span 0-order
page boundaries. The code refers to these linked pages as a single entity
called zspage.

For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
since this satisfies the requirements of all its current users (in the
worst case, page is incompressible and is thus stored “as-is” i.e. in
uncompressed form). For allocation requests larger than this size, failure
is returned (see zs_malloc).

Additionally, zs_malloc() does not return a dereferenceable pointer.
Instead, it returns an opaque handle (unsigned long) which encodes actual
location of the allocated object. The reason for this indirection is that
zsmalloc does not keep zspages permanently mapped since that would cause
issues on 32-bit systems where the VA region for kernel space mappings
is very small. So, before using the allocating memory, the object has to
be mapped using zs_map_object() to get a usable pointer and subsequently
unmapped using zs_unmap_object().


stat

With CONFIG_ZSMALLOC_STAT, we could see zsmalloc internal information via
/sys/kernel/debug/zsmalloc/<user name>. Here is a sample of stat output:

# cat /sys/kernel/debug/zsmalloc/zram0/classes

class  size almost_full almost_empty obj_allocated   obj_used pages_used pages_per_zspage
   ...
   ...
    9   176           0            1           186        129          8                4
   10   192           1            0          2880       2872        135                3
   11   208           0            1           819        795         42                2
   12   224           0            1           219        159         12                4
   ...
   ...






	class

	index

	size

	object size zspage stores

	almost_empty

	the number of ZS_ALMOST_EMPTY zspages(see below)

	almost_full

	the number of ZS_ALMOST_FULL zspages(see below)

	obj_allocated

	the number of objects allocated

	obj_used

	the number of objects allocated to the user

	pages_used

	the number of pages allocated for the class

	pages_per_zspage

	the number of 0-order pages to make a zspage



We assign a zspage to ZS_ALMOST_EMPTY fullness group when n <= N / f, where


	n = number of allocated objects

	N = total number of objects zspage can store

	f = fullness_threshold_frac(ie, 4 at the moment)



Similarly, we assign zspage to:


	ZS_ALMOST_FULL  when n > N / f

	ZS_EMPTY        when n == 0

	ZS_FULL         when n == N









          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    索引
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	The Linux Kernel v4.20.0 文档 »
 
      

    


    
      
          
            

索引



 




          

      

      

    


    
        © Copyright The kernel development community.
      由 Sphinx 1.4.9 创建。
    

  

  
    
    
    MIPI SyS-T over STP
    
    

    

    
 
  
  

    
      导航

      
        	
          索引

        	The Linux Kernel v4.20.0 文档 »
 
      

    


    
      
          
            
  
MIPI SyS-T over STP

The MIPI SyS-T protocol driver can be used with STM class devices to
generate standardized trace stream. Aside from being a standard, it
provides better trace source identification and timestamp correlation.

In order to use the MIPI SyS-T protocol driver with your STM device,
first, you’ll need CONFIG_STM_PROTO_SYS_T.

Now, you can select which protocol driver you want to use when you create
a policy for your STM device, by specifying it in the policy name:

# mkdir /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/

In other words, the policy name format is extended like this:


<device_name>:<protocol_name>.<policy_name>


With Intel TH, therefore it can look like “0-sth:p_sys-t.my-policy”.

If the protocol name is omitted, the STM class will chose whichever
protocol driver was loaded first.

You can also double check that everything is working as expected by

# cat /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/protocol
p_sys-t

Now, with the MIPI SyS-T protocol driver, each policy node in the
configfs gets a few additional attributes, which determine per-source
parameters specific to the protocol:

# mkdir /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/default
# ls /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/default
channels
clocksync_interval
do_len
masters
ts_interval
uuid

The most important one here is the “uuid”, which determines the UUID
that will be used to tag all data coming from this source. It is
automatically generated when a new node is created, but it is likely
that you would want to change it.

do_len switches on/off the additional “payload length” field in the
MIPI SyS-T message header. It is off by default as the STP already
marks message boun