
usepackagefontspec
setsansfontDejaVu Sans
setromanfontDejaVu Serif
setmonofontDejaVu Sans Mono



Linux Kernel User Documentation
v4.20.0

The kernel development community

1 16, 2019





Contents

1 Linux kernel release 4.x <http://kernel.org/> 3

2 The kernel’s command-line parameters 9

3 Linux allocated devices (4.x+ version) 109

4 L1TF - L1 Terminal Fault 171

5 Reporting bugs 181

6 Security bugs 185

7 Bug hunting 187

8 Bisecting a bug 193

9 Tainted kernels 195

10 Ramoops oops/panic logger 197

11 Dynamic debug 201

12 Explaining the dreaded “No init found.” boot hang message 207

13 Rules on how to access information in sysfs 209

14 Using the initial RAM disk (initrd) 213

15 Control Group v2 219

16 Linux Serial Console 245

17 Linux Braille Console 247

18 Parport 249

19 RAID arrays 253

20 Kernel module signing facility 263

21 Linux Magic System Request Key Hacks 267

i



22 Unicode support 273

23 Software cursor for VGA 277

24 Kernel Support for miscellaneous (your favourite) Binary Formats v1.1 279

25 Mono(tm) Binary Kernel Support for Linux 283

26 Java(tm) Binary Kernel Support for Linux v1.03 285

27 Reliability, Availability and Serviceability 293

28 A block layer cache (bcache) 309

29 ext4 General Information 319

30 Power Management 327

31 Thunderbolt 349

32 Linux Security Module Usage 353

33 Memory Management 369

ii



Linux Kernel User Documentation, v4.20.0

The following is a collection of user-oriented documents that have been added to the kernel over time. There is, as yet, little overall
order or organization here — this material was not written to be a single, coherent document! With luck things will improve quickly
over time.

This initial section contains overall information, including the README file describing the kernel as a whole, documentation on kernel
parameters, etc.

Contents 1



Linux Kernel User Documentation, v4.20.0

2 Contents



CHAPTER 1

Linux kernel release 4.x <http://kernel.org/>

These are the release notes for Linux version 4. Read them carefully, as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong.

What is Linux?

Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with assistance from a loosely-knit
team of hackers across the Net. It aims towards POSIX and Single UNIX Specification compliance.

It has all the features you would expect in a modern fully-fledged Unix, including true multitasking, virtual memory, shared
libraries, demand loading, shared copy-on-write executables, proper memory management, and multistack networking in-
cluding IPv4 and IPv6.

It is distributed under the GNU General Public License v2 - see the accompanying COPYING file for more details.

On what hardware does it run?

Although originally developed first for 32-bit x86-based PCs (386 or higher), today Linux also runs on (at least) the Compaq
Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, IBM
S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and ARC architectures.

Linux is easily portable to most general-purpose 32- or 64-bit architectures as long as they have a paged memory man-
agement unit (PMMU) and a port of the GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
also been ported to a number of architectures without a PMMU, although functionality is then obviously somewhat limited.
Linux has also been ported to itself. You can now run the kernel as a userspace application - this is called UserMode Linux
(UML).

Documentation

• There is a lot of documentation available both in electronic form on the Internet and in books, both Linux-specific and pertaining
to general UNIX questions. I’d recommend looking into the documentation subdirectories on any Linux FTP site for the LDP
(Linux Documentation Project) books. This README is not meant to be documentation on the system: there are much better
sources available.

• There are various README files in the Documentation/ subdirectory: these typically contain kernel-specific installation notes for
some drivers for example. Please read the Documentation/process/changes.rst file, as it contains information about the problems,
which may result by upgrading your kernel.

3



Linux Kernel User Documentation, v4.20.0

Installing the kernel source

• If you install the full sources, put the kernel tarball in a directory where you have permissions (e.g. your home directory) and
unpack it:

xz -cd linux-4.X.tar.xz | tar xvf -

Replace “X” with the version number of the latest kernel.

Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are used by the library header
files. They should match the library, and not get messed up by whatever the kernel-du-jour happens to be.

• You can also upgrade between 4.x releases by patching. Patches are distributed in the xz format. To install by patching, get all the
newer patch files, enter the top level directory of the kernel source (linux-4.X) and execute:

xz -cd ../patch-4.x.xz | patch -p1

Replace “x” for all versions bigger than the version “X” of your current source tree, in_order, and you should be ok. You
may want to remove the backup files (some-file-name~ or some-file-name.orig), and make sure that there are no failed patches
(some-file-name# or some-file-name.rej). If there are, either you or I have made a mistake.

Unlike patches for the 4.x kernels, patches for the 4.x.y kernels (also known as the -stable kernels) are not incremental but
instead apply directly to the base 4.x kernel. For example, if your base kernel is 4.0 and you want to apply the 4.0.3 patch,
you must not first apply the 4.0.1 and 4.0.2 patches. Similarly, if you are running kernel version 4.0.2 and want to jump to
4.0.3, you must first reverse the 4.0.2 patch (that is, patch -R) before applying the 4.0.3 patch. You can read more on this in
Documentation/process/applying-patches.rst .

Alternatively, the script patch-kernel can be used to automate this process. It determines the current kernel version and applies any
patches found:

linux/scripts/patch-kernel linux

The first argument in the command above is the location of the kernel source. Patches are applied from the current directory, but
an alternative directory can be specified as the second argument.

• Make sure you have no stale .o files and dependencies lying around:

cd linux
make mrproper

You should now have the sources correctly installed.

Software requirements

Compiling and running the 4.x kernels requires up-to-date versions of various software packages. Consult Documenta-
tion/process/changes.rst for the minimum version numbers required and how to get updates for these packages. Beware
that using excessively old versions of these packages can cause indirect errors that are very difficult to track down, so don’t
assume that you can just update packages when obvious problems arise during build or operation.

Build directory for the kernel

When compiling the kernel, all output files will per default be stored together with the kernel source code. Using the option
make O=output/dir allows you to specify an alternate place for the output files (including .config). Example:

4 Chapter 1. Linux kernel release 4.x <http://kernel.org/>



Linux Kernel User Documentation, v4.20.0

kernel source code: /usr/src/linux-4.X
build directory: /home/name/build/kernel

To configure and build the kernel, use:

cd /usr/src/linux-4.X
make O=/home/name/build/kernel menuconfig
make O=/home/name/build/kernel
sudo make O=/home/name/build/kernel modules_install install

Please note: If the O=output/dir option is used, then it must be used for all invocations of make.

Configuring the kernel

Do not skip this step even if you are only upgrading one minor version. New configuration options are added in
each release, and odd problems will turn up if the configuration files are not set up as expected. If you want to
carry your existing configuration to a new version with minimal work, use make oldconfig, which will only
ask you for the answers to new questions.

• Alternative configuration commands are:

"make config" Plain text interface.

"make menuconfig" Text based color menus, radiolists & dialogs.

"make nconfig" Enhanced text based color menus.

"make xconfig" Qt based configuration tool.

"make gconfig" GTK+ based configuration tool.

"make oldconfig" Default all questions based on the contents of
your existing ./.config file and asking about
new config symbols.

"make olddefconfig"
Like above, but sets new symbols to their default
values without prompting.

"make defconfig" Create a ./.config file by using the default
symbol values from either arch/$ARCH/defconfig
or arch/$ARCH/configs/${PLATFORM}_defconfig,
depending on the architecture.

"make ${PLATFORM}_defconfig"
Create a ./.config file by using the default
symbol values from
arch/$ARCH/configs/${PLATFORM}_defconfig.
Use "make help" to get a list of all available
platforms of your architecture.

"make allyesconfig"
Create a ./.config file by setting symbol
values to 'y' as much as possible.

"make allmodconfig"

1.7. Configuring the kernel 5



Linux Kernel User Documentation, v4.20.0

Create a ./.config file by setting symbol
values to 'm' as much as possible.

"make allnoconfig" Create a ./.config file by setting symbol
values to 'n' as much as possible.

"make randconfig" Create a ./.config file by setting symbol
values to random values.

"make localmodconfig" Create a config based on current config and
loaded modules (lsmod). Disables any module
option that is not needed for the loaded modules.

To create a localmodconfig for another machine,
store the lsmod of that machine into a file
and pass it in as a LSMOD parameter.

target$ lsmod > /tmp/mylsmod
target$ scp /tmp/mylsmod host:/tmp

host$ make LSMOD=/tmp/mylsmod localmodconfig

The above also works when cross compiling.

"make localyesconfig" Similar to localmodconfig, except it will convert
all module options to built in (=y) options.

"make kvmconfig" Enable additional options for kvm guest kernel support.

"make xenconfig" Enable additional options for xen dom0 guest kernel
support.

"make tinyconfig" Configure the tiniest possible kernel.

You can find more information on using the Linux kernel config tools in Documentation/kbuild/kconfig.txt.

• NOTES on make config:

– Having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems:
probing for a nonexistent controller card may confuse your other controllers.

– A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will
just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless
of whether they have a math coprocessor or not.

– The “kernel hacking” configuration details usually result in a bigger or slower kernel (or both), and can even make
the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmal-
loc()). Thus you should probably answer ‘n’ to the questions for “development”, “experimental”, or “debugging”
features.

Compiling the kernel

• Make sure you have at least gcc 3.2 available. For more information, refer to Documentation/process/changes.rst .

Please note that you can still run a.out user programs with this kernel.

6 Chapter 1. Linux kernel release 4.x <http://kernel.org/>



Linux Kernel User Documentation, v4.20.0

• Do a make to create a compressed kernel image. It is also possible to do make install if you have lilo installed to suit the
kernel makefiles, but you may want to check your particular lilo setup first.

To do the actual install, you have to be root, but none of the normal build should require that. Don’t take the name of root in vain.

• If you configured any of the parts of the kernel as modules, you will also have to do make modules_install.

• Verbose kernel compile/build output:

Normally, the kernel build system runs in a fairly quiet mode (but not totally silent). However, sometimes you or other kernel
developers need to see compile, link, or other commands exactly as they are executed. For this, use “verbose” build mode. This is
done by passing V=1 to the make command, e.g.:

make V=1 all

To have the build system also tell the reason for the rebuild of each target, use V=2. The default is V=0.

• Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new
release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that
kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your
modules directory before you do a make modules_install.

Alternatively, before compiling, use the kernel config option “LOCALVERSION” to append a unique suffix to the regular kernel
version. LOCALVERSION can be set in the “General Setup” menu.

• In order to boot your new kernel, you’ll need to copy the kernel image (e.g. .../linux/arch/x86/boot/bzImage after compilation) to
the place where your regular bootable kernel is found.

• Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported.

If you boot Linux from the hard drive, chances are you use LILO, which uses the kernel image as specified in the file /etc/lilo.conf.
The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the
old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map! If you don’t,
you won’t be able to boot the new kernel image.

Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old
kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information.

After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy!

If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the rdev program (or
alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters.

• Reboot with the new kernel and enjoy.

If something goes wrong

• If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person
associated with the part of the kernel that you are having trouble with. If there isn’t anyone listed there, then the second best thing
is to mail them to me (torvalds@linux-foundation.org), and possibly to any other relevant mailing-list or to the newsgroup.

• In all bug-reports, please tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your
common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it.

• If the bug results in a message like:

unable to handle kernel paging request at address C0000010
Oops: 0002
EIP: 0010:XXXXXXXX
eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx

1.9. If something goes wrong 7

mailto:torvalds@linux-foundation.org


Linux Kernel User Documentation, v4.20.0

esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx
ds: xxxx es: xxxx fs: xxxx gs: xxxx
Pid: xx, process nr: xx
xx xx xx xx xx xx xx xx xx xx

or similar kernel debugging information on your screen or in your system log, please duplicate it exactly. The dump may look
incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also
important: it tells something about why the kernel dumped code (in the above example, it’s due to a bad kernel pointer). More
information on making sense of the dump is in Documentation/admin-guide/bug-hunting.rst

• If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the
ksymoops program to make sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred). This util-
ity can be downloaded from https://www.kernel.org/pub/linux/utils/kernel/ksymoops/ . Alternatively, you can do the dump lookup
by hand:

• In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such
doesn’t help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the
hex value from the EIP line (ignore the 0010:), and look it up in the kernel namelist to see which kernel function contains the
offending address.

To find out the kernel function name, you’ll need to find the system binary associated with the kernel that exhibited the symptom.
This is the file ‘linux/vmlinux’. To extract the namelist and match it against the EIP from the kernel crash, do:

nm vmlinux | sort | less

This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains
the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the
function addresses (in fact, that is very unlikely), so you can’t just ‘grep’ the list: the list will, however, give you the starting point
of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is
followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of
“context” in your problem report, giving a few lines around the interesting one.

If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your
setup as possible will help. Please read the admin-guide/reporting-bugs.rst document for details.

• Alternatively, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do
this, first compile the kernel with -g; edit arch/x86/Makefile appropriately, then do a make clean. You’ll also need to enable
CONFIG_PROC_FS (via make config).

After you’ve rebooted with the new kernel, do gdb vmlinux /proc/kcore. You can now use all the usual gdb commands.
The command to look up the point where your system crashed is l *0xXXXXXXXX. (Replace the XXXes with the EIP value.)

gdb’ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled.

8 Chapter 1. Linux kernel release 4.x <http://kernel.org/>

https://www.kernel.org/pub/linux/utils/kernel/ksymoops/


CHAPTER 2

The kernel’s command-line parameters

The following is a consolidated list of the kernel parameters as implemented by the __setup(), core_param() and module_param()
macros and sorted into English Dictionary order (defined as ignoring all punctuation and sorting digits before letters in a case insensitive
manner), and with descriptions where known.

The kernel parses parameters from the kernel command line up to “–”; if it doesn’t recognize a parameter and it doesn’t contain a ‘.’,
the parameter gets passed to init: parameters with ‘=’ go into init’s environment, others are passed as command line arguments to init.
Everything after “–” is passed as an argument to init.

Module parameters can be specified in two ways: via the kernel command line with a module name prefix, or via modprobe, e.g.:

(kernel command line) usbcore.blinkenlights=1
(modprobe command line) modprobe usbcore blinkenlights=1

Parameters for modules which are built into the kernel need to be specified on the kernel command line. modprobe looks through the
kernel command line (/proc/cmdline) and collects module parameters when it loads a module, so the kernel command line can be used
for loadable modules too.

Hyphens (dashes) and underscores are equivalent in parameter names, so:

log_buf_len=1M print-fatal-signals=1

can also be entered as:

log-buf-len=1M print_fatal_signals=1

Double-quotes can be used to protect spaces in values, e.g.:

param="spaces in here"

cpu lists:

Some kernel parameters take a list of CPUs as a value, e.g. isolcpus, nohz_full, irqaffinity, rcu_nocbs. The format of this list is:

<cpu number>,...,<cpu number>

or

<cpu number>-<cpu number> (must be a positive range in ascending order)

or a mixture

<cpu number>,...,<cpu number>-<cpu number>

9



Linux Kernel User Documentation, v4.20.0

Note that for the special case of a range one can split the range into equal sized groups and for each group use some amount from the
beginning of that group:

<cpu number>-cpu number>:<used size>/<group size>

For example one can add to the command line following parameter:

isolcpus=1,2,10-20,100-2000:2/25

where the final item represents CPUs 100,101,125,126,150,151,...

This document may not be entirely up to date and comprehensive. The command “modinfo -p ${modulename}” shows a current
list of all parameters of a loadable module. Loadable modules, after being loaded into the running kernel, also reveal their parame-
ters in /sys/module/${modulename}/parameters/. Some of these parameters may be changed at runtime by the command echo -n
${value} > /sys/module/${modulename}/parameters/${parm}.

The parameters listed below are only valid if certain kernel build options were enabled and if respective hardware is present. The text in
square brackets at the beginning of each description states the restrictions within which a parameter is applicable:

ACPI ACPI support is enabled.
AGP AGP (Accelerated Graphics Port) is enabled.
ALSA ALSA sound support is enabled.
APIC APIC support is enabled.
APM Advanced Power Management support is enabled.
ARM ARM architecture is enabled.
AX25 Appropriate AX.25 support is enabled.
CLK Common clock infrastructure is enabled.
CMA Contiguous Memory Area support is enabled.
DRM Direct Rendering Management support is enabled.
DYNAMIC_DEBUG Build in debug messages and enable them at runtime
EDD BIOS Enhanced Disk Drive Services (EDD) is enabled
EFI EFI Partitioning (GPT) is enabled
EIDE EIDE/ATAPI support is enabled.
EVM Extended Verification Module
FB The frame buffer device is enabled.
FTRACE Function tracing enabled.
GCOV GCOV profiling is enabled.
HW Appropriate hardware is enabled.
IA-64 IA-64 architecture is enabled.
IMA Integrity measurement architecture is enabled.
IOSCHED More than one I/O scheduler is enabled.
IP_PNP IP DHCP, BOOTP, or RARP is enabled.
IPV6 IPv6 support is enabled.
ISAPNP ISA PnP code is enabled.
ISDN Appropriate ISDN support is enabled.
ISOL CPU Isolation is enabled.
JOY Appropriate joystick support is enabled.
KGDB Kernel debugger support is enabled.
KVM Kernel Virtual Machine support is enabled.
LIBATA Libata driver is enabled
LP Printer support is enabled.
LOOP Loopback device support is enabled.
M68k M68k architecture is enabled.

These options have more detailed description inside of
Documentation/m68k/kernel-options.txt.

MDA MDA console support is enabled.
MIPS MIPS architecture is enabled.
MOUSE Appropriate mouse support is enabled.
MSI Message Signaled Interrupts (PCI).
MTD MTD (Memory Technology Device) support is enabled.

10 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

NET Appropriate network support is enabled.
NUMA NUMA support is enabled.
NFS Appropriate NFS support is enabled.
OSS OSS sound support is enabled.
PV_OPS A paravirtualized kernel is enabled.
PARIDE The ParIDE (parallel port IDE) subsystem is enabled.
PARISC The PA-RISC architecture is enabled.
PCI PCI bus support is enabled.
PCIE PCI Express support is enabled.
PCMCIA The PCMCIA subsystem is enabled.
PNP Plug & Play support is enabled.
PPC PowerPC architecture is enabled.
PPT Parallel port support is enabled.
PS2 Appropriate PS/2 support is enabled.
RAM RAM disk support is enabled.
RDT Intel Resource Director Technology.
S390 S390 architecture is enabled.
SCSI Appropriate SCSI support is enabled.

A lot of drivers have their options described inside
the Documentation/scsi/ sub-directory.

SECURITY Different security models are enabled.
SELINUX SELinux support is enabled.
APPARMOR AppArmor support is enabled.
SERIAL Serial support is enabled.
SH SuperH architecture is enabled.
SMP The kernel is an SMP kernel.
SPARC Sparc architecture is enabled.
SWSUSP Software suspend (hibernation) is enabled.
SUSPEND System suspend states are enabled.
TPM TPM drivers are enabled.
TS Appropriate touchscreen support is enabled.
UMS USB Mass Storage support is enabled.
USB USB support is enabled.
USBHID USB Human Interface Device support is enabled.
V4L Video For Linux support is enabled.
VMMIO Driver for memory mapped virtio devices is enabled.
VGA The VGA console has been enabled.
VT Virtual terminal support is enabled.
WDT Watchdog support is enabled.
XT IBM PC/XT MFM hard disk support is enabled.
X86-32 X86-32, aka i386 architecture is enabled.
X86-64 X86-64 architecture is enabled.

More X86-64 boot options can be found in
Documentation/x86/x86_64/boot-options.txt .

X86 Either 32-bit or 64-bit x86 (same as X86-32+X86-64)
X86_UV SGI UV support is enabled.
XEN Xen support is enabled

In addition, the following text indicates that the option:

BUGS= Relates to possible processor bugs on the said processor.
KNL Is a kernel start-up parameter.
BOOT Is a boot loader parameter.

Parameters denoted with BOOT are actually interpreted by the boot loader, and have no meaning to the kernel directly. Do not modify
the syntax of boot loader parameters without extreme need or coordination with <Documentation/x86/boot.txt>.

There are also arch-specific kernel-parameters not documented here. See for example <Documentation/x86/x86_64/boot-options.txt>.

2.1. cpu lists: 11



Linux Kernel User Documentation, v4.20.0

Note that ALL kernel parameters listed below are CASE SENSITIVE, and that a trailing = on the name of any parameter states that that
parameter will be entered as an environment variable, whereas its absence indicates that it will appear as a kernel argument readable via
/proc/cmdline by programs running once the system is up.

The number of kernel parameters is not limited, but the length of the complete command line (parameters including spaces etc.) is
limited to a fixed number of characters. This limit depends on the architecture and is between 256 and 4096 characters. It is defined in
the file ./include/asm/setup.h as COMMAND_LINE_SIZE.

Finally, the [KMG] suffix is commonly described after a number of kernel parameter values. These ‘K’, ‘M’, and ‘G’ letters represent
the _binary_ multipliers ‘Kilo’, ‘Mega’, and ‘Giga’, equaling 2^10, 2^20, and 2^30 bytes respectively. Such letter suffixes can also be
entirely omitted:

acpi= [HW,ACPI,X86,ARM64]
Advanced Configuration and Power Interface
Format: { force | on | off | strict | noirq | rsdt |

copy_dsdt }
force -- enable ACPI if default was off
on -- enable ACPI but allow fallback to DT [arm64]
off -- disable ACPI if default was on
noirq -- do not use ACPI for IRQ routing
strict -- Be less tolerant of platforms that are not

strictly ACPI specification compliant.
rsdt -- prefer RSDT over (default) XSDT
copy_dsdt -- copy DSDT to memory
For ARM64, ONLY ``acpi=off'', ``acpi=on'' or ``acpi=force''
are available

See also Documentation/power/runtime_pm.txt, pci=noacpi

acpi_apic_instance= [ACPI, IOAPIC]
Format: <int>
2: use 2nd APIC table, if available
1,0: use 1st APIC table
default: 0

acpi_backlight= [HW,ACPI]
acpi_backlight=vendor
acpi_backlight=video
If set to vendor, prefer vendor specific driver
(e.g. thinkpad_acpi, sony_acpi, etc.) instead
of the ACPI video.ko driver.

acpi_force_32bit_fadt_addr
force FADT to use 32 bit addresses rather than the
64 bit X_* addresses. Some firmware have broken 64
bit addresses for force ACPI ignore these and use
the older legacy 32 bit addresses.

acpica_no_return_repair [HW, ACPI]
Disable AML predefined validation mechanism
This mechanism can repair the evaluation result to make
the return objects more ACPI specification compliant.
This option is useful for developers to identify the
root cause of an AML interpreter issue when the issue
has something to do with the repair mechanism.

12 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

acpi.debug_layer= [HW,ACPI,ACPI_DEBUG]
acpi.debug_level= [HW,ACPI,ACPI_DEBUG]

Format: <int>
CONFIG_ACPI_DEBUG must be enabled to produce any ACPI
debug output. Bits in debug_layer correspond to a
_COMPONENT in an ACPI source file, e.g.,

#define _COMPONENT ACPI_PCI_COMPONENT
Bits in debug_level correspond to a level in
ACPI_DEBUG_PRINT statements, e.g.,

ACPI_DEBUG_PRINT((ACPI_DB_INFO, ...
The debug_level mask defaults to ``info''. See
Documentation/acpi/debug.txt for more information about
debug layers and levels.

Enable processor driver info messages:
acpi.debug_layer=0x20000000

Enable PCI/PCI interrupt routing info messages:
acpi.debug_layer=0x400000

Enable AML ``Debug'' output, i.e., stores to the Debug
object while interpreting AML:

acpi.debug_layer=0xffffffff acpi.debug_level=0x2
Enable all messages related to ACPI hardware:

acpi.debug_layer=0x2 acpi.debug_level=0xffffffff

Some values produce so much output that the system is
unusable. The ``log_buf_len'' parameter may be useful
if you need to capture more output.

acpi_enforce_resources= [ACPI]
{ strict | lax | no }
Check for resource conflicts between native drivers
and ACPI OperationRegions (SystemIO and SystemMemory
only). IO ports and memory declared in ACPI might be
used by the ACPI subsystem in arbitrary AML code and
can interfere with legacy drivers.
strict (default): access to resources claimed by ACPI
is denied; legacy drivers trying to access reserved
resources will fail to bind to device using them.
lax: access to resources claimed by ACPI is allowed;
legacy drivers trying to access reserved resources
will bind successfully but a warning message is logged.
no: ACPI OperationRegions are not marked as reserved,
no further checks are performed.

acpi_force_table_verification [HW,ACPI]
Enable table checksum verification during early stage.
By default, this is disabled due to x86 early mapping
size limitation.

acpi_irq_balance [HW,ACPI]
ACPI will balance active IRQs
default in APIC mode

2.1. cpu lists: 13



Linux Kernel User Documentation, v4.20.0

acpi_irq_nobalance [HW,ACPI]
ACPI will not move active IRQs (default)
default in PIC mode

acpi_irq_isa= [HW,ACPI] If irq_balance, mark listed IRQs used by ISA
Format: <irq>,<irq>...

acpi_irq_pci= [HW,ACPI] If irq_balance, clear listed IRQs for
use by PCI
Format: <irq>,<irq>...

acpi_mask_gpe= [HW,ACPI]
Due to the existence of _Lxx/_Exx, some GPEs triggered
by unsupported hardware/firmware features can result in
GPE floodings that cannot be automatically disabled by
the GPE dispatcher.
This facility can be used to prevent such uncontrolled
GPE floodings.
Format: <int>

acpi_no_auto_serialize [HW,ACPI]
Disable auto-serialization of AML methods
AML control methods that contain the opcodes to create
named objects will be marked as ``Serialized'' by the
auto-serialization feature.
This feature is enabled by default.
This option allows to turn off the feature.

acpi_no_memhotplug [ACPI] Disable memory hotplug. Useful for kdump
kernels.

acpi_no_static_ssdt [HW,ACPI]
Disable installation of static SSDTs at early boot time
By default, SSDTs contained in the RSDT/XSDT will be
installed automatically and they will appear under
/sys/firmware/acpi/tables.
This option turns off this feature.
Note that specifying this option does not affect
dynamic table installation which will install SSDT
tables to /sys/firmware/acpi/tables/dynamic.

acpi_rsdp= [ACPI,EFI,KEXEC]
Pass the RSDP address to the kernel, mostly used
on machines running EFI runtime service to boot the
second kernel for kdump.

acpi_os_name= [HW,ACPI] Tell ACPI BIOS the name of the OS
Format: To spoof as Windows 98: =''Microsoft Windows''

acpi_rev_override [ACPI] Override the _REV object to return 5 (instead
of 2 which is mandated by ACPI 6) as the supported ACPI
specification revision (when using this switch, it may
be necessary to carry out a cold reboot _twice_ in a
row to make it take effect on the platform firmware).

14 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

acpi_osi= [HW,ACPI] Modify list of supported OS interface strings
acpi_osi=''string1'' # add string1
acpi_osi=''!string2'' # remove string2
acpi_osi=!* # remove all strings
acpi_osi=! # disable all built-in OS vendor

strings
acpi_osi=!! # enable all built-in OS vendor

strings
acpi_osi= # disable all strings

`acpi_osi=!' can be used in combination with single or
multiple `acpi_osi=''string1''' to support specific OS
vendor string(s). Note that such command can only
affect the default state of the OS vendor strings, thus
it cannot affect the default state of the feature group
strings and the current state of the OS vendor strings,
specifying it multiple times through kernel command line
is meaningless. This command is useful when one do not
care about the state of the feature group strings which
should be controlled by the OSPM.
Examples:

1. `acpi_osi=! acpi_osi=''Windows 2000''' is equivalent
to `acpi_osi=''Windows 2000'' acpi_osi=!', they all
can make `_OSI(``Windows 2000'')' TRUE.

`acpi_osi=' cannot be used in combination with other
`acpi_osi=' command lines, the _OSI method will not
exist in the ACPI namespace. NOTE that such command can
only affect the _OSI support state, thus specifying it
multiple times through kernel command line is also
meaningless.
Examples:

1. `acpi_osi=' can make `CondRefOf(_OSI, Local1)'
FALSE.

`acpi_osi=!*' can be used in combination with single or
multiple `acpi_osi=''string1''' to support specific
string(s). Note that such command can affect the
current state of both the OS vendor strings and the
feature group strings, thus specifying it multiple times
through kernel command line is meaningful. But it may
still not able to affect the final state of a string if
there are quirks related to this string. This command
is useful when one want to control the state of the
feature group strings to debug BIOS issues related to
the OSPM features.
Examples:

1. `acpi_osi=''Module Device'' acpi_osi=!*' can make
`_OSI(``Module Device'')' FALSE.

2. `acpi_osi=!* acpi_osi=''Module Device''' can make
`_OSI(``Module Device'')' TRUE.

3. `acpi_osi=! acpi_osi=!* acpi_osi=''Windows 2000''' is
equivalent to

2.1. cpu lists: 15



Linux Kernel User Documentation, v4.20.0

`acpi_osi=!* acpi_osi=! acpi_osi=''Windows 2000'''
and
`acpi_osi=!* acpi_osi=''Windows 2000'' acpi_osi=!',
they all will make `_OSI(``Windows 2000'')' TRUE.

acpi_pm_good [X86]
Override the pmtimer bug detection: force the kernel
to assume that this machine's pmtimer latches its value
and always returns good values.

acpi_sci= [HW,ACPI] ACPI System Control Interrupt trigger mode
Format: { level | edge | high | low }

acpi_skip_timer_override [HW,ACPI]
Recognize and ignore IRQ0/pin2 Interrupt Override.
For broken nForce2 BIOS resulting in XT-PIC timer.

acpi_sleep= [HW,ACPI] Sleep options
Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig,

old_ordering, nonvs, sci_force_enable, nobl }
See Documentation/power/video.txt for information on
s3_bios and s3_mode.
s3_beep is for debugging; it makes the PC's speaker beep
as soon as the kernel's real-mode entry point is called.
s4_nohwsig prevents ACPI hardware signature from being
used during resume from hibernation.
old_ordering causes the ACPI 1.0 ordering of the _PTS
control method, with respect to putting devices into
low power states, to be enforced (the ACPI 2.0 ordering
of _PTS is used by default).
nonvs prevents the kernel from saving/restoring the
ACPI NVS memory during suspend/hibernation and resume.
sci_force_enable causes the kernel to set SCI_EN directly
on resume from S1/S3 (which is against the ACPI spec,
but some broken systems don't work without it).
nobl causes the internal blacklist of systems known to
behave incorrectly in some ways with respect to system
suspend and resume to be ignored (use wisely).

acpi_use_timer_override [HW,ACPI]
Use timer override. For some broken Nvidia NF5 boards
that require a timer override, but don't have HPET

add_efi_memmap [EFI; X86] Include EFI memory map in
kernel's map of available physical RAM.

agp= [AGP]
{ off | try_unsupported }
off: disable AGP support
try_unsupported: try to drive unsupported chipsets

(may crash computer or cause data corruption)

ALSA [HW,ALSA]
See Documentation/sound/alsa-configuration.rst

16 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

alignment= [KNL,ARM]
Allow the default userspace alignment fault handler
behaviour to be specified. Bit 0 enables warnings,
bit 1 enables fixups, and bit 2 sends a segfault.

align_va_addr= [X86-64]
Align virtual addresses by clearing slice [14:12] when
allocating a VMA at process creation time. This option
gives you up to 3% performance improvement on AMD F15h
machines (where it is enabled by default) for a
CPU-intensive style benchmark, and it can vary highly in
a microbenchmark depending on workload and compiler.

32: only for 32-bit processes
64: only for 64-bit processes
on: enable for both 32- and 64-bit processes
off: disable for both 32- and 64-bit processes

alloc_snapshot [FTRACE]
Allocate the ftrace snapshot buffer on boot up when the
main buffer is allocated. This is handy if debugging
and you need to use tracing_snapshot() on boot up, and
do not want to use tracing_snapshot_alloc() as it needs
to be done where GFP_KERNEL allocations are allowed.

amd_iommu= [HW,X86-64]
Pass parameters to the AMD IOMMU driver in the system.
Possible values are:
fullflush - enable flushing of IO/TLB entries when

they are unmapped. Otherwise they are
flushed before they will be reused, which
is a lot of faster

off - do not initialize any AMD IOMMU found in
the system

force_isolation - Force device isolation for all
devices. The IOMMU driver is not
allowed anymore to lift isolation
requirements as needed. This option
does not override iommu=pt

amd_iommu_dump= [HW,X86-64]
Enable AMD IOMMU driver option to dump the ACPI table
for AMD IOMMU. With this option enabled, AMD IOMMU
driver will print ACPI tables for AMD IOMMU during
IOMMU initialization.

amd_iommu_intr= [HW,X86-64]
Specifies one of the following AMD IOMMU interrupt
remapping modes:
legacy - Use legacy interrupt remapping mode.
vapic - Use virtual APIC mode, which allows IOMMU

to inject interrupts directly into guest.
This mode requires kvm-amd.avic=1.

2.1. cpu lists: 17



Linux Kernel User Documentation, v4.20.0

(Default when IOMMU HW support is present.)

amijoy.map= [HW,JOY] Amiga joystick support
Map of devices attached to JOY0DAT and JOY1DAT
Format: <a>,<b>
See also Documentation/input/joydev/joystick.rst

analog.map= [HW,JOY] Analog joystick and gamepad support
Specifies type or capabilities of an analog joystick
connected to one of 16 gameports
Format: <type1>,<type2>,..<type16>

apc= [HW,SPARC]
Power management functions (SPARCstation-4/5 + deriv.)
Format: noidle
Disable APC CPU standby support. SPARCstation-Fox does
not play well with APC CPU idle - disable it if you have
APC and your system crashes randomly.

apic= [APIC,X86] Advanced Programmable Interrupt Controller
Change the output verbosity whilst booting
Format: { quiet (default) | verbose | debug }
Change the amount of debugging information output
when initialising the APIC and IO-APIC components.
For X86-32, this can also be used to specify an APIC
driver name.
Format: apic=driver_name
Examples: apic=bigsmp

apic_extnmi= [APIC,X86] External NMI delivery setting
Format: { bsp (default) | all | none }
bsp: External NMI is delivered only to CPU 0
all: External NMIs are broadcast to all CPUs as a

backup of CPU 0
none: External NMI is masked for all CPUs. This is

useful so that a dump capture kernel won't be
shot down by NMI

autoconf= [IPV6]
See Documentation/networking/ipv6.txt.

show_lapic= [APIC,X86] Advanced Programmable Interrupt Controller
Limit apic dumping. The parameter defines the maximal
number of local apics being dumped. Also it is possible
to set it to ``all'' by meaning -- no limit here.
Format: { 1 (default) | 2 | ... | all }.
The parameter valid if only apic=debug or
apic=verbose is specified.
Example: apic=debug show_lapic=all

apm= [APM] Advanced Power Management
See header of arch/x86/kernel/apm_32.c.

arcrimi= [HW,NET] ARCnet - ``RIM I'' (entirely mem-mapped) cards

18 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Format: <io>,<irq>,<nodeID>

ataflop= [HW,M68k]

atarimouse= [HW,MOUSE] Atari Mouse

atkbd.extra= [HW] Enable extra LEDs and keys on IBM RapidAccess,
EzKey and similar keyboards

atkbd.reset= [HW] Reset keyboard during initialization

atkbd.set= [HW] Select keyboard code set
Format: <int> (2 = AT (default), 3 = PS/2)

atkbd.scroll= [HW] Enable scroll wheel on MS Office and similar
keyboards

atkbd.softraw= [HW] Choose between synthetic and real raw mode
Format: <bool> (0 = real, 1 = synthetic (default))

atkbd.softrepeat= [HW]
Use software keyboard repeat

audit= [KNL] Enable the audit sub-system
Format: { ``0'' | ``1'' | ``off'' | ``on'' }
0 | off - kernel audit is disabled and can not be

enabled until the next reboot
unset - kernel audit is initialized but disabled and

will be fully enabled by the userspace auditd.
1 | on - kernel audit is initialized and partially

enabled, storing at most audit_backlog_limit
messages in RAM until it is fully enabled by the
userspace auditd.

Default: unset

audit_backlog_limit= [KNL] Set the audit queue size limit.
Format: <int> (must be >=0)
Default: 64

bau= [X86_UV] Enable the BAU on SGI UV. The default
behavior is to disable the BAU (i.e. bau=0).
Format: { ``0'' | ``1'' }
0 - Disable the BAU.
1 - Enable the BAU.
unset - Disable the BAU.

baycom_epp= [HW,AX25]
Format: <io>,<mode>

baycom_par= [HW,AX25] BayCom Parallel Port AX.25 Modem
Format: <io>,<mode>
See header of drivers/net/hamradio/baycom_par.c.

baycom_ser_fdx= [HW,AX25]

2.1. cpu lists: 19



Linux Kernel User Documentation, v4.20.0

BayCom Serial Port AX.25 Modem (Full Duplex Mode)
Format: <io>,<irq>,<mode>[,<baud>]
See header of drivers/net/hamradio/baycom_ser_fdx.c.

baycom_ser_hdx= [HW,AX25]
BayCom Serial Port AX.25 Modem (Half Duplex Mode)
Format: <io>,<irq>,<mode>
See header of drivers/net/hamradio/baycom_ser_hdx.c.

blkdevparts= Manual partition parsing of block device(s) for
embedded devices based on command line input.
See Documentation/block/cmdline-partition.txt

boot_delay= Milliseconds to delay each printk during boot.
Values larger than 10 seconds (10000) are changed to
no delay (0).
Format: integer

bootmem_debug [KNL] Enable bootmem allocator debug messages.

bert_disable [ACPI]
Disable BERT OS support on buggy BIOSes.

bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards)
bttv.radio= Most important insmod options are available as

kernel args too.
bttv.pll= See Documentation/media/v4l-drivers/bttv.rst
bttv.tuner=

bulk_remove=off [PPC] This parameter disables the use of the pSeries
firmware feature for flushing multiple hpte entries
at a time.

c101= [NET] Moxa C101 synchronous serial card

cachesize= [BUGS=X86-32] Override level 2 CPU cache size detection.
Sometimes CPU hardware bugs make them report the cache
size incorrectly. The kernel will attempt work arounds
to fix known problems, but for some CPUs it is not
possible to determine what the correct size should be.
This option provides an override for these situations.

ca_keys= [KEYS] This parameter identifies a specific key(s) on
the system trusted keyring to be used for certificate
trust validation.
format: { id:<keyid> | builtin }

cca= [MIPS] Override the kernel pages' cache coherency
algorithm. Accepted values range from 0 to 7
inclusive. See arch/mips/include/asm/pgtable-bits.h
for platform specific values (SB1, Loongson3 and
others).

ccw_timeout_log [S390]

20 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

See Documentation/s390/CommonIO for details.

cgroup_disable= [KNL] Disable a particular controller
Format: {name of the controller(s) to disable}
The effects of cgroup_disable=foo are:
- foo isn't auto-mounted if you mount all cgroups in

a single hierarchy
- foo isn't visible as an individually mountable

subsystem
{Currently only ``memory'' controller deal with this and
cut the overhead, others just disable the usage. So
only cgroup_disable=memory is actually worthy}

cgroup_no_v1= [KNL] Disable one, multiple, all cgroup controllers in v1
Format: { controller[,controller...] | ``all'' }
Like cgroup_disable, but only applies to cgroup v1;
the blacklisted controllers remain available in cgroup2.

cgroup.memory= [KNL] Pass options to the cgroup memory controller.
Format: <string>
nosocket -- Disable socket memory accounting.
nokmem -- Disable kernel memory accounting.

checkreqprot [SELINUX] Set initial checkreqprot flag value.
Format: { ``0'' | ``1'' }
See security/selinux/Kconfig help text.
0 -- check protection applied by kernel (includes

any implied execute protection).
1 -- check protection requested by application.
Default value is set via a kernel config option.
Value can be changed at runtime via

/selinux/checkreqprot.

cio_ignore= [S390]
See Documentation/s390/CommonIO for details.

clk_ignore_unused
[CLK]
Prevents the clock framework from automatically gating
clocks that have not been explicitly enabled by a Linux
device driver but are enabled in hardware at reset or
by the bootloader/firmware. Note that this does not
force such clocks to be always-on nor does it reserve
those clocks in any way. This parameter is useful for
debug and development, but should not be needed on a
platform with proper driver support. For more
information, see Documentation/driver-api/clk.rst.

clock= [BUGS=X86-32, HW] gettimeofday clocksource override.
[Deprecated]
Forces specified clocksource (if available) to be used
when calculating gettimeofday(). If specified
clocksource is not available, it defaults to PIT.
Format: { pit | tsc | cyclone | pmtmr }

2.1. cpu lists: 21



Linux Kernel User Documentation, v4.20.0

clocksource= Override the default clocksource
Format: <string>
Override the default clocksource and use the clocksource
with the name specified.
Some clocksource names to choose from, depending on
the platform:
[all] jiffies (this is the base, fallback clocksource)
[ACPI] acpi_pm
[ARM] imx_timer1,OSTS,netx_timer,mpu_timer2,

pxa_timer,timer3,32k_counter,timer0_1
[X86-32] pit,hpet,tsc;

scx200_hrt on Geode; cyclone on IBM x440
[MIPS] MIPS
[PARISC] cr16
[S390] tod
[SH] SuperH
[SPARC64] tick
[X86-64] hpet,tsc

clocksource.arm_arch_timer.evtstrm=
[ARM,ARM64]
Format: <bool>
Enable/disable the eventstream feature of the ARM
architected timer so that code using WFE-based polling
loops can be debugged more effectively on production
systems.

clearcpuid=BITNUM [X86]
Disable CPUID feature X for the kernel. See
arch/x86/include/asm/cpufeatures.h for the valid bit
numbers. Note the Linux specific bits are not necessarily
stable over kernel options, but the vendor specific
ones should be.
Also note that user programs calling CPUID directly
or using the feature without checking anything
will still see it. This just prevents it from
being used by the kernel or shown in /proc/cpuinfo.
Also note the kernel might malfunction if you disable
some critical bits.

cma=nn[MG]@[start[MG][-end[MG]]]
[ARM,X86,KNL]
Sets the size of kernel global memory area for
contiguous memory allocations and optionally the
placement constraint by the physical address range of
memory allocations. A value of 0 disables CMA
altogether. For more information, see
include/linux/dma-contiguous.h

cmo_free_hint= [PPC] Format: { yes | no }
Specify whether pages are marked as being inactive
when they are freed. This is used in CMO environments
to determine OS memory pressure for page stealing by
a hypervisor.

22 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Default: yes

coherent_pool=nn[KMG] [ARM,KNL]
Sets the size of memory pool for coherent, atomic dma
allocations, by default set to 256K.

com20020= [HW,NET] ARCnet - COM20020 chipset
Format:
<io>[,<irq>[,<nodeID>[,<backplane>[,<ckp>[,<timeout>]]]]]

com90io= [HW,NET] ARCnet - COM90xx chipset (IO-mapped buffers)
Format: <io>[,<irq>]

com90xx= [HW,NET]
ARCnet - COM90xx chipset (memory-mapped buffers)
Format: <io>[,<irq>[,<memstart>]]

condev= [HW,S390] console device
conmode=

console= [KNL] Output console device and options.

tty<n> Use the virtual console device <n>.

ttyS<n>[,options]
ttyUSB0[,options]

Use the specified serial port. The options are of
the form ``bbbbpnf'', where ``bbbb'' is the baud rate,
``p'' is parity (``n'', ``o'', or ``e''), ``n'' is number of
bits, and ``f'' is flow control (``r'' for RTS or
omit it). Default is ``9600n8''.

See Documentation/admin-guide/serial-console.rst for more
information. See
Documentation/networking/netconsole.txt for an
alternative.

uart[8250],io,<addr>[,options]
uart[8250],mmio,<addr>[,options]
uart[8250],mmio16,<addr>[,options]
uart[8250],mmio32,<addr>[,options]
uart[8250],0x<addr>[,options]

Start an early, polled-mode console on the 8250/16550
UART at the specified I/O port or MMIO address,
switching to the matching ttyS device later.
MMIO inter-register address stride is either 8-bit
(mmio), 16-bit (mmio16), or 32-bit (mmio32).
If none of [io|mmio|mmio16|mmio32], <addr> is assumed
to be equivalent to `mmio'. `options' are specified in
the same format described for ttyS above; if unspecified,
the h/w is not re-initialized.

hvc<n> Use the hypervisor console device <n>. This is for
both Xen and PowerPC hypervisors.

2.1. cpu lists: 23



Linux Kernel User Documentation, v4.20.0

If the device connected to the port is not a TTY but a braille
device, prepend ``brl,'' before the device type, for instance

console=brl,ttyS0
For now, only VisioBraille is supported.

console_msg_format=
[KNL] Change console messages format

default
By default we print messages on consoles in
``[time stamp] text\n'' format (time stamp may not be
printed, depending on CONFIG_PRINTK_TIME or
`printk_time' param).

syslog
Switch to syslog format: ``<%u>[time stamp] text\n''
IOW, each message will have a facility and loglevel
prefix. The format is similar to one used by syslog()
syscall, or to executing ``dmesg -S --raw'' or to reading
from /proc/kmsg.

consoleblank= [KNL] The console blank (screen saver) timeout in
seconds. A value of 0 disables the blank timer.
Defaults to 0.

coredump_filter=
[KNL] Change the default value for
/proc/<pid>/coredump_filter.
See also Documentation/filesystems/proc.txt.

coresight_cpu_debug.enable
[ARM,ARM64]
Format: <bool>
Enable/disable the CPU sampling based debugging.
0: default value, disable debugging
1: enable debugging at boot time

cpuidle.off=1 [CPU_IDLE]
disable the cpuidle sub-system

cpufreq.off=1 [CPU_FREQ]
disable the cpufreq sub-system

cpu_init_udelay=N
[X86] Delay for N microsec between assert and de-assert
of APIC INIT to start processors. This delay occurs
on every CPU online, such as boot, and resume from suspend.
Default: 10000

cpcihp_generic= [HW,PCI] Generic port I/O CompactPCI driver
Format:
<first_slot>,<last_slot>,<port>,<enum_bit>[,<debug>]

crashkernel=size[KMG][@offset[KMG]]
[KNL] Using kexec, Linux can switch to a `crash kernel'

24 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

upon panic. This parameter reserves the physical
memory region [offset, offset + size] for that kernel
image. If `@offset' is omitted, then a suitable offset
is selected automatically. Check
Documentation/kdump/kdump.txt for further details.

crashkernel=range1:size1[,range2:size2,...][@offset]
[KNL] Same as above, but depends on the memory
in the running system. The syntax of range is
start-[end] where start and end are both
a memory unit (amount[KMG]). See also
Documentation/kdump/kdump.txt for an example.

crashkernel=size[KMG],high
[KNL, x86_64] range could be above 4G. Allow kernel
to allocate physical memory region from top, so could
be above 4G if system have more than 4G ram installed.
Otherwise memory region will be allocated below 4G, if
available.
It will be ignored if crashkernel=X is specified.

crashkernel=size[KMG],low
[KNL, x86_64] range under 4G. When crashkernel=X,high
is passed, kernel could allocate physical memory region
above 4G, that cause second kernel crash on system
that require some amount of low memory, e.g. swiotlb
requires at least 64M+32K low memory, also enough extra
low memory is needed to make sure DMA buffers for 32-bit
devices won't run out. Kernel would try to allocate at
at least 256M below 4G automatically.
This one let user to specify own low range under 4G
for second kernel instead.
0: to disable low allocation.
It will be ignored when crashkernel=X,high is not used
or memory reserved is below 4G.

cryptomgr.notests
[KNL] Disable crypto self-tests

cs89x0_dma= [HW,NET]
Format: <dma>

cs89x0_media= [HW,NET]
Format: { rj45 | aui | bnc }

dasd= [HW,NET]
See header of drivers/s390/block/dasd_devmap.c.

db9.dev[2|3]= [HW,JOY] Multisystem joystick support via parallel port
(one device per port)
Format: <port#>,<type>
See also Documentation/input/devices/joystick-parport.rst

ddebug_query= [KNL,DYNAMIC_DEBUG] Enable debug messages at early boot
time. See

2.1. cpu lists: 25



Linux Kernel User Documentation, v4.20.0

Documentation/admin-guide/dynamic-debug-howto.rst for
details. Deprecated, see dyndbg.

debug [KNL] Enable kernel debugging (events log level).

debug_boot_weak_hash
[KNL] Enable printing [hashed] pointers early in the
boot sequence. If enabled, we use a weak hash instead
of siphash to hash pointers. Use this option if you are
seeing instances of `(___ptrval___)') and need to see a
value (hashed pointer) instead. Cryptographically
insecure, please do not use on production kernels.

debug_locks_verbose=
[KNL] verbose self-tests
Format=<0|1>
Print debugging info while doing the locking API
self-tests.
We default to 0 (no extra messages), setting it to
1 will print _a lot_ more information - normally
only useful to kernel developers.

debug_objects [KNL] Enable object debugging

no_debug_objects
[KNL] Disable object debugging

debug_guardpage_minorder=
[KNL] When CONFIG_DEBUG_PAGEALLOC is set, this
parameter allows control of the order of pages that will
be intentionally kept free (and hence protected) by the
buddy allocator. Bigger value increase the probability
of catching random memory corruption, but reduce the
amount of memory for normal system use. The maximum
possible value is MAX_ORDER/2. Setting this parameter
to 1 or 2 should be enough to identify most random
memory corruption problems caused by bugs in kernel or
driver code when a CPU writes to (or reads from) a
random memory location. Note that there exists a class
of memory corruptions problems caused by buggy H/W or
F/W or by drivers badly programing DMA (basically when
memory is written at bus level and the CPU MMU is
bypassed) which are not detectable by
CONFIG_DEBUG_PAGEALLOC, hence this option will not help
tracking down these problems.

debug_pagealloc=
[KNL] When CONFIG_DEBUG_PAGEALLOC is set, this
parameter enables the feature at boot time. In
default, it is disabled. We can avoid allocating huge
chunk of memory for debug pagealloc if we don't enable
it at boot time and the system will work mostly same
with the kernel built without CONFIG_DEBUG_PAGEALLOC.
on: enable the feature

26 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

debugpat [X86] Enable PAT debugging

decnet.addr= [HW,NET]
Format: <area>[,<node>]
See also Documentation/networking/decnet.txt.

default_hugepagesz=
[same as hugepagesz=] The size of the default
HugeTLB page size. This is the size represented by
the legacy /proc/ hugepages APIs, used for SHM, and
default size when mounting hugetlbfs filesystems.
Defaults to the default architecture's huge page size
if not specified.

deferred_probe_timeout=
[KNL] Debugging option to set a timeout in seconds for
deferred probe to give up waiting on dependencies to
probe. Only specific dependencies (subsystems or
drivers) that have opted in will be ignored. A timeout of 0
will timeout at the end of initcalls. This option will also
dump out devices still on the deferred probe list after
retrying.

dhash_entries= [KNL]
Set number of hash buckets for dentry cache.

disable_1tb_segments [PPC]
Disables the use of 1TB hash page table segments. This
causes the kernel to fall back to 256MB segments which
can be useful when debugging issues that require an SLB
miss to occur.

disable= [IPV6]
See Documentation/networking/ipv6.txt.

hardened_usercopy=
[KNL] Under CONFIG_HARDENED_USERCOPY, whether
hardening is enabled for this boot. Hardened
usercopy checking is used to protect the kernel
from reading or writing beyond known memory
allocation boundaries as a proactive defense
against bounds-checking flaws in the kernel's
copy_to_user()/copy_from_user() interface.

on Perform hardened usercopy checks (default).
off Disable hardened usercopy checks.

disable_radix [PPC]
Disable RADIX MMU mode on POWER9

disable_cpu_apicid= [X86,APIC,SMP]
Format: <int>
The number of initial APIC ID for the
corresponding CPU to be disabled at boot,

2.1. cpu lists: 27



Linux Kernel User Documentation, v4.20.0

mostly used for the kdump 2nd kernel to
disable BSP to wake up multiple CPUs without
causing system reset or hang due to sending
INIT from AP to BSP.

perf_v4_pmi= [X86,INTEL]
Format: <bool>
Disable Intel PMU counter freezing feature.
The feature only exists starting from
Arch Perfmon v4 (Skylake and newer).

disable_ddw [PPC/PSERIES]
Disable Dynamic DMA Window support. Use this if
to workaround buggy firmware.

disable_ipv6= [IPV6]
See Documentation/networking/ipv6.txt.

disable_mtrr_cleanup [X86]
The kernel tries to adjust MTRR layout from continuous
to discrete, to make X server driver able to add WB
entry later. This parameter disables that.

disable_mtrr_trim [X86, Intel and AMD only]
By default the kernel will trim any uncacheable
memory out of your available memory pool based on
MTRR settings. This parameter disables that behavior,
possibly causing your machine to run very slowly.

disable_timer_pin_1 [X86]
Disable PIN 1 of APIC timer
Can be useful to work around chipset bugs.

dis_ucode_ldr [X86] Disable the microcode loader.

dma_debug=off If the kernel is compiled with DMA_API_DEBUG support,
this option disables the debugging code at boot.

dma_debug_entries=<number>
This option allows to tune the number of preallocated
entries for DMA-API debugging code. One entry is
required per DMA-API allocation. Use this if the
DMA-API debugging code disables itself because the
architectural default is too low.

dma_debug_driver=<driver_name>
With this option the DMA-API debugging driver
filter feature can be enabled at boot time. Just
pass the driver to filter for as the parameter.
The filter can be disabled or changed to another
driver later using sysfs.

drm.edid_firmware=[<connector>:]<file>[,[<connector>:]<file>]
Broken monitors, graphic adapters, KVMs and EDIDless

28 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

panels may send no or incorrect EDID data sets.
This parameter allows to specify an EDID data sets
in the /lib/firmware directory that are used instead.
Generic built-in EDID data sets are used, if one of
edid/1024x768.bin, edid/1280x1024.bin,
edid/1680x1050.bin, or edid/1920x1080.bin is given
and no file with the same name exists. Details and
instructions how to build your own EDID data are
available in Documentation/EDID/HOWTO.txt. An EDID
data set will only be used for a particular connector,
if its name and a colon are prepended to the EDID
name. Each connector may use a unique EDID data
set by separating the files with a comma. An EDID
data set with no connector name will be used for
any connectors not explicitly specified.

dscc4.setup= [NET]

dt_cpu_ftrs= [PPC]
Format: {``off'' | ``known''}
Control how the dt_cpu_ftrs device-tree binding is
used for CPU feature discovery and setup (if it
exists).
off: Do not use it, fall back to legacy cpu table.
known: Do not pass through unknown features to guests
or userspace, only those that the kernel is aware of.

dump_apple_properties [X86]
Dump name and content of EFI device properties on
x86 Macs. Useful for driver authors to determine
what data is available or for reverse-engineering.

dyndbg[=''val''] [KNL,DYNAMIC_DEBUG]
module.dyndbg[=''val'']

Enable debug messages at boot time. See
Documentation/admin-guide/dynamic-debug-howto.rst
for details.

nompx [X86] Disables Intel Memory Protection Extensions.
See Documentation/x86/intel_mpx.txt for more
information about the feature.

nopku [X86] Disable Memory Protection Keys CPU feature found
in some Intel CPUs.

module.async_probe [KNL]
Enable asynchronous probe on this module.

early_ioremap_debug [KNL]
Enable debug messages in early_ioremap support. This
is useful for tracking down temporary early mappings
which are not unmapped.

earlycon= [KNL] Output early console device and options.

2.1. cpu lists: 29



Linux Kernel User Documentation, v4.20.0

[ARM64] The early console is determined by the
stdout-path property in device tree's chosen node,
or determined by the ACPI SPCR table.

[X86] When used with no options the early console is
determined by the ACPI SPCR table.

cdns,<addr>[,options]
Start an early, polled-mode console on a Cadence
(xuartps) serial port at the specified address. Only
supported option is baud rate. If baud rate is not
specified, the serial port must already be setup and
configured.

uart[8250],io,<addr>[,options]
uart[8250],mmio,<addr>[,options]
uart[8250],mmio32,<addr>[,options]
uart[8250],mmio32be,<addr>[,options]
uart[8250],0x<addr>[,options]

Start an early, polled-mode console on the 8250/16550
UART at the specified I/O port or MMIO address.
MMIO inter-register address stride is either 8-bit
(mmio) or 32-bit (mmio32 or mmio32be).
If none of [io|mmio|mmio32|mmio32be], <addr> is assumed
to be equivalent to `mmio'. `options' are specified
in the same format described for ``console=ttyS<n>''; if
unspecified, the h/w is not initialized.

pl011,<addr>
pl011,mmio32,<addr>

Start an early, polled-mode console on a pl011 serial
port at the specified address. The pl011 serial port
must already be setup and configured. Options are not
yet supported. If `mmio32' is specified, then only
the driver will use only 32-bit accessors to read/write
the device registers.

meson,<addr>
Start an early, polled-mode console on a meson serial
port at the specified address. The serial port must
already be setup and configured. Options are not yet
supported.

msm_serial,<addr>
Start an early, polled-mode console on an msm serial
port at the specified address. The serial port
must already be setup and configured. Options are not
yet supported.

msm_serial_dm,<addr>
Start an early, polled-mode console on an msm serial
dm port at the specified address. The serial port
must already be setup and configured. Options are not

30 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

yet supported.

owl,<addr>
Start an early, polled-mode console on a serial port
of an Actions Semi SoC, such as S500 or S900, at the
specified address. The serial port must already be
setup and configured. Options are not yet supported.

smh Use ARM semihosting calls for early console.

s3c2410,<addr>
s3c2412,<addr>
s3c2440,<addr>
s3c6400,<addr>
s5pv210,<addr>
exynos4210,<addr>

Use early console provided by serial driver available
on Samsung SoCs, requires selecting proper type and
a correct base address of the selected UART port. The
serial port must already be setup and configured.
Options are not yet supported.

lantiq,<addr>
Start an early, polled-mode console on a lantiq serial
(lqasc) port at the specified address. The serial port
must already be setup and configured. Options are not
yet supported.

lpuart,<addr>
lpuart32,<addr>

Use early console provided by Freescale LP UART driver
found on Freescale Vybrid and QorIQ LS1021A processors.
A valid base address must be provided, and the serial
port must already be setup and configured.

ar3700_uart,<addr>
Start an early, polled-mode console on the
Armada 3700 serial port at the specified
address. The serial port must already be setup
and configured. Options are not yet supported.

qcom_geni,<addr>
Start an early, polled-mode console on a Qualcomm
Generic Interface (GENI) based serial port at the
specified address. The serial port must already be
setup and configured. Options are not yet supported.

earlyprintk= [X86,SH,ARM,M68k,S390]
earlyprintk=vga
earlyprintk=efi
earlyprintk=sclp
earlyprintk=xen
earlyprintk=serial[,ttySn[,baudrate]]
earlyprintk=serial[,0x...[,baudrate]]

2.1. cpu lists: 31



Linux Kernel User Documentation, v4.20.0

earlyprintk=ttySn[,baudrate]
earlyprintk=dbgp[debugController#]
earlyprintk=pciserial[,force],bus:device.function[,baudrate]
earlyprintk=xdbc[xhciController#]

earlyprintk is useful when the kernel crashes before
the normal console is initialized. It is not enabled by
default because it has some cosmetic problems.

Append '',keep'' to not disable it when the real console
takes over.

Only one of vga, efi, serial, or usb debug port can
be used at a time.

Currently only ttyS0 and ttyS1 may be specified by
name. Other I/O ports may be explicitly specified
on some architectures (x86 and arm at least) by
replacing ttySn with an I/O port address, like this:

earlyprintk=serial,0x1008,115200
You can find the port for a given device in
/proc/tty/driver/serial:

2: uart:ST16650V2 port:00001008 irq:18 ...

Interaction with the standard serial driver is not
very good.

The VGA and EFI output is eventually overwritten by
the real console.

The xen output can only be used by Xen PV guests.

The sclp output can only be used on s390.

The optional ``force'' to ``pciserial'' enables use of a
PCI device even when its classcode is not of the
UART class.

edac_report= [HW,EDAC] Control how to report EDAC event
Format: {``on'' | ``off'' | ``force''}
on: enable EDAC to report H/W event. May be overridden
by other higher priority error reporting module.
off: disable H/W event reporting through EDAC.
force: enforce the use of EDAC to report H/W event.
default: on.

ekgdboc= [X86,KGDB] Allow early kernel console debugging
ekgdboc=kbd

This is designed to be used in conjunction with
the boot argument: earlyprintk=vga

edd= [EDD]
Format: {``off'' | ``on'' | ``skip[mbr]''}

32 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

efi= [EFI]
Format: { ``old_map'', ``nochunk'', ``noruntime'', ``debug'' }
old_map [X86-64]: switch to the old ioremap-based EFI
runtime services mapping. 32-bit still uses this one by
default.
nochunk: disable reading files in ``chunks'' in the EFI
boot stub, as chunking can cause problems with some
firmware implementations.
noruntime : disable EFI runtime services support
debug: enable misc debug output

efi_no_storage_paranoia [EFI; X86]
Using this parameter you can use more than 50% of
your efi variable storage. Use this parameter only if
you are really sure that your UEFI does sane gc and
fulfills the spec otherwise your board may brick.

efi_fake_mem= nn[KMG]@ss[KMG]:aa[,nn[KMG]@ss[KMG]:aa,..] [EFI; X86]
Add arbitrary attribute to specific memory range by
updating original EFI memory map.
Region of memory which aa attribute is added to is
from ss to ss+nn.
If efi_fake_mem=2G@4G:0x10000,2G@0x10a0000000:0x10000
is specified, EFI_MEMORY_MORE_RELIABLE(0x10000)
attribute is added to range 0x100000000-0x180000000 and
0x10a0000000-0x1120000000.

Using this parameter you can do debugging of EFI memmap
related feature. For example, you can do debugging of
Address Range Mirroring feature even if your box
doesn't support it.

efivar_ssdt= [EFI; X86] Name of an EFI variable that contains an SSDT
that is to be dynamically loaded by Linux. If there are
multiple variables with the same name but with different
vendor GUIDs, all of them will be loaded. See
Documentation/acpi/ssdt-overlays.txt for details.

eisa_irq_edge= [PARISC,HW]
See header of drivers/parisc/eisa.c.

elanfreq= [X86-32]
See comment before function elanfreq_setup() in
arch/x86/kernel/cpu/cpufreq/elanfreq.c.

elevator= [IOSCHED]
Format: {``cfq'' | ``deadline'' | ``noop''}
See Documentation/block/cfq-iosched.txt and
Documentation/block/deadline-iosched.txt for details.

elfcorehdr=[size[KMG]@]offset[KMG] [IA64,PPC,SH,X86,S390]
Specifies physical address of start of kernel core

2.1. cpu lists: 33



Linux Kernel User Documentation, v4.20.0

image elf header and optionally the size. Generally
kexec loader will pass this option to capture kernel.
See Documentation/kdump/kdump.txt for details.

enable_mtrr_cleanup [X86]
The kernel tries to adjust MTRR layout from continuous
to discrete, to make X server driver able to add WB
entry later. This parameter enables that.

enable_timer_pin_1 [X86]
Enable PIN 1 of APIC timer
Can be useful to work around chipset bugs
(in particular on some ATI chipsets).
The kernel tries to set a reasonable default.

enforcing [SELINUX] Set initial enforcing status.
Format: {``0'' | ``1''}
See security/selinux/Kconfig help text.
0 -- permissive (log only, no denials).
1 -- enforcing (deny and log).
Default value is 0.
Value can be changed at runtime via /selinux/enforce.

erst_disable [ACPI]
Disable Error Record Serialization Table (ERST)
support.

ether= [HW,NET] Ethernet cards parameters
This option is obsoleted by the ``netdev='' option, which
has equivalent usage. See its documentation for details.

evm= [EVM]
Format: { ``fix'' }
Permit `security.evm' to be updated regardless of
current integrity status.

failslab=
fail_page_alloc=
fail_make_request=[KNL]

General fault injection mechanism.
Format: <interval>,<probability>,<space>,<times>
See also Documentation/fault-injection/.

floppy= [HW]
See Documentation/blockdev/floppy.txt.

force_pal_cache_flush
[IA-64] Avoid check_sal_cache_flush which may hang on
buggy SAL_CACHE_FLUSH implementations. Using this
parameter will force ia64_sal_cache_flush to call
ia64_pal_cache_flush instead of SAL_CACHE_FLUSH.

forcepae [X86-32]
Forcefully enable Physical Address Extension (PAE).

34 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Many Pentium M systems disable PAE but may have a
functionally usable PAE implementation.
Warning: use of this parameter will taint the kernel
and may cause unknown problems.

ftrace=[tracer]
[FTRACE] will set and start the specified tracer
as early as possible in order to facilitate early
boot debugging.

ftrace_dump_on_oops[=orig_cpu]
[FTRACE] will dump the trace buffers on oops.
If no parameter is passed, ftrace will dump
buffers of all CPUs, but if you pass orig_cpu, it will
dump only the buffer of the CPU that triggered the
oops.

ftrace_filter=[function-list]
[FTRACE] Limit the functions traced by the function
tracer at boot up. function-list is a comma separated
list of functions. This list can be changed at run
time by the set_ftrace_filter file in the debugfs
tracing directory.

ftrace_notrace=[function-list]
[FTRACE] Do not trace the functions specified in
function-list. This list can be changed at run time
by the set_ftrace_notrace file in the debugfs
tracing directory.

ftrace_graph_filter=[function-list]
[FTRACE] Limit the top level callers functions traced
by the function graph tracer at boot up.
function-list is a comma separated list of functions
that can be changed at run time by the
set_graph_function file in the debugfs tracing directory.

ftrace_graph_notrace=[function-list]
[FTRACE] Do not trace from the functions specified in
function-list. This list is a comma separated list of
functions that can be changed at run time by the
set_graph_notrace file in the debugfs tracing directory.

ftrace_graph_max_depth=<uint>
[FTRACE] Used with the function graph tracer. This is
the max depth it will trace into a function. This value
can be changed at run time by the max_graph_depth file
in the tracefs tracing directory. default: 0 (no limit)

gamecon.map[2|3]=
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad
support via parallel port (up to 5 devices per port)
Format: <port#>,<pad1>,<pad2>,<pad3>,<pad4>,<pad5>
See also Documentation/input/devices/joystick-parport.rst

2.1. cpu lists: 35



Linux Kernel User Documentation, v4.20.0

gamma= [HW,DRM]

gart_fix_e820= [X86_64] disable the fix e820 for K8 GART
Format: off | on
default: on

gcov_persist= [GCOV] When non-zero (default), profiling data for
kernel modules is saved and remains accessible via
debugfs, even when the module is unloaded/reloaded.
When zero, profiling data is discarded and associated
debugfs files are removed at module unload time.

goldfish [X86] Enable the goldfish android emulator platform.
Don't use this when you are not running on the
android emulator

gpt [EFI] Forces disk with valid GPT signature but
invalid Protective MBR to be treated as GPT. If the
primary GPT is corrupted, it enables the backup/alternate
GPT to be used instead.

grcan.enable0= [HW] Configuration of physical interface 0. Determines
the ``Enable 0'' bit of the configuration register.
Format: 0 | 1
Default: 0

grcan.enable1= [HW] Configuration of physical interface 1. Determines
the ``Enable 0'' bit of the configuration register.
Format: 0 | 1
Default: 0

grcan.select= [HW] Select which physical interface to use.
Format: 0 | 1
Default: 0

grcan.txsize= [HW] Sets the size of the tx buffer.
Format: <unsigned int> such that (txsize & ~0x1fffc0) == 0.
Default: 1024

grcan.rxsize= [HW] Sets the size of the rx buffer.
Format: <unsigned int> such that (rxsize & ~0x1fffc0) == 0.
Default: 1024

gpio-mockup.gpio_mockup_ranges
[HW] Sets the ranges of gpiochip of for this device.
Format: <start1>,<end1>,<start2>,<end2>...

hardlockup_all_cpu_backtrace=
[KNL] Should the hard-lockup detector generate
backtraces on all cpus.
Format: <integer>

hashdist= [KNL,NUMA] Large hashes allocated during boot
are distributed across NUMA nodes. Defaults on
for 64-bit NUMA, off otherwise.
Format: 0 | 1 (for off | on)

36 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

hcl= [IA-64] SGI's Hardware Graph compatibility layer

hd= [EIDE] (E)IDE hard drive subsystem geometry
Format: <cyl>,<head>,<sect>

hest_disable [ACPI]
Disable Hardware Error Source Table (HEST) support;
corresponding firmware-first mode error processing
logic will be disabled.

highmem=nn[KMG] [KNL,BOOT] forces the highmem zone to have an exact
size of <nn>. This works even on boxes that have no
highmem otherwise. This also works to reduce highmem
size on bigger boxes.

highres= [KNL] Enable/disable high resolution timer mode.
Valid parameters: ``on'', ``off''
Default: ``on''

hisax= [HW,ISDN]
See Documentation/isdn/README.HiSax.

hlt [BUGS=ARM,SH]

hpet= [X86-32,HPET] option to control HPET usage
Format: { enable (default) | disable | force |

verbose }
disable: disable HPET and use PIT instead
force: allow force enabled of undocumented chips (ICH4,

VIA, nVidia)
verbose: show contents of HPET registers during setup

hpet_mmap= [X86, HPET_MMAP] Allow userspace to mmap HPET
registers. Default set by CONFIG_HPET_MMAP_DEFAULT.

hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.

On x86-64 and powerpc, this option can be specified
multiple times interleaved with hugepages= to reserve
huge pages of different sizes. Valid pages sizes on
x86-64 are 2M (when the CPU supports ``pse'') and 1G
(when the CPU supports the ``pdpe1gb'' cpuinfo flag).

hung_task_panic=
[KNL] Should the hung task detector generate panics.
Format: <integer>

A nonzero value instructs the kernel to panic when a
hung task is detected. The default value is controlled
by the CONFIG_BOOTPARAM_HUNG_TASK_PANIC build-time
option. The value selected by this boot parameter can
be changed later by the kernel.hung_task_panic sysctl.

hvc_iucv= [S390] Number of z/VM IUCV hypervisor console (HVC)

2.1. cpu lists: 37



Linux Kernel User Documentation, v4.20.0

terminal devices. Valid values: 0..8
hvc_iucv_allow= [S390] Comma-separated list of z/VM user IDs.

If specified, z/VM IUCV HVC accepts connections
from listed z/VM user IDs only.

hv_nopvspin [X86,HYPER_V] Disables the paravirt spinlock optimizations
which allow the hypervisor to `idle' the
guest on lock contention.

keep_bootcon [KNL]
Do not unregister boot console at start. This is only
useful for debugging when something happens in the window
between unregistering the boot console and initializing
the real console.

i2c_bus= [HW] Override the default board specific I2C bus speed
or register an additional I2C bus that is not
registered from board initialization code.
Format:
<bus_id>,<clkrate>

i8042.debug [HW] Toggle i8042 debug mode
i8042.unmask_kbd_data

[HW] Enable printing of interrupt data from the KBD port
(disabled by default, and as a pre-condition
requires that i8042.debug=1 be enabled)

i8042.direct [HW] Put keyboard port into non-translated mode
i8042.dumbkbd [HW] Pretend that controller can only read data from

keyboard and cannot control its state
(Don't attempt to blink the leds)

i8042.noaux [HW] Don't check for auxiliary (== mouse) port
i8042.nokbd [HW] Don't check/create keyboard port
i8042.noloop [HW] Disable the AUX Loopback command while probing

for the AUX port
i8042.nomux [HW] Don't check presence of an active multiplexing

controller
i8042.nopnp [HW] Don't use ACPIPnP / PnPBIOS to discover KBD/AUX

controllers
i8042.notimeout [HW] Ignore timeout condition signalled by controller
i8042.reset [HW] Reset the controller during init, cleanup and

suspend-to-ram transitions, only during s2r
transitions, or never reset

Format: { 1 | Y | y | 0 | N | n }
1, Y, y: always reset controller
0, N, n: don't ever reset controller
Default: only on s2r transitions on x86; most other
architectures force reset to be always executed

i8042.unlock [HW] Unlock (ignore) the keylock
i8042.kbdreset [HW] Reset device connected to KBD port

i810= [HW,DRM]

i8k.ignore_dmi [HW] Continue probing hardware even if DMI data
indicates that the driver is running on unsupported

38 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

hardware.
i8k.force [HW] Activate i8k driver even if SMM BIOS signature

does not match list of supported models.
i8k.power_status

[HW] Report power status in /proc/i8k
(disabled by default)

i8k.restricted [HW] Allow controlling fans only if SYS_ADMIN
capability is set.

i915.invert_brightness=
[DRM] Invert the sense of the variable that is used to
set the brightness of the panel backlight. Normally a
brightness value of 0 indicates backlight switched off,
and the maximum of the brightness value sets the backlight
to maximum brightness. If this parameter is set to 0
(default) and the machine requires it, or this parameter
is set to 1, a brightness value of 0 sets the backlight
to maximum brightness, and the maximum of the brightness
value switches the backlight off.
-1 -- never invert brightness
0 -- machine default
1 -- force brightness inversion

icn= [HW,ISDN]
Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]]

ide-core.nodma= [HW] (E)IDE subsystem
Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
.vlb_clock .pci_clock .noflush .nohpa .noprobe .nowerr
.cdrom .chs .ignore_cable are additional options
See Documentation/ide/ide.txt.

ide-generic.probe-mask= [HW] (E)IDE subsystem
Format: <int>
Probe mask for legacy ISA IDE ports. Depending on
platform up to 6 ports are supported, enabled by
setting corresponding bits in the mask to 1. The
default value is 0x0, which has a special meaning.
On systems that have PCI, it triggers scanning the
PCI bus for the first and the second port, which
are then probed. On systems without PCI the value
of 0x0 enables probing the two first ports as if it
was 0x3.

ide-pci-generic.all-generic-ide [HW] (E)IDE subsystem
Claim all unknown PCI IDE storage controllers.

idle= [X86]
Format: idle=poll, idle=halt, idle=nomwait
Poll forces a polling idle loop that can slightly
improve the performance of waking up a idle CPU, but
will use a lot of power and make the system run hot.
Not recommended.
idle=halt: Halt is forced to be used for CPU idle.

2.1. cpu lists: 39



Linux Kernel User Documentation, v4.20.0

In such case C2/C3 won't be used again.
idle=nomwait: Disable mwait for CPU C-states

ieee754= [MIPS] Select IEEE Std 754 conformance mode
Format: { strict | legacy | 2008 | relaxed }
Default: strict

Choose which programs will be accepted for execution
based on the IEEE 754 NaN encoding(s) supported by
the FPU and the NaN encoding requested with the value
of an ELF file header flag individually set by each
binary. Hardware implementations are permitted to
support either or both of the legacy and the 2008 NaN
encoding mode.

Available settings are as follows:
strict accept binaries that request a NaN encoding

supported by the FPU
legacy only accept legacy-NaN binaries, if supported

by the FPU
2008 only accept 2008-NaN binaries, if supported

by the FPU
relaxed accept any binaries regardless of whether

supported by the FPU

The FPU emulator is always able to support both NaN
encodings, so if no FPU hardware is present or it has
been disabled with `nofpu', then the settings of
`legacy' and `2008' strap the emulator accordingly,
`relaxed' straps the emulator for both legacy-NaN and
2008-NaN, whereas `strict' enables legacy-NaN only on
legacy processors and both NaN encodings on MIPS32 or
MIPS64 CPUs.

The setting for ABS.fmt/NEG.fmt instruction execution
mode generally follows that for the NaN encoding,
except where unsupported by hardware.

ignore_loglevel [KNL]
Ignore loglevel setting - this will print /all/
kernel messages to the console. Useful for debugging.
We also add it as printk module parameter, so users
could change it dynamically, usually by
/sys/module/printk/parameters/ignore_loglevel.

ignore_rlimit_data
Ignore RLIMIT_DATA setting for data mappings,
print warning at first misuse. Can be changed via
/sys/module/kernel/parameters/ignore_rlimit_data.

ihash_entries= [KNL]
Set number of hash buckets for inode cache.

ima_appraise= [IMA] appraise integrity measurements

40 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Format: { ``off'' | ``enforce'' | ``fix'' | ``log'' }
default: ``enforce''

ima_appraise_tcb [IMA]
The builtin appraise policy appraises all files
owned by uid=0.

ima_canonical_fmt [IMA]
Use the canonical format for the binary runtime
measurements, instead of host native format.

ima_hash= [IMA]
Format: { md5 | sha1 | rmd160 | sha256 | sha384

| sha512 | ... }
default: ``sha1''

The list of supported hash algorithms is defined
in crypto/hash_info.h.

ima_policy= [IMA]
The builtin policies to load during IMA setup.
Format: ``tcb | appraise_tcb | secure_boot |

fail_securely''

The ``tcb'' policy measures all programs exec'd, files
mmap'd for exec, and all files opened with the read
mode bit set by either the effective uid (euid=0) or
uid=0.

The ``appraise_tcb'' policy appraises the integrity of
all files owned by root. (This is the equivalent
of ima_appraise_tcb.)

The ``secure_boot'' policy appraises the integrity
of files (eg. kexec kernel image, kernel modules,
firmware, policy, etc) based on file signatures.

The ``fail_securely'' policy forces file signature
verification failure also on privileged mounted
filesystems with the SB_I_UNVERIFIABLE_SIGNATURE
flag.

ima_tcb [IMA] Deprecated. Use ima_policy= instead.
Load a policy which meets the needs of the Trusted
Computing Base. This means IMA will measure all
programs exec'd, files mmap'd for exec, and all files
opened for read by uid=0.

ima_template= [IMA]
Select one of defined IMA measurements template formats.
Formats: { ``ima'' | ``ima-ng'' | ``ima-sig'' }
Default: ``ima-ng''

ima_template_fmt=

2.1. cpu lists: 41



Linux Kernel User Documentation, v4.20.0

[IMA] Define a custom template format.
Format: { ``field1|...|fieldN'' }

ima.ahash_minsize= [IMA] Minimum file size for asynchronous hash usage
Format: <min_file_size>
Set the minimal file size for using asynchronous hash.
If left unspecified, ahash usage is disabled.

ahash performance varies for different data sizes on
different crypto accelerators. This option can be used
to achieve the best performance for a particular HW.

ima.ahash_bufsize= [IMA] Asynchronous hash buffer size
Format: <bufsize>
Set hashing buffer size. Default: 4k.

ahash performance varies for different chunk sizes on
different crypto accelerators. This option can be used
to achieve best performance for particular HW.

init= [KNL]
Format: <full_path>
Run specified binary instead of /sbin/init as init
process.

initcall_debug [KNL] Trace initcalls as they are executed. Useful
for working out where the kernel is dying during
startup.

initcall_blacklist= [KNL] Do not execute a comma-separated list of
initcall functions. Useful for debugging built-in
modules and initcalls.

initrd= [BOOT] Specify the location of the initial ramdisk

init_pkru= [x86] Specify the default memory protection keys rights
register contents for all processes. 0x55555554 by
default (disallow access to all but pkey 0). Can
override in debugfs after boot.

inport.irq= [HW] Inport (ATI XL and Microsoft) busmouse driver
Format: <irq>

int_pln_enable [x86] Enable power limit notification interrupt

integrity_audit=[IMA]
Format: { ``0'' | ``1'' }
0 -- basic integrity auditing messages. (Default)
1 -- additional integrity auditing messages.

intel_iommu= [DMAR] Intel IOMMU driver (DMAR) option
on

Enable intel iommu driver.
off

42 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Disable intel iommu driver.
igfx_off [Default Off]

By default, gfx is mapped as normal device. If a gfx
device has a dedicated DMAR unit, the DMAR unit is
bypassed by not enabling DMAR with this option. In
this case, gfx device will use physical address for
DMA.

forcedac [x86_64]
With this option iommu will not optimize to look
for io virtual address below 32-bit forcing dual
address cycle on pci bus for cards supporting greater
than 32-bit addressing. The default is to look
for translation below 32-bit and if not available
then look in the higher range.

strict [Default Off]
With this option on every unmap_single operation will
result in a hardware IOTLB flush operation as opposed
to batching them for performance.

sp_off [Default Off]
By default, super page will be supported if Intel IOMMU
has the capability. With this option, super page will
not be supported.

ecs_off [Default Off]
By default, extended context tables will be supported if
the hardware advertises that it has support both for the
extended tables themselves, and also PASID support. With
this option set, extended tables will not be used even
on hardware which claims to support them.

tboot_noforce [Default Off]
Do not force the Intel IOMMU enabled under tboot.
By default, tboot will force Intel IOMMU on, which
could harm performance of some high-throughput
devices like 40GBit network cards, even if identity
mapping is enabled.
Note that using this option lowers the security
provided by tboot because it makes the system
vulnerable to DMA attacks.

intel_idle.max_cstate= [KNL,HW,ACPI,X86]
0 disables intel_idle and fall back on acpi_idle.
1 to 9 specify maximum depth of C-state.

intel_pstate= [X86]
disable

Do not enable intel_pstate as the default
scaling driver for the supported processors

passive
Use intel_pstate as a scaling driver, but configure it
to work with generic cpufreq governors (instead of
enabling its internal governor). This mode cannot be
used along with the hardware-managed P-states (HWP)
feature.

force
Enable intel_pstate on systems that prohibit it by default

2.1. cpu lists: 43



Linux Kernel User Documentation, v4.20.0

in favor of acpi-cpufreq. Forcing the intel_pstate driver
instead of acpi-cpufreq may disable platform features, such
as thermal controls and power capping, that rely on ACPI
P-States information being indicated to OSPM and therefore
should be used with caution. This option does not work with
processors that aren't supported by the intel_pstate driver
or on platforms that use pcc-cpufreq instead of acpi-cpufreq.

no_hwp
Do not enable hardware P state control (HWP)
if available.

hwp_only
Only load intel_pstate on systems which support
hardware P state control (HWP) if available.

support_acpi_ppc
Enforce ACPI _PPC performance limits. If the Fixed ACPI
Description Table, specifies preferred power management
profile as ``Enterprise Server'' or ``Performance Server'',
then this feature is turned on by default.

per_cpu_perf_limits
Allow per-logical-CPU P-State performance control limits using
cpufreq sysfs interface

intremap= [X86-64, Intel-IOMMU]
on enable Interrupt Remapping (default)
off disable Interrupt Remapping
nosid disable Source ID checking
no_x2apic_optout

BIOS x2APIC opt-out request will be ignored
nopost disable Interrupt Posting

iomem= Disable strict checking of access to MMIO memory
strict regions from userspace.
relaxed

iommu= [x86]
off
force
noforce
biomerge
panic
nopanic
merge
nomerge
soft
pt [x86]
nopt [x86]
nobypass [PPC/POWERNV]

Disable IOMMU bypass, using IOMMU for PCI devices.

iommu.strict= [ARM64] Configure TLB invalidation behaviour
Format: { ``0'' | ``1'' }
0 - Lazy mode.

Request that DMA unmap operations use deferred
invalidation of hardware TLBs, for increased

44 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

throughput at the cost of reduced device isolation.
Will fall back to strict mode if not supported by
the relevant IOMMU driver.

1 - Strict mode (default).
DMA unmap operations invalidate IOMMU hardware TLBs
synchronously.

iommu.passthrough=
[ARM64] Configure DMA to bypass the IOMMU by default.
Format: { ``0'' | ``1'' }
0 - Use IOMMU translation for DMA.
1 - Bypass the IOMMU for DMA.
unset - Use value of CONFIG_IOMMU_DEFAULT_PASSTHROUGH.

io7= [HW] IO7 for Marvel based alpha systems
See comment before marvel_specify_io7 in
arch/alpha/kernel/core_marvel.c.

io_delay= [X86] I/O delay method
0x80

Standard port 0x80 based delay
0xed

Alternate port 0xed based delay (needed on some systems)
udelay

Simple two microseconds delay
none

No delay

ip= [IP_PNP]
See Documentation/filesystems/nfs/nfsroot.txt.

irqaffinity= [SMP] Set the default irq affinity mask
The argument is a cpu list, as described above.

irqchip.gicv2_force_probe=
[ARM, ARM64]
Format: <bool>
Force the kernel to look for the second 4kB page
of a GICv2 controller even if the memory range
exposed by the device tree is too small.

irqchip.gicv3_nolpi=
[ARM, ARM64]
Force the kernel to ignore the availability of
LPIs (and by consequence ITSs). Intended for system
that use the kernel as a bootloader, and thus want
to let secondary kernels in charge of setting up
LPIs.

irqfixup [HW]
When an interrupt is not handled search all handlers
for it. Intended to get systems with badly broken
firmware running.

2.1. cpu lists: 45



Linux Kernel User Documentation, v4.20.0

irqpoll [HW]
When an interrupt is not handled search all handlers
for it. Also check all handlers each timer
interrupt. Intended to get systems with badly broken
firmware running.

isapnp= [ISAPNP]
Format: <RDP>,<reset>,<pci_scan>,<verbosity>

isolcpus= [KNL,SMP,ISOL] Isolate a given set of CPUs from disturbance.
[Deprecated - use cpusets instead]
Format: [flag-list,]<cpu-list>

Specify one or more CPUs to isolate from disturbances
specified in the flag list (default: domain):

nohz
Disable the tick when a single task runs.

A residual 1Hz tick is offloaded to workqueues, which you
need to affine to housekeeping through the global
workqueue's affinity configured via the
/sys/devices/virtual/workqueue/cpumask sysfs file, or
by using the `domain' flag described below.

NOTE: by default the global workqueue runs on all CPUs,
so to protect individual CPUs the `cpumask' file has to
be configured manually after bootup.

domain
Isolate from the general SMP balancing and scheduling
algorithms. Note that performing domain isolation this way
is irreversible: it's not possible to bring back a CPU to
the domains once isolated through isolcpus. It's strongly
advised to use cpusets instead to disable scheduler load
balancing through the ``cpuset.sched_load_balance'' file.
It offers a much more flexible interface where CPUs can
move in and out of an isolated set anytime.

You can move a process onto or off an ``isolated'' CPU via
the CPU affinity syscalls or cpuset.
<cpu number> begins at 0 and the maximum value is
``number of CPUs in system - 1''.

The format of <cpu-list> is described above.

iucv= [HW,NET]

ivrs_ioapic [HW,X86_64]
Provide an override to the IOAPIC-ID<->DEVICE-ID
mapping provided in the IVRS ACPI table. For
example, to map IOAPIC-ID decimal 10 to

46 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

PCI device 00:14.0 write the parameter as:
ivrs_ioapic[10]=00:14.0

ivrs_hpet [HW,X86_64]
Provide an override to the HPET-ID<->DEVICE-ID
mapping provided in the IVRS ACPI table. For
example, to map HPET-ID decimal 0 to
PCI device 00:14.0 write the parameter as:

ivrs_hpet[0]=00:14.0

ivrs_acpihid [HW,X86_64]
Provide an override to the ACPI-HID:UID<->DEVICE-ID
mapping provided in the IVRS ACPI table. For
example, to map UART-HID:UID AMD0020:0 to
PCI device 00:14.5 write the parameter as:

ivrs_acpihid[00:14.5]=AMD0020:0

js= [HW,JOY] Analog joystick
See Documentation/input/joydev/joystick.rst.

nokaslr [KNL]
When CONFIG_RANDOMIZE_BASE is set, this disables
kernel and module base offset ASLR (Address Space
Layout Randomization).

kasan_multi_shot
[KNL] Enforce KASAN (Kernel Address Sanitizer) to print
report on every invalid memory access. Without this
parameter KASAN will print report only for the first
invalid access.

keepinitrd [HW,ARM]

kernelcore= [KNL,X86,IA-64,PPC]
Format: nn[KMGTPE] | nn% | ``mirror''
This parameter specifies the amount of memory usable by
the kernel for non-movable allocations. The requested
amount is spread evenly throughout all nodes in the
system as ZONE_NORMAL. The remaining memory is used for
movable memory in its own zone, ZONE_MOVABLE. In the
event, a node is too small to have both ZONE_NORMAL and
ZONE_MOVABLE, kernelcore memory will take priority and
other nodes will have a larger ZONE_MOVABLE.

ZONE_MOVABLE is used for the allocation of pages that
may be reclaimed or moved by the page migration
subsystem. Note that allocations like PTEs-from-HighMem
still use the HighMem zone if it exists, and the Normal
zone if it does not.

It is possible to specify the exact amount of memory in
the form of ``nn[KMGTPE]'', a percentage of total system
memory in the form of ``nn%'', or ``mirror''. If ``mirror''
option is specified, mirrored (reliable) memory is used

2.1. cpu lists: 47



Linux Kernel User Documentation, v4.20.0

for non-movable allocations and remaining memory is used
for Movable pages. ``nn[KMGTPE]'', ``nn%'', and ``mirror''
are exclusive, so you cannot specify multiple forms.

kgdbdbgp= [KGDB,HW] kgdb over EHCI usb debug port.
Format: <Controller#>[,poll interval]
The controller # is the number of the ehci usb debug
port as it is probed via PCI. The poll interval is
optional and is the number seconds in between
each poll cycle to the debug port in case you need
the functionality for interrupting the kernel with
gdb or control-c on the dbgp connection. When
not using this parameter you use sysrq-g to break into
the kernel debugger.

kgdboc= [KGDB,HW] kgdb over consoles.
Requires a tty driver that supports console polling,
or a supported polling keyboard driver (non-usb).
Serial only format: <serial_device>[,baud]
keyboard only format: kbd
keyboard and serial format: kbd,<serial_device>[,baud]

Optional Kernel mode setting:
kms, kbd format: kms,kbd
kms, kbd and serial format: kms,kbd,<ser_dev>[,baud]

kgdbwait [KGDB] Stop kernel execution and enter the
kernel debugger at the earliest opportunity.

kmac= [MIPS] korina ethernet MAC address.
Configure the RouterBoard 532 series on-chip
Ethernet adapter MAC address.

kmemleak= [KNL] Boot-time kmemleak enable/disable
Valid arguments: on, off
Default: on
Built with CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF=y,
the default is off.

kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs.
Default is 0 (don't ignore, but inject #GP)

kvm.enable_vmware_backdoor=[KVM] Support VMware backdoor PV interface.
Default is false (don't support).

kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit
KVM MMU at runtime.
Default is 0 (off)

kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
Default is 1 (enabled)

kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU)
for all guests.
Default is 1 (enabled) if in 64-bit or 32-bit PAE mode.

48 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

kvm-arm.vgic_v3_group0_trap=
[KVM,ARM] Trap guest accesses to GICv3 group-0
system registers

kvm-arm.vgic_v3_group1_trap=
[KVM,ARM] Trap guest accesses to GICv3 group-1
system registers

kvm-arm.vgic_v3_common_trap=
[KVM,ARM] Trap guest accesses to GICv3 common
system registers

kvm-arm.vgic_v4_enable=
[KVM,ARM] Allow use of GICv4 for direct injection of
LPIs.

kvm-intel.ept= [KVM,Intel] Disable extended page tables
(virtualized MMU) support on capable Intel chips.
Default is 1 (enabled)

kvm-intel.emulate_invalid_guest_state=
[KVM,Intel] Enable emulation of invalid guest states
Default is 0 (disabled)

kvm-intel.flexpriority=
[KVM,Intel] Disable FlexPriority feature (TPR shadow).
Default is 1 (enabled)

kvm-intel.nested=
[KVM,Intel] Enable VMX nesting (nVMX).
Default is 0 (disabled)

kvm-intel.unrestricted_guest=
[KVM,Intel] Disable unrestricted guest feature
(virtualized real and unpaged mode) on capable
Intel chips. Default is 1 (enabled)

kvm-intel.vmentry_l1d_flush=[KVM,Intel] Mitigation for L1 Terminal Fault
CVE-2018-3620.

Valid arguments: never, cond, always

always: L1D cache flush on every VMENTER.
cond: Flush L1D on VMENTER only when the code between

VMEXIT and VMENTER can leak host memory.
never: Disables the mitigation

Default is cond (do L1 cache flush in specific instances)

kvm-intel.vpid= [KVM,Intel] Disable Virtual Processor Identification
feature (tagged TLBs) on capable Intel chips.
Default is 1 (enabled)

2.1. cpu lists: 49



Linux Kernel User Documentation, v4.20.0

l1tf= [X86] Control mitigation of the L1TF vulnerability on
affected CPUs

The kernel PTE inversion protection is unconditionally
enabled and cannot be disabled.

full
Provides all available mitigations for the
L1TF vulnerability. Disables SMT and
enables all mitigations in the
hypervisors, i.e. unconditional L1D flush.

SMT control and L1D flush control via the
sysfs interface is still possible after
boot. Hypervisors will issue a warning
when the first VM is started in a
potentially insecure configuration,
i.e. SMT enabled or L1D flush disabled.

full,force
Same as `full', but disables SMT and L1D
flush runtime control. Implies the
`nosmt=force' command line option.
(i.e. sysfs control of SMT is disabled.)

flush
Leaves SMT enabled and enables the default
hypervisor mitigation, i.e. conditional
L1D flush.

SMT control and L1D flush control via the
sysfs interface is still possible after
boot. Hypervisors will issue a warning
when the first VM is started in a
potentially insecure configuration,
i.e. SMT enabled or L1D flush disabled.

flush,nosmt

Disables SMT and enables the default
hypervisor mitigation.

SMT control and L1D flush control via the
sysfs interface is still possible after
boot. Hypervisors will issue a warning
when the first VM is started in a
potentially insecure configuration,
i.e. SMT enabled or L1D flush disabled.

flush,nowarn
Same as `flush', but hypervisors will not
warn when a VM is started in a potentially
insecure configuration.

50 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

off
Disables hypervisor mitigations and doesn't
emit any warnings.

Default is `flush'.

For details see: Documentation/admin-guide/l1tf.rst

l2cr= [PPC]

l3cr= [PPC]

lapic [X86-32,APIC] Enable the local APIC even if BIOS
disabled it.

lapic= [x86,APIC] ``notscdeadline'' Do not use TSC deadline
value for LAPIC timer one-shot implementation. Default
back to the programmable timer unit in the LAPIC.

lapic_timer_c2_ok [X86,APIC] trust the local apic timer
in C2 power state.

libata.dma= [LIBATA] DMA control
libata.dma=0 Disable all PATA and SATA DMA
libata.dma=1 PATA and SATA Disk DMA only
libata.dma=2 ATAPI (CDROM) DMA only
libata.dma=4 Compact Flash DMA only
Combinations also work, so libata.dma=3 enables DMA
for disks and CDROMs, but not CFs.

libata.ignore_hpa= [LIBATA] Ignore HPA limit
libata.ignore_hpa=0 keep BIOS limits (default)
libata.ignore_hpa=1 ignore limits, using full disk

libata.noacpi [LIBATA] Disables use of ACPI in libata suspend/resume
when set.
Format: <int>

libata.force= [LIBATA] Force configurations. The format is comma
separated list of ``[ID:]VAL'' where ID is
PORT[.DEVICE]. PORT and DEVICE are decimal numbers
matching port, link or device. Basically, it matches
the ATA ID string printed on console by libata. If
the whole ID part is omitted, the last PORT and DEVICE
values are used. If ID hasn't been specified yet, the
configuration applies to all ports, links and devices.

If only DEVICE is omitted, the parameter applies to
the port and all links and devices behind it. DEVICE
number of 0 either selects the first device or the
first fan-out link behind PMP device. It does not
select the host link. DEVICE number of 15 selects the
host link and device attached to it.

2.1. cpu lists: 51



Linux Kernel User Documentation, v4.20.0

The VAL specifies the configuration to force. As long
as there's no ambiguity shortcut notation is allowed.
For example, both 1.5 and 1.5G would work for 1.5Gbps.
The following configurations can be forced.

* Cable type: 40c, 80c, short40c, unk, ign or sata.
Any ID with matching PORT is used.

* SATA link speed limit: 1.5Gbps or 3.0Gbps.

* Transfer mode: pio[0-7], mwdma[0-4] and udma[0-7].
udma[/][16,25,33,44,66,100,133] notation is also
allowed.

* [no]ncq: Turn on or off NCQ.

* [no]ncqtrim: Turn off queued DSM TRIM.

* nohrst, nosrst, norst: suppress hard, soft
and both resets.

* rstonce: only attempt one reset during
hot-unplug link recovery

* dump_id: dump IDENTIFY data.

* atapi_dmadir: Enable ATAPI DMADIR bridge support

* disable: Disable this device.

If there are multiple matching configurations changing
the same attribute, the last one is used.

memblock=debug [KNL] Enable memblock debug messages.

load_ramdisk= [RAM] List of ramdisks to load from floppy
See Documentation/blockdev/ramdisk.txt.

lockd.nlm_grace_period=P [NFS] Assign grace period.
Format: <integer>

lockd.nlm_tcpport=N [NFS] Assign TCP port.
Format: <integer>

lockd.nlm_timeout=T [NFS] Assign timeout value.
Format: <integer>

lockd.nlm_udpport=M [NFS] Assign UDP port.
Format: <integer>

locktorture.nreaders_stress= [KNL]
Set the number of locking read-acquisition kthreads.
Defaults to being automatically set based on the
number of online CPUs.

52 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

locktorture.nwriters_stress= [KNL]
Set the number of locking write-acquisition kthreads.

locktorture.onoff_holdoff= [KNL]
Set time (s) after boot for CPU-hotplug testing.

locktorture.onoff_interval= [KNL]
Set time (s) between CPU-hotplug operations, or
zero to disable CPU-hotplug testing.

locktorture.shuffle_interval= [KNL]
Set task-shuffle interval (jiffies). Shuffling
tasks allows some CPUs to go into dyntick-idle
mode during the locktorture test.

locktorture.shutdown_secs= [KNL]
Set time (s) after boot system shutdown. This
is useful for hands-off automated testing.

locktorture.stat_interval= [KNL]
Time (s) between statistics printk()s.

locktorture.stutter= [KNL]
Time (s) to stutter testing, for example,
specifying five seconds causes the test to run for
five seconds, wait for five seconds, and so on.
This tests the locking primitive's ability to
transition abruptly to and from idle.

locktorture.torture_type= [KNL]
Specify the locking implementation to test.

locktorture.verbose= [KNL]
Enable additional printk() statements.

logibm.irq= [HW,MOUSE] Logitech Bus Mouse Driver
Format: <irq>

loglevel= All Kernel Messages with a loglevel smaller than the
console loglevel will be printed to the console. It can
also be changed with klogd or other programs. The
loglevels are defined as follows:

0 (KERN_EMERG) system is unusable
1 (KERN_ALERT) action must be taken immediately
2 (KERN_CRIT) critical conditions
3 (KERN_ERR) error conditions
4 (KERN_WARNING) warning conditions
5 (KERN_NOTICE) normal but significant condition
6 (KERN_INFO) informational
7 (KERN_DEBUG) debug-level messages

log_buf_len=n[KMG] Sets the size of the printk ring buffer,

2.1. cpu lists: 53



Linux Kernel User Documentation, v4.20.0

in bytes. n must be a power of two and greater
than the minimal size. The minimal size is defined
by LOG_BUF_SHIFT kernel config parameter. There is
also CONFIG_LOG_CPU_MAX_BUF_SHIFT config parameter
that allows to increase the default size depending on
the number of CPUs. See init/Kconfig for more details.

logo.nologo [FB] Disables display of the built-in Linux logo.
This may be used to provide more screen space for
kernel log messages and is useful when debugging
kernel boot problems.

lp=0 [LP] Specify parallel ports to use, e.g,
lp=port[,port...] lp=none,parport0 (lp0 not configured, lp1 uses
lp=reset first parallel port). `lp=0' disables the
lp=auto printer driver. `lp=reset' (which can be

specified in addition to the ports) causes
attached printers to be reset. Using
lp=port1,port2,... specifies the parallel ports
to associate lp devices with, starting with
lp0. A port specification may be `none' to skip
that lp device, or a parport name such as
`parport0'. Specifying `lp=auto' instead of a
port specification list means that device IDs
from each port should be examined, to see if
an IEEE 1284-compliant printer is attached; if
so, the driver will manage that printer.
See also header of drivers/char/lp.c.

lpj=n [KNL]
Sets loops_per_jiffy to given constant, thus avoiding
time-consuming boot-time autodetection (up to 250 ms per
CPU). 0 enables autodetection (default). To determine
the correct value for your kernel, boot with normal
autodetection and see what value is printed. Note that
on SMP systems the preset will be applied to all CPUs,
which is likely to cause problems if your CPUs need
significantly divergent settings. An incorrect value
will cause delays in the kernel to be wrong, leading to
unpredictable I/O errors and other breakage. Although
unlikely, in the extreme case this might damage your
hardware.

ltpc= [NET]
Format: <io>,<irq>,<dma>

lsm.debug [SECURITY] Enable LSM initialization debugging output.

machvec= [IA-64] Force the use of a particular machine-vector
(machvec) in a generic kernel.
Example: machvec=hpzx1_swiotlb

machtype= [Loongson] Share the same kernel image file between different
yeeloong laptop.

54 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Example: machtype=lemote-yeeloong-2f-7inch

max_addr=nn[KMG] [KNL,BOOT,ia64] All physical memory greater
than or equal to this physical address is ignored.

maxcpus= [SMP] Maximum number of processors that an SMP kernel
will bring up during bootup. maxcpus=n : n >= 0 limits
the kernel to bring up `n' processors. Surely after
bootup you can bring up the other plugged cpu by executing
``echo 1 > /sys/devices/system/cpu/cpuX/online''. So maxcpus
only takes effect during system bootup.
While n=0 is a special case, it is equivalent to ``nosmp'',
which also disables the IO APIC.

max_loop= [LOOP] The number of loop block devices that get
(loop.max_loop) unconditionally pre-created at init time. The default

number is configured by BLK_DEV_LOOP_MIN_COUNT. Instead
of statically allocating a predefined number, loop
devices can be requested on-demand with the
/dev/loop-control interface.

mce [X86-32] Machine Check Exception

mce=option [X86-64] See Documentation/x86/x86_64/boot-options.txt

md= [HW] RAID subsystems devices and level
See Documentation/admin-guide/md.rst.

mdacon= [MDA]
Format: <first>,<last>
Specifies range of consoles to be captured by the MDA.

mem=nn[KMG] [KNL,BOOT] Force usage of a specific amount of memory
Amount of memory to be used when the kernel is not able
to see the whole system memory or for test.
[X86] Work as limiting max address. Use together
with memmap= to avoid physical address space collisions.
Without memmap= PCI devices could be placed at addresses
belonging to unused RAM.

mem=nopentium [BUGS=X86-32] Disable usage of 4MB pages for kernel
memory.

memchunk=nn[KMG]
[KNL,SH] Allow user to override the default size for
per-device physically contiguous DMA buffers.

memhp_default_state=online/offline
[KNL] Set the initial state for the memory hotplug
onlining policy. If not specified, the default value is
set according to the
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel config
option.
See Documentation/memory-hotplug.txt.

2.1. cpu lists: 55



Linux Kernel User Documentation, v4.20.0

memmap=exactmap [KNL,X86] Enable setting of an exact
E820 memory map, as specified by the user.
Such memmap=exactmap lines can be constructed based on
BIOS output or other requirements. See the memmap=nn@ss
option description.

memmap=nn[KMG]@ss[KMG]
[KNL] Force usage of a specific region of memory.
Region of memory to be used is from ss to ss+nn.
If @ss[KMG] is omitted, it is equivalent to mem=nn[KMG],
which limits max address to nn[KMG].
Multiple different regions can be specified,
comma delimited.
Example:

memmap=100M@2G,100M#3G,1G!1024G

memmap=nn[KMG]#ss[KMG]
[KNL,ACPI] Mark specific memory as ACPI data.
Region of memory to be marked is from ss to ss+nn.

memmap=nn[KMG]$ss[KMG]
[KNL,ACPI] Mark specific memory as reserved.
Region of memory to be reserved is from ss to ss+nn.
Example: Exclude memory from 0x18690000-0x1869ffff

memmap=64K$0x18690000
or
memmap=0x10000$0x18690000

Some bootloaders may need an escape character before `$',
like Grub2, otherwise `$' and the following number
will be eaten.

memmap=nn[KMG]!ss[KMG]
[KNL,X86] Mark specific memory as protected.
Region of memory to be used, from ss to ss+nn.
The memory region may be marked as e820 type 12 (0xc)
and is NVDIMM or ADR memory.

memmap=<size>%<offset>-<oldtype>+<newtype>
[KNL,ACPI] Convert memory within the specified region
from <oldtype> to <newtype>. If ``-<oldtype>'' is left
out, the whole region will be marked as <newtype>,
even if previously unavailable. If ``+<newtype>'' is left
out, matching memory will be removed. Types are
specified as e820 types, e.g., 1 = RAM, 2 = reserved,
3 = ACPI, 12 = PRAM.

memory_corruption_check=0/1 [X86]
Some BIOSes seem to corrupt the first 64k of
memory when doing things like suspend/resume.
Setting this option will scan the memory
looking for corruption. Enabling this will
both detect corruption and prevent the kernel
from using the memory being corrupted.

56 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

However, its intended as a diagnostic tool; if
repeatable BIOS-originated corruption always
affects the same memory, you can use memmap=
to prevent the kernel from using that memory.

memory_corruption_check_size=size [X86]
By default it checks for corruption in the low
64k, making this memory unavailable for normal
use. Use this parameter to scan for
corruption in more or less memory.

memory_corruption_check_period=seconds [X86]
By default it checks for corruption every 60
seconds. Use this parameter to check at some
other rate. 0 disables periodic checking.

memtest= [KNL,X86,ARM,PPC] Enable memtest
Format: <integer>
default : 0 <disable>
Specifies the number of memtest passes to be
performed. Each pass selects another test
pattern from a given set of patterns. Memtest
fills the memory with this pattern, validates
memory contents and reserves bad memory
regions that are detected.

mem_encrypt= [X86-64] AMD Secure Memory Encryption (SME) control
Valid arguments: on, off
Default (depends on kernel configuration option):

on (CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT=y)
off (CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT=n)

mem_encrypt=on: Activate SME
mem_encrypt=off: Do not activate SME

Refer to Documentation/x86/amd-memory-encryption.txt
for details on when memory encryption can be activated.

mem_sleep_default= [SUSPEND] Default system suspend mode:
s2idle - Suspend-To-Idle
shallow - Power-On Suspend or equivalent (if supported)
deep - Suspend-To-RAM or equivalent (if supported)
See Documentation/admin-guide/pm/sleep-states.rst.

meye.*= [HW] Set MotionEye Camera parameters
See Documentation/media/v4l-drivers/meye.rst.

mfgpt_irq= [IA-32] Specify the IRQ to use for the
Multi-Function General Purpose Timers on AMD Geode
platforms.

mfgptfix [X86-32] Fix MFGPT timers on AMD Geode platforms when
the BIOS has incorrectly applied a workaround. TinyBIOS
version 0.98 is known to be affected, 0.99 fixes the
problem by letting the user disable the workaround.

2.1. cpu lists: 57



Linux Kernel User Documentation, v4.20.0

mga= [HW,DRM]

min_addr=nn[KMG] [KNL,BOOT,ia64] All physical memory below this
physical address is ignored.

mini2440= [ARM,HW,KNL]
Format:[0..2][b][c][t]
Default: ``0tb''
MINI2440 configuration specification:
0 - The attached screen is the 3.5'' TFT
1 - The attached screen is the 7'' TFT
2 - The VGA Shield is attached (1024x768)
Leaving out the screen size parameter will not load
the TFT driver, and the framebuffer will be left
unconfigured.
b - Enable backlight. The TFT backlight pin will be
linked to the kernel VESA blanking code and a GPIO
LED. This parameter is not necessary when using the
VGA shield.
c - Enable the s3c camera interface.
t - Reserved for enabling touchscreen support. The
touchscreen support is not enabled in the mainstream
kernel as of 2.6.30, a preliminary port can be found
in the ``bleeding edge'' mini2440 support kernel at
http://repo.or.cz/w/linux-2.6/mini2440.git

mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
parameter allows control of the logging verbosity for
the additional memory initialisation checks. A value
of 0 disables mminit logging and a level of 4 will
log everything. Information is printed at KERN_DEBUG
so loglevel=8 may also need to be specified.

module.sig_enforce
[KNL] When CONFIG_MODULE_SIG is set, this means that
modules without (valid) signatures will fail to load.
Note that if CONFIG_MODULE_SIG_FORCE is set, that
is always true, so this option does nothing.

module_blacklist= [KNL] Do not load a comma-separated list of
modules. Useful for debugging problem modules.

mousedev.tap_time=
[MOUSE] Maximum time between finger touching and
leaving touchpad surface for touch to be considered
a tap and be reported as a left button click (for
touchpads working in absolute mode only).
Format: <msecs>

mousedev.xres= [MOUSE] Horizontal screen resolution, used for devices
reporting absolute coordinates, such as tablets

mousedev.yres= [MOUSE] Vertical screen resolution, used for devices
reporting absolute coordinates, such as tablets

58 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

movablecore= [KNL,X86,IA-64,PPC]
Format: nn[KMGTPE] | nn%
This parameter is the complement to kernelcore=, it
specifies the amount of memory used for migratable
allocations. If both kernelcore and movablecore is
specified, then kernelcore will be at *least* the
specified value but may be more. If movablecore on its
own is specified, the administrator must be careful
that the amount of memory usable for all allocations
is not too small.

movable_node [KNL] Boot-time switch to make hotplugable memory
NUMA nodes to be movable. This means that the memory
of such nodes will be usable only for movable
allocations which rules out almost all kernel
allocations. Use with caution!

MTD_Partition= [MTD]
Format: <name>,<region-number>,<size>,<offset>

MTD_Region= [MTD] Format:
<name>,<region-number>[,<base>,<size>,<buswidth>,<altbuswidth>]

mtdparts= [MTD]
See drivers/mtd/cmdlinepart.c.

multitce=off [PPC] This parameter disables the use of the pSeries
firmware feature for updating multiple TCE entries
at a time.

onenand.bdry= [HW,MTD] Flex-OneNAND Boundary Configuration

Format: [die0_boundary][,die0_lock][,die1_boundary][,die1_lock]

boundary - index of last SLC block on Flex-OneNAND.
The remaining blocks are configured as MLC blocks.

lock - Configure if Flex-OneNAND boundary should be locked.
Once locked, the boundary cannot be changed.
1 indicates lock status, 0 indicates unlock status.

mtdset= [ARM]
ARM/S3C2412 JIVE boot control

See arch/arm/mach-s3c2412/mach-jive.c

mtouchusb.raw_coordinates=
[HW] Make the MicroTouch USB driver use raw coordinates
(`y', default) or cooked coordinates (`n')

mtrr_chunk_size=nn[KMG] [X86]
used for mtrr cleanup. It is largest continuous chunk
that could hold holes aka. UC entries.

2.1. cpu lists: 59



Linux Kernel User Documentation, v4.20.0

mtrr_gran_size=nn[KMG] [X86]
Used for mtrr cleanup. It is granularity of mtrr block.
Default is 1.
Large value could prevent small alignment from
using up MTRRs.

mtrr_spare_reg_nr=n [X86]
Format: <integer>
Range: 0,7 : spare reg number
Default : 1
Used for mtrr cleanup. It is spare mtrr entries number.
Set to 2 or more if your graphical card needs more.

n2= [NET] SDL Inc. RISCom/N2 synchronous serial card

netdev= [NET] Network devices parameters
Format: <irq>,<io>,<mem_start>,<mem_end>,<name>
Note that mem_start is often overloaded to mean
something different and driver-specific.
This usage is only documented in each driver source
file if at all.

nf_conntrack.acct=
[NETFILTER] Enable connection tracking flow accounting
0 to disable accounting
1 to enable accounting
Default value is 0.

nfsaddrs= [NFS] Deprecated. Use ip= instead.
See Documentation/filesystems/nfs/nfsroot.txt.

nfsroot= [NFS] nfs root filesystem for disk-less boxes.
See Documentation/filesystems/nfs/nfsroot.txt.

nfsrootdebug [NFS] enable nfsroot debugging messages.
See Documentation/filesystems/nfs/nfsroot.txt.

nfs.callback_nr_threads=
[NFSv4] set the total number of threads that the
NFS client will assign to service NFSv4 callback
requests.

nfs.callback_tcpport=
[NFS] set the TCP port on which the NFSv4 callback
channel should listen.

nfs.cache_getent=
[NFS] sets the pathname to the program which is used
to update the NFS client cache entries.

nfs.cache_getent_timeout=
[NFS] sets the timeout after which an attempt to
update a cache entry is deemed to have failed.

60 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

nfs.idmap_cache_timeout=
[NFS] set the maximum lifetime for idmapper cache
entries.

nfs.enable_ino64=
[NFS] enable 64-bit inode numbers.
If zero, the NFS client will fake up a 32-bit inode
number for the readdir() and stat() syscalls instead
of returning the full 64-bit number.
The default is to return 64-bit inode numbers.

nfs.max_session_cb_slots=
[NFSv4.1] Sets the maximum number of session
slots the client will assign to the callback
channel. This determines the maximum number of
callbacks the client will process in parallel for
a particular server.

nfs.max_session_slots=
[NFSv4.1] Sets the maximum number of session slots
the client will attempt to negotiate with the server.
This limits the number of simultaneous RPC requests
that the client can send to the NFSv4.1 server.
Note that there is little point in setting this
value higher than the max_tcp_slot_table_limit.

nfs.nfs4_disable_idmapping=
[NFSv4] When set to the default of `1', this option
ensures that both the RPC level authentication
scheme and the NFS level operations agree to use
numeric uids/gids if the mount is using the
`sec=sys' security flavour. In effect it is
disabling idmapping, which can make migration from
legacy NFSv2/v3 systems to NFSv4 easier.
Servers that do not support this mode of operation
will be autodetected by the client, and it will fall
back to using the idmapper.
To turn off this behaviour, set the value to `0'.

nfs.nfs4_unique_id=
[NFS4] Specify an additional fixed unique ident-
ification string that NFSv4 clients can insert into
their nfs_client_id4 string. This is typically a
UUID that is generated at system install time.

nfs.send_implementation_id =
[NFSv4.1] Send client implementation identification
information in exchange_id requests.
If zero, no implementation identification information
will be sent.
The default is to send the implementation identification
information.

nfs.recover_lost_locks =
[NFSv4] Attempt to recover locks that were lost due

2.1. cpu lists: 61



Linux Kernel User Documentation, v4.20.0

to a lease timeout on the server. Please note that
doing this risks data corruption, since there are
no guarantees that the file will remain unchanged
after the locks are lost.
If you want to enable the kernel legacy behaviour of
attempting to recover these locks, then set this
parameter to `1'.
The default parameter value of `0' causes the kernel
not to attempt recovery of lost locks.

nfs4.layoutstats_timer =
[NFSv4.2] Change the rate at which the kernel sends
layoutstats to the pNFS metadata server.

Setting this to value to 0 causes the kernel to use
whatever value is the default set by the layout
driver. A non-zero value sets the minimum interval
in seconds between layoutstats transmissions.

nfsd.nfs4_disable_idmapping=
[NFSv4] When set to the default of `1', the NFSv4
server will return only numeric uids and gids to
clients using auth_sys, and will accept numeric uids
and gids from such clients. This is intended to ease
migration from NFSv2/v3.

nmi_debug= [KNL,SH] Specify one or more actions to take
when a NMI is triggered.
Format: [state][,regs][,debounce][,die]

nmi_watchdog= [KNL,BUGS=X86] Debugging features for SMP kernels
Format: [panic,][nopanic,][num]
Valid num: 0 or 1
0 - turn hardlockup detector in nmi_watchdog off
1 - turn hardlockup detector in nmi_watchdog on
When panic is specified, panic when an NMI watchdog
timeout occurs (or `nopanic' to override the opposite
default). To disable both hard and soft lockup detectors,
please see `nowatchdog'.
This is useful when you use a panic=... timeout and
need the box quickly up again.

These settings can be accessed at runtime via
the nmi_watchdog and hardlockup_panic sysctls.

netpoll.carrier_timeout=
[NET] Specifies amount of time (in seconds) that
netpoll should wait for a carrier. By default netpoll
waits 4 seconds.

no387 [BUGS=X86-32] Tells the kernel to use the 387 maths
emulation library even if a 387 maths coprocessor
is present.

62 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

no5lvl [X86-64] Disable 5-level paging mode. Forces
kernel to use 4-level paging instead.

no_console_suspend
[HW] Never suspend the console
Disable suspending of consoles during suspend and
hibernate operations. Once disabled, debugging
messages can reach various consoles while the rest
of the system is being put to sleep (ie, while
debugging driver suspend/resume hooks). This may
not work reliably with all consoles, but is known
to work with serial and VGA consoles.
To facilitate more flexible debugging, we also add
console_suspend, a printk module parameter to control
it. Users could use console_suspend (usually
/sys/module/printk/parameters/console_suspend) to
turn on/off it dynamically.

noaliencache [MM, NUMA, SLAB] Disables the allocation of alien
caches in the slab allocator. Saves per-node memory,
but will impact performance.

noalign [KNL,ARM]

noaltinstr [S390] Disables alternative instructions patching
(CPU alternatives feature).

noapic [SMP,APIC] Tells the kernel to not make use of any
IOAPICs that may be present in the system.

noautogroup Disable scheduler automatic task group creation.

nobats [PPC] Do not use BATs for mapping kernel lowmem
on ``Classic'' PPC cores.

nocache [ARM]

noclflush [BUGS=X86] Don't use the CLFLUSH instruction

nodelayacct [KNL] Disable per-task delay accounting

nodsp [SH] Disable hardware DSP at boot time.

noefi Disable EFI runtime services support.

noexec [IA-64]

noexec [X86]
On X86-32 available only on PAE configured kernels.
noexec=on: enable non-executable mappings (default)
noexec=off: disable non-executable mappings

nosmap [X86]
Disable SMAP (Supervisor Mode Access Prevention)

2.1. cpu lists: 63



Linux Kernel User Documentation, v4.20.0

even if it is supported by processor.

nosmep [X86]
Disable SMEP (Supervisor Mode Execution Prevention)
even if it is supported by processor.

noexec32 [X86-64]
This affects only 32-bit executables.
noexec32=on: enable non-executable mappings (default)

read doesn't imply executable mappings
noexec32=off: disable non-executable mappings

read implies executable mappings

nofpu [MIPS,SH] Disable hardware FPU at boot time.

nofxsr [BUGS=X86-32] Disables x86 floating point extended
register save and restore. The kernel will only save
legacy floating-point registers on task switch.

nohugeiomap [KNL,x86] Disable kernel huge I/O mappings.

nosmt [KNL,S390] Disable symmetric multithreading (SMT).
Equivalent to smt=1.

[KNL,x86] Disable symmetric multithreading (SMT).
nosmt=force: Force disable SMT, cannot be undone

via the sysfs control file.

nospectre_v1 [PPC] Disable mitigations for Spectre Variant 1 (bounds
check bypass). With this option data leaks are possible
in the system.

nospectre_v2 [X86] Disable all mitigations for the Spectre variant 2
(indirect branch prediction) vulnerability. System may
allow data leaks with this option, which is equivalent
to spectre_v2=off.

nospec_store_bypass_disable
[HW] Disable all mitigations for the Speculative Store Bypass vulnerability

noxsave [BUGS=X86] Disables x86 extended register state save
and restore using xsave. The kernel will fallback to
enabling legacy floating-point and sse state.

noxsaveopt [X86] Disables xsaveopt used in saving x86 extended
register states. The kernel will fall back to use
xsave to save the states. By using this parameter,
performance of saving the states is degraded because
xsave doesn't support modified optimization while
xsaveopt supports it on xsaveopt enabled systems.

noxsaves [X86] Disables xsaves and xrstors used in saving and
restoring x86 extended register state in compacted
form of xsave area. The kernel will fall back to use

64 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

xsaveopt and xrstor to save and restore the states
in standard form of xsave area. By using this
parameter, xsave area per process might occupy more
memory on xsaves enabled systems.

nohlt [BUGS=ARM,SH] Tells the kernel that the sleep(SH) or
wfi(ARM) instruction doesn't work correctly and not to
use it. This is also useful when using JTAG debugger.

no_file_caps Tells the kernel not to honor file capabilities. The
only way then for a file to be executed with privilege
is to be setuid root or executed by root.

nohalt [IA-64] Tells the kernel not to use the power saving
function PAL_HALT_LIGHT when idle. This increases
power-consumption. On the positive side, it reduces
interrupt wake-up latency, which may improve performance
in certain environments such as networked servers or
real-time systems.

nohibernate [HIBERNATION] Disable hibernation and resume.

nohz= [KNL] Boottime enable/disable dynamic ticks
Valid arguments: on, off
Default: on

nohz_full= [KNL,BOOT,SMP,ISOL]
The argument is a cpu list, as described above.
In kernels built with CONFIG_NO_HZ_FULL=y, set
the specified list of CPUs whose tick will be stopped
whenever possible. The boot CPU will be forced outside
the range to maintain the timekeeping. Any CPUs
in this list will have their RCU callbacks offloaded,
just as if they had also been called out in the
rcu_nocbs= boot parameter.

noiotrap [SH] Disables trapped I/O port accesses.

noirqdebug [X86-32] Disables the code which attempts to detect and
disable unhandled interrupt sources.

no_timer_check [X86,APIC] Disables the code which tests for
broken timer IRQ sources.

noisapnp [ISAPNP] Disables ISA PnP code.

noinitrd [RAM] Tells the kernel not to load any configured
initial RAM disk.

nointremap [X86-64, Intel-IOMMU] Do not enable interrupt
remapping.
[Deprecated - use intremap=off]

nointroute [IA-64]

2.1. cpu lists: 65



Linux Kernel User Documentation, v4.20.0

noinvpcid [X86] Disable the INVPCID cpu feature.

nojitter [IA-64] Disables jitter checking for ITC timers.

no-kvmclock [X86,KVM] Disable paravirtualized KVM clock driver

no-kvmapf [X86,KVM] Disable paravirtualized asynchronous page
fault handling.

no-vmw-sched-clock
[X86,PV_OPS] Disable paravirtualized VMware scheduler
clock and use the default one.

no-steal-acc [X86,KVM] Disable paravirtualized steal time accounting.
steal time is computed, but won't influence scheduler
behaviour

nolapic [X86-32,APIC] Do not enable or use the local APIC.

nolapic_timer [X86-32,APIC] Do not use the local APIC timer.

noltlbs [PPC] Do not use large page/tlb entries for kernel
lowmem mapping on PPC40x and PPC8xx

nomca [IA-64] Disable machine check abort handling

nomce [X86-32] Disable Machine Check Exception

nomfgpt [X86-32] Disable Multi-Function General Purpose
Timer usage (for AMD Geode machines).

nonmi_ipi [X86] Disable using NMI IPIs during panic/reboot to
shutdown the other cpus. Instead use the REBOOT_VECTOR
irq.

nomodule Disable module load

nopat [X86] Disable PAT (page attribute table extension of
pagetables) support.

nopcid [X86-64] Disable the PCID cpu feature.

norandmaps Don't use address space randomization. Equivalent to
echo 0 > /proc/sys/kernel/randomize_va_space

noreplace-smp [X86-32,SMP] Don't replace SMP instructions
with UP alternatives

nordrand [X86] Disable kernel use of the RDRAND and
RDSEED instructions even if they are supported
by the processor. RDRAND and RDSEED are still
available to user space applications.

66 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

noresume [SWSUSP] Disables resume and restores original swap
space.

no-scroll [VGA] Disables scrollback.
This is required for the Braillex ib80-piezo Braille
reader made by F.H. Papenmeier (Germany).

nosbagart [IA-64]

nosep [BUGS=X86-32] Disables x86 SYSENTER/SYSEXIT support.

nosmp [SMP] Tells an SMP kernel to act as a UP kernel,
and disable the IO APIC. legacy for ``maxcpus=0''.

nosoftlockup [KNL] Disable the soft-lockup detector.

nosync [HW,M68K] Disables sync negotiation for all devices.

nowatchdog [KNL] Disable both lockup detectors, i.e.
soft-lockup and NMI watchdog (hard-lockup).

nowb [ARM]

nox2apic [X86-64,APIC] Do not enable x2APIC mode.

cpu0_hotplug [X86] Turn on CPU0 hotplug feature when
CONFIG_BOOTPARAM_HOTPLUG_CPU0 is off.
Some features depend on CPU0. Known dependencies are:
1. Resume from suspend/hibernate depends on CPU0.
Suspend/hibernate will fail if CPU0 is offline and you
need to online CPU0 before suspend/hibernate.
2. PIC interrupts also depend on CPU0. CPU0 can't be
removed if a PIC interrupt is detected.
It's said poweroff/reboot may depend on CPU0 on some
machines although I haven't seen such issues so far
after CPU0 is offline on a few tested machines.
If the dependencies are under your control, you can
turn on cpu0_hotplug.

nps_mtm_hs_ctr= [KNL,ARC]
This parameter sets the maximum duration, in
cycles, each HW thread of the CTOP can run
without interruptions, before HW switches it.
The actual maximum duration is 16 times this
parameter's value.
Format: integer between 1 and 255
Default: 255

nptcg= [IA-64] Override max number of concurrent global TLB
purges which is reported from either PAL_VM_SUMMARY or
SAL PALO.

nr_cpus= [SMP] Maximum number of processors that an SMP kernel
could support. nr_cpus=n : n >= 1 limits the kernel to

2.1. cpu lists: 67



Linux Kernel User Documentation, v4.20.0

support `n' processors. It could be larger than the
number of already plugged CPU during bootup, later in
runtime you can physically add extra cpu until it reaches
n. So during boot up some boot time memory for per-cpu
variables need be pre-allocated for later physical cpu
hot plugging.

nr_uarts= [SERIAL] maximum number of UARTs to be registered.

numa_balancing= [KNL,X86] Enable or disable automatic NUMA balancing.
Allowed values are enable and disable

numa_zonelist_order= [KNL, BOOT] Select zonelist order for NUMA.
`node', `default' can be specified
This can be set from sysctl after boot.
See Documentation/sysctl/vm.txt for details.

ohci1394_dma=early [HW] enable debugging via the ohci1394 driver.
See Documentation/debugging-via-ohci1394.txt for more
info.

olpc_ec_timeout= [OLPC] ms delay when issuing EC commands
Rather than timing out after 20 ms if an EC
command is not properly ACKed, override the length
of the timeout. We have interrupts disabled while
waiting for the ACK, so if this is set too high
interrupts *may* be lost!

omap_mux= [OMAP] Override bootloader pin multiplexing.
Format: <mux_mode0.mode_name=value>...
For example, to override I2C bus2:
omap_mux=i2c2_scl.i2c2_scl=0x100,i2c2_sda.i2c2_sda=0x100

oprofile.timer= [HW]
Use timer interrupt instead of performance counters

oprofile.cpu_type= Force an oprofile cpu type
This might be useful if you have an older oprofile
userland or if you want common events.
Format: { arch_perfmon }
arch_perfmon: [X86] Force use of architectural

perfmon on Intel CPUs instead of the
CPU specific event set.

timer: [X86] Force use of architectural NMI
timer mode (see also oprofile.timer
for generic hr timer mode)

oops=panic Always panic on oopses. Default is to just kill the
process, but there is a small probability of
deadlocking the machine.
This will also cause panics on machine check exceptions.
Useful together with panic=30 to trigger a reboot.

page_owner= [KNL] Boot-time page_owner enabling option.

68 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Storage of the information about who allocated
each page is disabled in default. With this switch,
we can turn it on.
on: enable the feature

page_poison= [KNL] Boot-time parameter changing the state of
poisoning on the buddy allocator, available with
CONFIG_PAGE_POISONING=y.
off: turn off poisoning (default)
on: turn on poisoning

panic= [KNL] Kernel behaviour on panic: delay <timeout>
timeout > 0: seconds before rebooting
timeout = 0: wait forever
timeout < 0: reboot immediately
Format: <timeout>

panic_on_warn panic() instead of WARN(). Useful to cause kdump
on a WARN().

crash_kexec_post_notifiers
Run kdump after running panic-notifiers and dumping
kmsg. This only for the users who doubt kdump always
succeeds in any situation.
Note that this also increases risks of kdump failure,
because some panic notifiers can make the crashed
kernel more unstable.

parkbd.port= [HW] Parallel port number the keyboard adapter is
connected to, default is 0.
Format: <parport#>

parkbd.mode= [HW] Parallel port keyboard adapter mode of operation,
0 for XT, 1 for AT (default is AT).
Format: <mode>

parport= [HW,PPT] Specify parallel ports. 0 disables.
Format: { 0 | auto | 0xBBB[,IRQ[,DMA]] }
Use `auto' to force the driver to use any
IRQ/DMA settings detected (the default is to
ignore detected IRQ/DMA settings because of
possible conflicts). You can specify the base
address, IRQ, and DMA settings; IRQ and DMA
should be numbers, or `auto' (for using detected
settings on that particular port), or `nofifo'
(to avoid using a FIFO even if it is detected).
Parallel ports are assigned in the order they
are specified on the command line, starting
with parport0.

parport_init_mode= [HW,PPT]
Configure VIA parallel port to operate in
a specific mode. This is necessary on Pegasos
computer where firmware has no options for setting
up parallel port mode and sets it to spp.

2.1. cpu lists: 69



Linux Kernel User Documentation, v4.20.0

Currently this function knows 686a and 8231 chips.
Format: [spp|ps2|epp|ecp|ecpepp]

pause_on_oops=
Halt all CPUs after the first oops has been printed for
the specified number of seconds. This is to be used if
your oopses keep scrolling off the screen.

pcbit= [HW,ISDN]

pcd. [PARIDE]
See header of drivers/block/paride/pcd.c.
See also Documentation/blockdev/paride.txt.

pci=option[,option...] [PCI] various PCI subsystem options.

Some options herein operate on a specific device
or a set of devices (<pci_dev>). These are
specified in one of the following formats:

[<domain>:]<bus>:<dev>.<func>[/<dev>.<func>]*
pci:<vendor>:<device>[:<subvendor>:<subdevice>]

Note: the first format specifies a PCI
bus/device/function address which may change
if new hardware is inserted, if motherboard
firmware changes, or due to changes caused
by other kernel parameters. If the
domain is left unspecified, it is
taken to be zero. Optionally, a path
to a device through multiple device/function
addresses can be specified after the base
address (this is more robust against
renumbering issues). The second format
selects devices using IDs from the
configuration space which may match multiple
devices in the system.

earlydump dump PCI config space before the kernel
changes anything

off [X86] don't probe for the PCI bus
bios [X86-32] force use of PCI BIOS, don't access

the hardware directly. Use this if your machine
has a non-standard PCI host bridge.

nobios [X86-32] disallow use of PCI BIOS, only direct
hardware access methods are allowed. Use this
if you experience crashes upon bootup and you
suspect they are caused by the BIOS.

conf1 [X86] Force use of PCI Configuration Access
Mechanism 1 (config address in IO port 0xCF8,
data in IO port 0xCFC, both 32-bit).

conf2 [X86] Force use of PCI Configuration Access
Mechanism 2 (IO port 0xCF8 is an 8-bit port for
the function, IO port 0xCFA, also 8-bit, sets

70 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

bus number. The config space is then accessed
through ports 0xC000-0xCFFF).
See http://wiki.osdev.org/PCI for more info
on the configuration access mechanisms.

noaer [PCIE] If the PCIEAER kernel config parameter is
enabled, this kernel boot option can be used to
disable the use of PCIE advanced error reporting.

nodomains [PCI] Disable support for multiple PCI
root domains (aka PCI segments, in ACPI-speak).

nommconf [X86] Disable use of MMCONFIG for PCI
Configuration

check_enable_amd_mmconf [X86] check for and enable
properly configured MMIO access to PCI
config space on AMD family 10h CPU

nomsi [MSI] If the PCI_MSI kernel config parameter is
enabled, this kernel boot option can be used to
disable the use of MSI interrupts system-wide.

noioapicquirk [APIC] Disable all boot interrupt quirks.
Safety option to keep boot IRQs enabled. This
should never be necessary.

ioapicreroute [APIC] Enable rerouting of boot IRQs to the
primary IO-APIC for bridges that cannot disable
boot IRQs. This fixes a source of spurious IRQs
when the system masks IRQs.

noioapicreroute [APIC] Disable workaround that uses the
boot IRQ equivalent of an IRQ that connects to
a chipset where boot IRQs cannot be disabled.
The opposite of ioapicreroute.

biosirq [X86-32] Use PCI BIOS calls to get the interrupt
routing table. These calls are known to be buggy
on several machines and they hang the machine
when used, but on other computers it's the only
way to get the interrupt routing table. Try
this option if the kernel is unable to allocate
IRQs or discover secondary PCI buses on your
motherboard.

rom [X86] Assign address space to expansion ROMs.
Use with caution as certain devices share
address decoders between ROMs and other
resources.

norom [X86] Do not assign address space to
expansion ROMs that do not already have
BIOS assigned address ranges.

nobar [X86] Do not assign address space to the
BARs that weren't assigned by the BIOS.

irqmask=0xMMMM [X86] Set a bit mask of IRQs allowed to be
assigned automatically to PCI devices. You can
make the kernel exclude IRQs of your ISA cards
this way.

pirqaddr=0xAAAAA [X86] Specify the physical address
of the PIRQ table (normally generated
by the BIOS) if it is outside the
F0000h-100000h range.

lastbus=N [X86] Scan all buses thru bus #N. Can be

2.1. cpu lists: 71



Linux Kernel User Documentation, v4.20.0

useful if the kernel is unable to find your
secondary buses and you want to tell it
explicitly which ones they are.

assign-busses [X86] Always assign all PCI bus
numbers ourselves, overriding
whatever the firmware may have done.

usepirqmask [X86] Honor the possible IRQ mask stored
in the BIOS $PIR table. This is needed on
some systems with broken BIOSes, notably
some HP Pavilion N5400 and Omnibook XE3
notebooks. This will have no effect if ACPI
IRQ routing is enabled.

noacpi [X86] Do not use ACPI for IRQ routing
or for PCI scanning.

use_crs [X86] Use PCI host bridge window information
from ACPI. On BIOSes from 2008 or later, this
is enabled by default. If you need to use this,
please report a bug.

nocrs [X86] Ignore PCI host bridge windows from ACPI.
If you need to use this, please report a bug.

routeirq Do IRQ routing for all PCI devices.
This is normally done in pci_enable_device(),
so this option is a temporary workaround
for broken drivers that don't call it.

skip_isa_align [X86] do not align io start addr, so can
handle more pci cards

noearly [X86] Don't do any early type 1 scanning.
This might help on some broken boards which
machine check when some devices' config space
is read. But various workarounds are disabled
and some IOMMU drivers will not work.

bfsort Sort PCI devices into breadth-first order.
This sorting is done to get a device
order compatible with older (<= 2.4) kernels.

nobfsort Don't sort PCI devices into breadth-first order.
pcie_bus_tune_off Disable PCIe MPS (Max Payload Size)

tuning and use the BIOS-configured MPS defaults.
pcie_bus_safe Set every device's MPS to the largest value

supported by all devices below the root complex.
pcie_bus_perf Set device MPS to the largest allowable MPS

based on its parent bus. Also set MRRS (Max
Read Request Size) to the largest supported
value (no larger than the MPS that the device
or bus can support) for best performance.

pcie_bus_peer2peer Set every device's MPS to 128B, which
every device is guaranteed to support. This
configuration allows peer-to-peer DMA between
any pair of devices, possibly at the cost of
reduced performance. This also guarantees
that hot-added devices will work.

cbiosize=nn[KMG] The fixed amount of bus space which is
reserved for the CardBus bridge's IO window.
The default value is 256 bytes.

cbmemsize=nn[KMG] The fixed amount of bus space which is

72 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

reserved for the CardBus bridge's memory
window. The default value is 64 megabytes.

resource_alignment=
Format:
[<order of align>@]<pci_dev>[; ...]
Specifies alignment and device to reassign
aligned memory resources. How to
specify the device is described above.
If <order of align> is not specified,
PAGE_SIZE is used as alignment.
PCI-PCI bridge can be specified, if resource
windows need to be expanded.
To specify the alignment for several
instances of a device, the PCI vendor,
device, subvendor, and subdevice may be
specified, e.g., 4096@pci:8086:9c22:103c:198f

ecrc= Enable/disable PCIe ECRC (transaction layer
end-to-end CRC checking).
bios: Use BIOS/firmware settings. This is the
the default.
off: Turn ECRC off
on: Turn ECRC on.

hpiosize=nn[KMG] The fixed amount of bus space which is
reserved for hotplug bridge's IO window.
Default size is 256 bytes.

hpmemsize=nn[KMG] The fixed amount of bus space which is
reserved for hotplug bridge's memory window.
Default size is 2 megabytes.

hpbussize=nn The minimum amount of additional bus numbers
reserved for buses below a hotplug bridge.
Default is 1.

realloc= Enable/disable reallocating PCI bridge resources
if allocations done by BIOS are too small to
accommodate resources required by all child
devices.
off: Turn realloc off
on: Turn realloc on

realloc same as realloc=on
noari do not use PCIe ARI.
noats [PCIE, Intel-IOMMU, AMD-IOMMU]

do not use PCIe ATS (and IOMMU device IOTLB).
pcie_scan_all Scan all possible PCIe devices. Otherwise we

only look for one device below a PCIe downstream
port.

big_root_window Try to add a big 64bit memory window to the PCIe
root complex on AMD CPUs. Some GFX hardware
can resize a BAR to allow access to all VRAM.
Adding the window is slightly risky (it may
conflict with unreported devices), so this
taints the kernel.

disable_acs_redir=<pci_dev>[; ...]
Specify one or more PCI devices (in the format
specified above) separated by semicolons.
Each device specified will have the PCI ACS

2.1. cpu lists: 73



Linux Kernel User Documentation, v4.20.0

redirect capabilities forced off which will
allow P2P traffic between devices through
bridges without forcing it upstream. Note:
this removes isolation between devices and
may put more devices in an IOMMU group.

pcie_aspm= [PCIE] Forcibly enable or disable PCIe Active State Power
Management.

off Disable ASPM.
force Enable ASPM even on devices that claim not to support it.

WARNING: Forcing ASPM on may cause system lockups.

pcie_ports= [PCIE] PCIe port services handling:
native Use native PCIe services (PME, AER, DPC, PCIe hotplug)

even if the platform doesn't give the OS permission to
use them. This may cause conflicts if the platform
also tries to use these services.

compat Disable native PCIe services (PME, AER, DPC, PCIe
hotplug).

pcie_port_pm= [PCIE] PCIe port power management handling:
off Disable power management of all PCIe ports
force Forcibly enable power management of all PCIe ports

pcie_pme= [PCIE,PM] Native PCIe PME signaling options:
nomsi Do not use MSI for native PCIe PME signaling (this makes

all PCIe root ports use INTx for all services).

pcmv= [HW,PCMCIA] BadgePAD 4

pd_ignore_unused
[PM]
Keep all power-domains already enabled by bootloader on,
even if no driver has claimed them. This is useful
for debug and development, but should not be
needed on a platform with proper driver support.

pd. [PARIDE]
See Documentation/blockdev/paride.txt.

pdcchassis= [PARISC,HW] Disable/Enable PDC Chassis Status codes at
boot time.
Format: { 0 | 1 }
See arch/parisc/kernel/pdc_chassis.c

percpu_alloc= Select which percpu first chunk allocator to use.
Currently supported values are ``embed'' and ``page''.
Archs may support subset or none of the selections.
See comments in mm/percpu.c for details on each
allocator. This parameter is primarily for debugging
and performance comparison.

pf. [PARIDE]
See Documentation/blockdev/paride.txt.

74 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

pg. [PARIDE]
See Documentation/blockdev/paride.txt.

pirq= [SMP,APIC] Manual mp-table setup
See Documentation/x86/i386/IO-APIC.txt.

plip= [PPT,NET] Parallel port network link
Format: { parport<nr> | timid | 0 }
See also Documentation/admin-guide/parport.rst.

pmtmr= [X86] Manual setup of pmtmr I/O Port.
Override pmtimer IOPort with a hex value.
e.g. pmtmr=0x508

pnp.debug=1 [PNP]
Enable PNP debug messages (depends on the
CONFIG_PNP_DEBUG_MESSAGES option). Change at run-time
via /sys/module/pnp/parameters/debug. We always show
current resource usage; turning this on also shows
possible settings and some assignment information.

pnpacpi= [ACPI]
{ off }

pnpbios= [ISAPNP]
{ on | off | curr | res | no-curr | no-res }

pnp_reserve_irq=
[ISAPNP] Exclude IRQs for the autoconfiguration

pnp_reserve_dma=
[ISAPNP] Exclude DMAs for the autoconfiguration

pnp_reserve_io= [ISAPNP] Exclude I/O ports for the autoconfiguration
Ranges are in pairs (I/O port base and size).

pnp_reserve_mem=
[ISAPNP] Exclude memory regions for the
autoconfiguration.
Ranges are in pairs (memory base and size).

ports= [IP_VS_FTP] IPVS ftp helper module
Default is 21.
Up to 8 (IP_VS_APP_MAX_PORTS) ports
may be specified.
Format: <port>,<port>....

powersave=off [PPC] This option disables power saving features.
It specifically disables cpuidle and sets the
platform machine description specific power_save
function to NULL. On Idle the CPU just reduces
execution priority.

2.1. cpu lists: 75



Linux Kernel User Documentation, v4.20.0

ppc_strict_facility_enable
[PPC] This option catches any kernel floating point,
Altivec, VSX and SPE outside of regions specifically
allowed (eg kernel_enable_fpu()/kernel_disable_fpu()).
There is some performance impact when enabling this.

ppc_tm= [PPC]
Format: {``off''}
Disable Hardware Transactional Memory

print-fatal-signals=
[KNL] debug: print fatal signals

If enabled, warn about various signal handling
related application anomalies: too many signals,
too many POSIX.1 timers, fatal signals causing a
coredump - etc.

If you hit the warning due to signal overflow,
you might want to try ``ulimit -i unlimited''.

default: off.

printk.always_kmsg_dump=
Trigger kmsg_dump for cases other than kernel oops or
panics
Format: <bool> (1/Y/y=enable, 0/N/n=disable)
default: disabled

printk.devkmsg={on,off,ratelimit}
Control writing to /dev/kmsg.
on - unlimited logging to /dev/kmsg from userspace
off - logging to /dev/kmsg disabled
ratelimit - ratelimit the logging
Default: ratelimit

printk.time= Show timing data prefixed to each printk message line
Format: <bool> (1/Y/y=enable, 0/N/n=disable)

processor.max_cstate= [HW,ACPI]
Limit processor to maximum C-state
max_cstate=9 overrides any DMI blacklist limit.

processor.nocst [HW,ACPI]
Ignore the _CST method to determine C-states,
instead using the legacy FADT method

profile= [KNL] Enable kernel profiling via /proc/profile
Format: [<profiletype>,]<number>
Param: <profiletype>: ``schedule'', ``sleep'', or ``kvm''

[defaults to kernel profiling]
Param: ``schedule'' - profile schedule points.
Param: ``sleep'' - profile D-state sleeping (millisecs).

Requires CONFIG_SCHEDSTATS

76 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Param: ``kvm'' - profile VM exits.
Param: <number> - step/bucket size as a power of 2 for

statistical time based profiling.

prompt_ramdisk= [RAM] List of RAM disks to prompt for floppy disk
before loading.
See Documentation/blockdev/ramdisk.txt.

psi= [KNL] Enable or disable pressure stall information
tracking.
Format: <bool>

psmouse.proto= [HW,MOUSE] Highest PS2 mouse protocol extension to
probe for; one of (bare|imps|exps|lifebook|any).

psmouse.rate= [HW,MOUSE] Set desired mouse report rate, in reports
per second.

psmouse.resetafter= [HW,MOUSE]
Try to reset the device after so many bad packets
(0 = never).

psmouse.resolution=
[HW,MOUSE] Set desired mouse resolution, in dpi.

psmouse.smartscroll=
[HW,MOUSE] Controls Logitech smartscroll autorepeat.
0 = disabled, 1 = enabled (default).

pstore.backend= Specify the name of the pstore backend to use

pt. [PARIDE]
See Documentation/blockdev/paride.txt.

pti= [X86_64] Control Page Table Isolation of user and
kernel address spaces. Disabling this feature
removes hardening, but improves performance of
system calls and interrupts.

on - unconditionally enable
off - unconditionally disable
auto - kernel detects whether your CPU model is

vulnerable to issues that PTI mitigates

Not specifying this option is equivalent to pti=auto.

nopti [X86_64]
Equivalent to pti=off

pty.legacy_count=
[KNL] Number of legacy pty's. Overwrites compiled-in
default number.

quiet [KNL] Disable most log messages

r128= [HW,DRM]

raid= [HW,RAID]

2.1. cpu lists: 77



Linux Kernel User Documentation, v4.20.0

See Documentation/admin-guide/md.rst.

ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
See Documentation/blockdev/ramdisk.txt.

random.trust_cpu={on,off}
[KNL] Enable or disable trusting the use of the
CPU's random number generator (if available) to
fully seed the kernel's CRNG. Default is controlled
by CONFIG_RANDOM_TRUST_CPU.

ras=option[,option,...] [KNL] RAS-specific options

cec_disable [X86]
Disable the Correctable Errors Collector,
see CONFIG_RAS_CEC help text.

rcu_nocbs= [KNL]
The argument is a cpu list, as described above.

In kernels built with CONFIG_RCU_NOCB_CPU=y, set
the specified list of CPUs to be no-callback CPUs.
Invocation of these CPUs' RCU callbacks will be
offloaded to ``rcuox/N'' kthreads created for that
purpose, where ``x'' is ``p'' for RCU-preempt, and
``s'' for RCU-sched, and ``N'' is the CPU number.
This reduces OS jitter on the offloaded CPUs,
which can be useful for HPC and real-time
workloads. It can also improve energy efficiency
for asymmetric multiprocessors.

rcu_nocb_poll [KNL]
Rather than requiring that offloaded CPUs
(specified by rcu_nocbs= above) explicitly
awaken the corresponding ``rcuoN'' kthreads,
make these kthreads poll for callbacks.
This improves the real-time response for the
offloaded CPUs by relieving them of the need to
wake up the corresponding kthread, but degrades
energy efficiency by requiring that the kthreads
periodically wake up to do the polling.

rcutree.blimit= [KNL]
Set maximum number of finished RCU callbacks to
process in one batch.

rcutree.dump_tree= [KNL]
Dump the structure of the rcu_node combining tree
out at early boot. This is used for diagnostic
purposes, to verify correct tree setup.

rcutree.gp_cleanup_delay= [KNL]
Set the number of jiffies to delay each step of
RCU grace-period cleanup.

78 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

rcutree.gp_init_delay= [KNL]
Set the number of jiffies to delay each step of
RCU grace-period initialization.

rcutree.gp_preinit_delay= [KNL]
Set the number of jiffies to delay each step of
RCU grace-period pre-initialization, that is,
the propagation of recent CPU-hotplug changes up
the rcu_node combining tree.

rcutree.rcu_fanout_exact= [KNL]
Disable autobalancing of the rcu_node combining
tree. This is used by rcutorture, and might
possibly be useful for architectures having high
cache-to-cache transfer latencies.

rcutree.rcu_fanout_leaf= [KNL]
Change the number of CPUs assigned to each
leaf rcu_node structure. Useful for very
large systems, which will choose the value 64,
and for NUMA systems with large remote-access
latencies, which will choose a value aligned
with the appropriate hardware boundaries.

rcutree.jiffies_till_sched_qs= [KNL]
Set required age in jiffies for a
given grace period before RCU starts
soliciting quiescent-state help from
rcu_note_context_switch(). If not specified, the
kernel will calculate a value based on the most
recent settings of rcutree.jiffies_till_first_fqs
and rcutree.jiffies_till_next_fqs.
This calculated value may be viewed in
rcutree.jiffies_to_sched_qs. Any attempt to
set rcutree.jiffies_to_sched_qs will be
cheerfully overwritten.

rcutree.jiffies_till_first_fqs= [KNL]
Set delay from grace-period initialization to
first attempt to force quiescent states.
Units are jiffies, minimum value is zero,
and maximum value is HZ.

rcutree.jiffies_till_next_fqs= [KNL]
Set delay between subsequent attempts to force
quiescent states. Units are jiffies, minimum
value is one, and maximum value is HZ.

rcutree.kthread_prio= [KNL,BOOT]
Set the SCHED_FIFO priority of the RCU per-CPU
kthreads (rcuc/N). This value is also used for
the priority of the RCU boost threads (rcub/N)
and for the RCU grace-period kthreads (rcu_bh,

2.1. cpu lists: 79



Linux Kernel User Documentation, v4.20.0

rcu_preempt, and rcu_sched). If RCU_BOOST is
set, valid values are 1-99 and the default is 1
(the least-favored priority). Otherwise, when
RCU_BOOST is not set, valid values are 0-99 and
the default is zero (non-realtime operation).

rcutree.rcu_nocb_leader_stride= [KNL]
Set the number of NOCB kthread groups, which
defaults to the square root of the number of
CPUs. Larger numbers reduces the wakeup overhead
on the per-CPU grace-period kthreads, but increases
that same overhead on each group's leader.

rcutree.qhimark= [KNL]
Set threshold of queued RCU callbacks beyond which
batch limiting is disabled.

rcutree.qlowmark= [KNL]
Set threshold of queued RCU callbacks below which
batch limiting is re-enabled.

rcutree.rcu_idle_gp_delay= [KNL]
Set wakeup interval for idle CPUs that have
RCU callbacks (RCU_FAST_NO_HZ=y).

rcutree.rcu_idle_lazy_gp_delay= [KNL]
Set wakeup interval for idle CPUs that have
only ``lazy'' RCU callbacks (RCU_FAST_NO_HZ=y).
Lazy RCU callbacks are those which RCU can
prove do nothing more than free memory.

rcutree.rcu_kick_kthreads= [KNL]
Cause the grace-period kthread to get an extra
wake_up() if it sleeps three times longer than
it should at force-quiescent-state time.
This wake_up() will be accompanied by a
WARN_ONCE() splat and an ftrace_dump().

rcuperf.gp_async= [KNL]
Measure performance of asynchronous
grace-period primitives such as call_rcu().

rcuperf.gp_async_max= [KNL]
Specify the maximum number of outstanding
callbacks per writer thread. When a writer
thread exceeds this limit, it invokes the
corresponding flavor of rcu_barrier() to allow
previously posted callbacks to drain.

rcuperf.gp_exp= [KNL]
Measure performance of expedited synchronous
grace-period primitives.

rcuperf.holdoff= [KNL]

80 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Set test-start holdoff period. The purpose of
this parameter is to delay the start of the
test until boot completes in order to avoid
interference.

rcuperf.nreaders= [KNL]
Set number of RCU readers. The value -1 selects
N, where N is the number of CPUs. A value
``n'' less than -1 selects N-n+1, where N is again
the number of CPUs. For example, -2 selects N
(the number of CPUs), -3 selects N+1, and so on.
A value of ``n'' less than or equal to -N selects
a single reader.

rcuperf.nwriters= [KNL]
Set number of RCU writers. The values operate
the same as for rcuperf.nreaders.
N, where N is the number of CPUs

rcuperf.perf_type= [KNL]
Specify the RCU implementation to test.

rcuperf.shutdown= [KNL]
Shut the system down after performance tests
complete. This is useful for hands-off automated
testing.

rcuperf.verbose= [KNL]
Enable additional printk() statements.

rcuperf.writer_holdoff= [KNL]
Write-side holdoff between grace periods,
in microseconds. The default of zero says
no holdoff.

rcutorture.cbflood_inter_holdoff= [KNL]
Set holdoff time (jiffies) between successive
callback-flood tests.

rcutorture.cbflood_intra_holdoff= [KNL]
Set holdoff time (jiffies) between successive
bursts of callbacks within a given callback-flood
test.

rcutorture.cbflood_n_burst= [KNL]
Set the number of bursts making up a given
callback-flood test. Set this to zero to
disable callback-flood testing.

rcutorture.cbflood_n_per_burst= [KNL]
Set the number of callbacks to be registered
in a given burst of a callback-flood test.

rcutorture.fqs_duration= [KNL]

2.1. cpu lists: 81



Linux Kernel User Documentation, v4.20.0

Set duration of force_quiescent_state bursts
in microseconds.

rcutorture.fqs_holdoff= [KNL]
Set holdoff time within force_quiescent_state bursts
in microseconds.

rcutorture.fqs_stutter= [KNL]
Set wait time between force_quiescent_state bursts
in seconds.

rcutorture.gp_cond= [KNL]
Use conditional/asynchronous update-side
primitives, if available.

rcutorture.gp_exp= [KNL]
Use expedited update-side primitives, if available.

rcutorture.gp_normal= [KNL]
Use normal (non-expedited) asynchronous
update-side primitives, if available.

rcutorture.gp_sync= [KNL]
Use normal (non-expedited) synchronous
update-side primitives, if available. If all
of rcutorture.gp_cond=, rcutorture.gp_exp=,
rcutorture.gp_normal=, and rcutorture.gp_sync=
are zero, rcutorture acts as if is interpreted
they are all non-zero.

rcutorture.n_barrier_cbs= [KNL]
Set callbacks/threads for rcu_barrier() testing.

rcutorture.nfakewriters= [KNL]
Set number of concurrent RCU writers. These just
stress RCU, they don't participate in the actual
test, hence the ``fake''.

rcutorture.nreaders= [KNL]
Set number of RCU readers. The value -1 selects
N-1, where N is the number of CPUs. A value
``n'' less than -1 selects N-n-2, where N is again
the number of CPUs. For example, -2 selects N
(the number of CPUs), -3 selects N+1, and so on.

rcutorture.object_debug= [KNL]
Enable debug-object double-call_rcu() testing.

rcutorture.onoff_holdoff= [KNL]
Set time (s) after boot for CPU-hotplug testing.

rcutorture.onoff_interval= [KNL]
Set time (jiffies) between CPU-hotplug operations,
or zero to disable CPU-hotplug testing.

82 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

rcutorture.shuffle_interval= [KNL]
Set task-shuffle interval (s). Shuffling tasks
allows some CPUs to go into dyntick-idle mode
during the rcutorture test.

rcutorture.shutdown_secs= [KNL]
Set time (s) after boot system shutdown. This
is useful for hands-off automated testing.

rcutorture.stall_cpu= [KNL]
Duration of CPU stall (s) to test RCU CPU stall
warnings, zero to disable.

rcutorture.stall_cpu_holdoff= [KNL]
Time to wait (s) after boot before inducing stall.

rcutorture.stall_cpu_irqsoff= [KNL]
Disable interrupts while stalling if set.

rcutorture.stat_interval= [KNL]
Time (s) between statistics printk()s.

rcutorture.stutter= [KNL]
Time (s) to stutter testing, for example, specifying
five seconds causes the test to run for five seconds,
wait for five seconds, and so on. This tests RCU's
ability to transition abruptly to and from idle.

rcutorture.test_boost= [KNL]
Test RCU priority boosting? 0=no, 1=maybe, 2=yes.
``Maybe'' means test if the RCU implementation
under test support RCU priority boosting.

rcutorture.test_boost_duration= [KNL]
Duration (s) of each individual boost test.

rcutorture.test_boost_interval= [KNL]
Interval (s) between each boost test.

rcutorture.test_no_idle_hz= [KNL]
Test RCU's dyntick-idle handling. See also the
rcutorture.shuffle_interval parameter.

rcutorture.torture_type= [KNL]
Specify the RCU implementation to test.

rcutorture.verbose= [KNL]
Enable additional printk() statements.

rcupdate.rcu_cpu_stall_suppress= [KNL]
Suppress RCU CPU stall warning messages.

rcupdate.rcu_cpu_stall_timeout= [KNL]

2.1. cpu lists: 83



Linux Kernel User Documentation, v4.20.0

Set timeout for RCU CPU stall warning messages.

rcupdate.rcu_expedited= [KNL]
Use expedited grace-period primitives, for
example, synchronize_rcu_expedited() instead
of synchronize_rcu(). This reduces latency,
but can increase CPU utilization, degrade
real-time latency, and degrade energy efficiency.
No effect on CONFIG_TINY_RCU kernels.

rcupdate.rcu_normal= [KNL]
Use only normal grace-period primitives,
for example, synchronize_rcu() instead of
synchronize_rcu_expedited(). This improves
real-time latency, CPU utilization, and
energy efficiency, but can expose users to
increased grace-period latency. This parameter
overrides rcupdate.rcu_expedited. No effect on
CONFIG_TINY_RCU kernels.

rcupdate.rcu_normal_after_boot= [KNL]
Once boot has completed (that is, after
rcu_end_inkernel_boot() has been invoked), use
only normal grace-period primitives. No effect
on CONFIG_TINY_RCU kernels.

rcupdate.rcu_task_stall_timeout= [KNL]
Set timeout in jiffies for RCU task stall warning
messages. Disable with a value less than or equal
to zero.

rcupdate.rcu_self_test= [KNL]
Run the RCU early boot self tests

rdinit= [KNL]
Format: <full_path>
Run specified binary instead of /init from the ramdisk,
used for early userspace startup. See initrd.

rdt= [HW,X86,RDT]
Turn on/off individual RDT features. List is:
cmt, mbmtotal, mbmlocal, l3cat, l3cdp, l2cat, l2cdp,
mba.
E.g. to turn on cmt and turn off mba use:

rdt=cmt,!mba

reboot= [KNL]
Format (x86 or x86_64):

[w[arm] | c[old] | h[ard] | s[oft] | g[pio]] \
[[,]s[mp]#### \
[[,]b[ios] | a[cpi] | k[bd] | t[riple] | e[fi] | p[ci]] \
[[,]f[orce]

Where reboot_mode is one of warm (soft) or cold (hard) or gpio,
reboot_type is one of bios, acpi, kbd, triple, efi, or pci,

84 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

reboot_force is either force or not specified,
reboot_cpu is s[mp]#### with #### being the processor

to be used for rebooting.

relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
See Documentation/cgroup-v1/cpusets.txt.

reserve= [KNL,BUGS] Force kernel to ignore I/O ports or memory
Format: <base1>,<size1>[,<base2>,<size2>,...]
Reserve I/O ports or memory so the kernel won't use
them. If <base> is less than 0x10000, the region
is assumed to be I/O ports; otherwise it is memory.

reservetop= [X86-32]
Format: nn[KMG]
Reserves a hole at the top of the kernel virtual
address space.

reservelow= [X86]
Format: nn[K]
Set the amount of memory to reserve for BIOS at
the bottom of the address space.

reset_devices [KNL] Force drivers to reset the underlying device
during initialization.

resume= [SWSUSP]
Specify the partition device for software suspend
Format:
{/dev/<dev> | PARTUUID=<uuid> | <int>:<int> | <hex>}

resume_offset= [SWSUSP]
Specify the offset from the beginning of the partition
given by ``resume='' at which the swap header is located,
in <PAGE_SIZE> units (needed only for swap files).
See Documentation/power/swsusp-and-swap-files.txt

resumedelay= [HIBERNATION] Delay (in seconds) to pause before attempting to
read the resume files

resumewait [HIBERNATION] Wait (indefinitely) for resume device to show up.
Useful for devices that are detected asynchronously
(e.g. USB and MMC devices).

hibernate= [HIBERNATION]
noresume Don't check if there's a hibernation image

present during boot.
nocompress Don't compress/decompress hibernation images.
no Disable hibernation and resume.
protect_image Turn on image protection during restoration

(that will set all pages holding image data
during restoration read-only).

2.1. cpu lists: 85



Linux Kernel User Documentation, v4.20.0

retain_initrd [RAM] Keep initrd memory after extraction

rfkill.default_state=
0 ``airplane mode''. All wifi, bluetooth, wimax, gps, fm,

etc. communication is blocked by default.
1 Unblocked.

rfkill.master_switch_mode=
0 The ``airplane mode'' button does nothing.
1 The ``airplane mode'' button toggles between everything

blocked and the previous configuration.
2 The ``airplane mode'' button toggles between everything

blocked and everything unblocked.

rhash_entries= [KNL,NET]
Set number of hash buckets for route cache

ring3mwait=disable
[KNL] Disable ring 3 MONITOR/MWAIT feature on supported
CPUs.

ro [KNL] Mount root device read-only on boot

rodata= [KNL]
on Mark read-only kernel memory as read-only (default).
off Leave read-only kernel memory writable for debugging.

rockchip.usb_uart
Enable the uart passthrough on the designated usb port
on Rockchip SoCs. When active, the signals of the
debug-uart get routed to the D+ and D- pins of the usb
port and the regular usb controller gets disabled.

root= [KNL] Root filesystem
See name_to_dev_t comment in init/do_mounts.c.

rootdelay= [KNL] Delay (in seconds) to pause before attempting to
mount the root filesystem

rootflags= [KNL] Set root filesystem mount option string

rootfstype= [KNL] Set root filesystem type

rootwait [KNL] Wait (indefinitely) for root device to show up.
Useful for devices that are detected asynchronously
(e.g. USB and MMC devices).

rproc_mem=nn[KMG][@address]
[KNL,ARM,CMA] Remoteproc physical memory block.
Memory area to be used by remote processor image,
managed by CMA.

rw [KNL] Mount root device read-write on boot

86 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

S [KNL] Run init in single mode

s390_iommu= [HW,S390]
Set s390 IOTLB flushing mode

strict
With strict flushing every unmap operation will result in
an IOTLB flush. Default is lazy flushing before reuse,
which is faster.

sa1100ir [NET]
See drivers/net/irda/sa1100_ir.c.

sbni= [NET] Granch SBNI12 leased line adapter

sched_debug [KNL] Enables verbose scheduler debug messages.

schedstats= [KNL,X86] Enable or disable scheduled statistics.
Allowed values are enable and disable. This feature
incurs a small amount of overhead in the scheduler
but is useful for debugging and performance tuning.

skew_tick= [KNL] Offset the periodic timer tick per cpu to mitigate
xtime_lock contention on larger systems, and/or RCU lock
contention on all systems with CONFIG_MAXSMP set.
Format: { ``0'' | ``1'' }
0 -- disable. (may be 1 via CONFIG_CMDLINE=''skew_tick=1''
1 -- enable.
Note: increases power consumption, thus should only be
enabled if running jitter sensitive (HPC/RT) workloads.

security= [SECURITY] Choose a security module to enable at boot.
If this boot parameter is not specified, only the first
security module asking for security registration will be
loaded. An invalid security module name will be treated
as if no module has been chosen.

selinux= [SELINUX] Disable or enable SELinux at boot time.
Format: { ``0'' | ``1'' }
See security/selinux/Kconfig help text.
0 -- disable.
1 -- enable.
Default value is set via kernel config option.
If enabled at boot time, /selinux/disable can be used
later to disable prior to initial policy load.

apparmor= [APPARMOR] Disable or enable AppArmor at boot time
Format: { ``0'' | ``1'' }
See security/apparmor/Kconfig help text
0 -- disable.
1 -- enable.
Default value is set via kernel config option.

serialnumber [BUGS=X86-32]

2.1. cpu lists: 87



Linux Kernel User Documentation, v4.20.0

shapers= [NET]
Maximal number of shapers.

simeth= [IA-64]
simscsi=

slram= [HW,MTD]

slab_nomerge [MM]
Disable merging of slabs with similar size. May be
necessary if there is some reason to distinguish
allocs to different slabs, especially in hardened
environments where the risk of heap overflows and
layout control by attackers can usually be
frustrated by disabling merging. This will reduce
most of the exposure of a heap attack to a single
cache (risks via metadata attacks are mostly
unchanged). Debug options disable merging on their
own.
For more information see Documentation/vm/slub.rst.

slab_max_order= [MM, SLAB]
Determines the maximum allowed order for slabs.
A high setting may cause OOMs due to memory
fragmentation. Defaults to 1 for systems with
more than 32MB of RAM, 0 otherwise.

slub_debug[=options[,slabs]] [MM, SLUB]
Enabling slub_debug allows one to determine the
culprit if slab objects become corrupted. Enabling
slub_debug can create guard zones around objects and
may poison objects when not in use. Also tracks the
last alloc / free. For more information see
Documentation/vm/slub.rst.

slub_memcg_sysfs= [MM, SLUB]
Determines whether to enable sysfs directories for
memory cgroup sub-caches. 1 to enable, 0 to disable.
The default is determined by CONFIG_SLUB_MEMCG_SYSFS_ON.
Enabling this can lead to a very high number of debug
directories and files being created under
/sys/kernel/slub.

slub_max_order= [MM, SLUB]
Determines the maximum allowed order for slabs.
A high setting may cause OOMs due to memory
fragmentation. For more information see
Documentation/vm/slub.rst.

slub_min_objects= [MM, SLUB]
The minimum number of objects per slab. SLUB will
increase the slab order up to slub_max_order to
generate a sufficiently large slab able to contain
the number of objects indicated. The higher the number

88 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

of objects the smaller the overhead of tracking slabs
and the less frequently locks need to be acquired.
For more information see Documentation/vm/slub.rst.

slub_min_order= [MM, SLUB]
Determines the minimum page order for slabs. Must be
lower than slub_max_order.
For more information see Documentation/vm/slub.rst.

slub_nomerge [MM, SLUB]
Same with slab_nomerge. This is supported for legacy.
See slab_nomerge for more information.

smart2= [HW]
Format: <io1>[,<io2>[,...,<io8>]]

smsc-ircc2.nopnp [HW] Don't use PNP to discover SMC devices
smsc-ircc2.ircc_cfg= [HW] Device configuration I/O port
smsc-ircc2.ircc_sir= [HW] SIR base I/O port
smsc-ircc2.ircc_fir= [HW] FIR base I/O port
smsc-ircc2.ircc_irq= [HW] IRQ line
smsc-ircc2.ircc_dma= [HW] DMA channel
smsc-ircc2.ircc_transceiver= [HW] Transceiver type:

0: Toshiba Satellite 1800 (GP data pin select)
1: Fast pin select (default)
2: ATC IRMode

smt [KNL,S390] Set the maximum number of threads (logical
CPUs) to use per physical CPU on systems capable of
symmetric multithreading (SMT). Will be capped to the
actual hardware limit.
Format: <integer>
Default: -1 (no limit)

softlockup_panic=
[KNL] Should the soft-lockup detector generate panics.
Format: <integer>

A nonzero value instructs the soft-lockup detector
to panic the machine when a soft-lockup occurs. This
is also controlled by CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC
which is the respective build-time switch to that
functionality.

softlockup_all_cpu_backtrace=
[KNL] Should the soft-lockup detector generate
backtraces on all cpus.
Format: <integer>

sonypi.*= [HW] Sony Programmable I/O Control Device driver
See Documentation/laptops/sonypi.txt

spectre_v2= [X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability.

2.1. cpu lists: 89



Linux Kernel User Documentation, v4.20.0

The default operation protects the kernel from
user space attacks.

on - unconditionally enable, implies
spectre_v2_user=on

off - unconditionally disable, implies
spectre_v2_user=off

auto - kernel detects whether your CPU model is
vulnerable

Selecting `on' will, and `auto' may, choose a
mitigation method at run time according to the
CPU, the available microcode, the setting of the
CONFIG_RETPOLINE configuration option, and the
compiler with which the kernel was built.

Selecting `on' will also enable the mitigation
against user space to user space task attacks.

Selecting `off' will disable both the kernel and
the user space protections.

Specific mitigations can also be selected manually:

retpoline - replace indirect branches
retpoline,generic - google's original retpoline
retpoline,amd - AMD-specific minimal thunk

Not specifying this option is equivalent to
spectre_v2=auto.

spectre_v2_user=
[X86] Control mitigation of Spectre variant 2
(indirect branch speculation) vulnerability between
user space tasks

on - Unconditionally enable mitigations. Is
enforced by spectre_v2=on

off - Unconditionally disable mitigations. Is
enforced by spectre_v2=off

prctl - Indirect branch speculation is enabled,
but mitigation can be enabled via prctl
per thread. The mitigation control state
is inherited on fork.

prctl,ibpb
- Like ``prctl'' above, but only STIBP is

controlled per thread. IBPB is issued
always when switching between different user
space processes.

seccomp

90 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

- Same as ``prctl'' above, but all seccomp
threads will enable the mitigation unless
they explicitly opt out.

seccomp,ibpb
- Like ``seccomp'' above, but only STIBP is

controlled per thread. IBPB is issued
always when switching between different
user space processes.

auto - Kernel selects the mitigation depending on
the available CPU features and vulnerability.

Default mitigation:
If CONFIG_SECCOMP=y then ``seccomp'', otherwise ``prctl''

Not specifying this option is equivalent to
spectre_v2_user=auto.

spec_store_bypass_disable=
[HW] Control Speculative Store Bypass (SSB) Disable mitigation
(Speculative Store Bypass vulnerability)

Certain CPUs are vulnerable to an exploit against a
a common industry wide performance optimization known
as ``Speculative Store Bypass'' in which recent stores
to the same memory location may not be observed by
later loads during speculative execution. The idea
is that such stores are unlikely and that they can
be detected prior to instruction retirement at the
end of a particular speculation execution window.

In vulnerable processors, the speculatively forwarded
store can be used in a cache side channel attack, for
example to read memory to which the attacker does not
directly have access (e.g. inside sandboxed code).

This parameter controls whether the Speculative Store
Bypass optimization is used.

On x86 the options are:

on - Unconditionally disable Speculative Store Bypass
off - Unconditionally enable Speculative Store Bypass
auto - Kernel detects whether the CPU model contains an

implementation of Speculative Store Bypass and
picks the most appropriate mitigation. If the
CPU is not vulnerable, ``off'' is selected. If the
CPU is vulnerable the default mitigation is
architecture and Kconfig dependent. See below.

prctl - Control Speculative Store Bypass per thread
via prctl. Speculative Store Bypass is enabled
for a process by default. The state of the control
is inherited on fork.

2.1. cpu lists: 91



Linux Kernel User Documentation, v4.20.0

seccomp - Same as ``prctl'' above, but all seccomp threads
will disable SSB unless they explicitly opt out.

Default mitigations:
X86: If CONFIG_SECCOMP=y ``seccomp'', otherwise ``prctl''

On powerpc the options are:

on,auto - On Power8 and Power9 insert a store-forwarding
barrier on kernel entry and exit. On Power7
perform a software flush on kernel entry and
exit.

off - No action.

Not specifying this option is equivalent to
spec_store_bypass_disable=auto.

spia_io_base= [HW,MTD]
spia_fio_base=
spia_pedr=
spia_peddr=

srcutree.counter_wrap_check [KNL]
Specifies how frequently to check for
grace-period sequence counter wrap for the
srcu_data structure's ->srcu_gp_seq_needed field.
The greater the number of bits set in this kernel
parameter, the less frequently counter wrap will
be checked for. Note that the bottom two bits
are ignored.

srcutree.exp_holdoff [KNL]
Specifies how many nanoseconds must elapse
since the end of the last SRCU grace period for
a given srcu_struct until the next normal SRCU
grace period will be considered for automatic
expediting. Set to zero to disable automatic
expediting.

ssbd= [ARM64,HW]
Speculative Store Bypass Disable control

On CPUs that are vulnerable to the Speculative
Store Bypass vulnerability and offer a
firmware based mitigation, this parameter
indicates how the mitigation should be used:

force-on: Unconditionally enable mitigation for
for both kernel and userspace

force-off: Unconditionally disable mitigation for
for both kernel and userspace

kernel: Always enable mitigation in the
kernel, and offer a prctl interface
to allow userspace to register its

92 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

interest in being mitigated too.

stack_guard_gap= [MM]
override the default stack gap protection. The value
is in page units and it defines how many pages prior
to (for stacks growing down) resp. after (for stacks
growing up) the main stack are reserved for no other
mapping. Default value is 256 pages.

stacktrace [FTRACE]
Enabled the stack tracer on boot up.

stacktrace_filter=[function-list]
[FTRACE] Limit the functions that the stack tracer
will trace at boot up. function-list is a comma separated
list of functions. This list can be changed at run
time by the stack_trace_filter file in the debugfs
tracing directory. Note, this enables stack tracing
and the stacktrace above is not needed.

sti= [PARISC,HW]
Format: <num>
Set the STI (builtin display/keyboard on the HP-PARISC
machines) console (graphic card) which should be used
as the initial boot-console.
See also comment in drivers/video/console/sticore.c.

sti_font= [HW]
See comment in drivers/video/console/sticore.c.

stifb= [HW]
Format: bpp:<bpp1>[:<bpp2>[:<bpp3>...]]

sunrpc.min_resvport=
sunrpc.max_resvport=

[NFS,SUNRPC]
SunRPC servers often require that client requests
originate from a privileged port (i.e. a port in the
range 0 < portnr < 1024).
An administrator who wishes to reserve some of these
ports for other uses may adjust the range that the
kernel's sunrpc client considers to be privileged
using these two parameters to set the minimum and
maximum port values.

sunrpc.svc_rpc_per_connection_limit=
[NFS,SUNRPC]
Limit the number of requests that the server will
process in parallel from a single connection.
The default value is 0 (no limit).

sunrpc.pool_mode=
[NFS]
Control how the NFS server code allocates CPUs to

2.1. cpu lists: 93



Linux Kernel User Documentation, v4.20.0

service thread pools. Depending on how many NICs
you have and where their interrupts are bound, this
option will affect which CPUs will do NFS serving.
Note: this parameter cannot be changed while the
NFS server is running.

auto the server chooses an appropriate mode
automatically using heuristics

global a single global pool contains all CPUs
percpu one pool for each CPU
pernode one pool for each NUMA node (equivalent

to global on non-NUMA machines)

sunrpc.tcp_slot_table_entries=
sunrpc.udp_slot_table_entries=

[NFS,SUNRPC]
Sets the upper limit on the number of simultaneous
RPC calls that can be sent from the client to a
server. Increasing these values may allow you to
improve throughput, but will also increase the
amount of memory reserved for use by the client.

suspend.pm_test_delay=
[SUSPEND]
Sets the number of seconds to remain in a suspend test
mode before resuming the system (see
/sys/power/pm_test). Only available when CONFIG_PM_DEBUG
is set. Default value is 5.

swapaccount=[0|1]
[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
it if 0 is given (See Documentation/cgroup-v1/memory.txt)

swiotlb= [ARM,IA-64,PPC,MIPS,X86]
Format: { <int> | force | noforce }
<int> -- Number of I/O TLB slabs
force -- force using of bounce buffers even if they

wouldn't be automatically used by the kernel
noforce -- Never use bounce buffers (for debugging)

switches= [HW,M68k]

sysfs.deprecated=0|1 [KNL]
Enable/disable old style sysfs layout for old udev
on older distributions. When this option is enabled
very new udev will not work anymore. When this option
is disabled (or CONFIG_SYSFS_DEPRECATED not compiled)
in older udev will not work anymore.
Default depends on CONFIG_SYSFS_DEPRECATED_V2 set in
the kernel configuration.

sysrq_always_enabled
[KNL]

94 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Ignore sysrq setting - this boot parameter will
neutralize any effect of /proc/sys/kernel/sysrq.
Useful for debugging.

tcpmhash_entries= [KNL,NET]
Set the number of tcp_metrics_hash slots.
Default value is 8192 or 16384 depending on total
ram pages. This is used to specify the TCP metrics
cache size. See Documentation/networking/ip-sysctl.txt
``tcp_no_metrics_save'' section for more details.

tdfx= [HW,DRM]

test_suspend= [SUSPEND][,N]
Specify ``mem'' (for Suspend-to-RAM) or ``standby'' (for
standby suspend) or ``freeze'' (for suspend type freeze)
as the system sleep state during system startup with
the optional capability to repeat N number of times.
The system is woken from this state using a
wakeup-capable RTC alarm.

thash_entries= [KNL,NET]
Set number of hash buckets for TCP connection

thermal.act= [HW,ACPI]
-1: disable all active trip points in all thermal zones
<degrees C>: override all lowest active trip points

thermal.crt= [HW,ACPI]
-1: disable all critical trip points in all thermal zones
<degrees C>: override all critical trip points

thermal.nocrt= [HW,ACPI]
Set to disable actions on ACPI thermal zone
critical and hot trip points.

thermal.off= [HW,ACPI]
1: disable ACPI thermal control

thermal.psv= [HW,ACPI]
-1: disable all passive trip points
<degrees C>: override all passive trip points to this
value

thermal.tzp= [HW,ACPI]
Specify global default ACPI thermal zone polling rate
<deci-seconds>: poll all this frequency
0: no polling (default)

threadirqs [KNL]
Force threading of all interrupt handlers except those
marked explicitly IRQF_NO_THREAD.

tmem [KNL,XEN]

2.1. cpu lists: 95



Linux Kernel User Documentation, v4.20.0

Enable the Transcendent memory driver if built-in.

tmem.cleancache=0|1 [KNL, XEN]
Default is on (1). Disable the usage of the cleancache
API to send anonymous pages to the hypervisor.

tmem.frontswap=0|1 [KNL, XEN]
Default is on (1). Disable the usage of the frontswap
API to send swap pages to the hypervisor. If disabled
the selfballooning and selfshrinking are force disabled.

tmem.selfballooning=0|1 [KNL, XEN]
Default is on (1). Disable the driving of swap pages
to the hypervisor.

tmem.selfshrinking=0|1 [KNL, XEN]
Default is on (1). Partial swapoff that immediately
transfers pages from Xen hypervisor back to the
kernel based on different criteria.

topology= [S390]
Format: {off | on}
Specify if the kernel should make use of the cpu
topology information if the hardware supports this.
The scheduler will make use of this information and
e.g. base its process migration decisions on it.
Default is on.

topology_updates= [KNL, PPC, NUMA]
Format: {off}
Specify if the kernel should ignore (off)
topology updates sent by the hypervisor to this
LPAR.

tp720= [HW,PS2]

tpm_suspend_pcr=[HW,TPM]
Format: integer pcr id
Specify that at suspend time, the tpm driver
should extend the specified pcr with zeros,
as a workaround for some chips which fail to
flush the last written pcr on TPM_SaveState.
This will guarantee that all the other pcrs
are saved.

trace_buf_size=nn[KMG]
[FTRACE] will set tracing buffer size on each cpu.

trace_event=[event-list]
[FTRACE] Set and start specified trace events in order
to facilitate early boot debugging. The event-list is a
comma separated list of trace events to enable. See
also Documentation/trace/events.rst

96 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

trace_options=[option-list]
[FTRACE] Enable or disable tracer options at boot.
The option-list is a comma delimited list of options
that can be enabled or disabled just as if you were
to echo the option name into

/sys/kernel/debug/tracing/trace_options

For example, to enable stacktrace option (to dump the
stack trace of each event), add to the command line:

trace_options=stacktrace

See also Documentation/trace/ftrace.rst ``trace options''
section.

tp_printk[FTRACE]
Have the tracepoints sent to printk as well as the
tracing ring buffer. This is useful for early boot up
where the system hangs or reboots and does not give the
option for reading the tracing buffer or performing a
ftrace_dump_on_oops.

To turn off having tracepoints sent to printk,
echo 0 > /proc/sys/kernel/tracepoint_printk

Note, echoing 1 into this file without the
tracepoint_printk kernel cmdline option has no effect.

** CAUTION **

Having tracepoints sent to printk() and activating high
frequency tracepoints such as irq or sched, can cause
the system to live lock.

traceoff_on_warning
[FTRACE] enable this option to disable tracing when a
warning is hit. This turns off ``tracing_on''. Tracing can
be enabled again by echoing `1' into the ``tracing_on''
file located in /sys/kernel/debug/tracing/

This option is useful, as it disables the trace before
the WARNING dump is called, which prevents the trace to
be filled with content caused by the warning output.

This option can also be set at run time via the sysctl
option: kernel/traceoff_on_warning

transparent_hugepage=
[KNL]
Format: [always|madvise|never]
Can be used to control the default behavior of the system
with respect to transparent hugepages.
See Documentation/admin-guide/mm/transhuge.rst
for more details.

2.1. cpu lists: 97



Linux Kernel User Documentation, v4.20.0

tsc= Disable clocksource stability checks for TSC.
Format: <string>
[x86] reliable: mark tsc clocksource as reliable, this
disables clocksource verification at runtime, as well
as the stability checks done at bootup. Used to enable
high-resolution timer mode on older hardware, and in
virtualized environment.
[x86] noirqtime: Do not use TSC to do irq accounting.
Used to run time disable IRQ_TIME_ACCOUNTING on any
platforms where RDTSC is slow and this accounting
can add overhead.
[x86] unstable: mark the TSC clocksource as unstable, this
marks the TSC unconditionally unstable at bootup and
avoids any further wobbles once the TSC watchdog notices.

turbografx.map[2|3]= [HW,JOY]
TurboGraFX parallel port interface
Format:
<port#>,<js1>,<js2>,<js3>,<js4>,<js5>,<js6>,<js7>
See also Documentation/input/devices/joystick-parport.rst

udbg-immortal [PPC] When debugging early kernel crashes that
happen after console_init() and before a proper
console driver takes over, this boot options might
help ``seeing'' what's going on.

uhash_entries= [KNL,NET]
Set number of hash buckets for UDP/UDP-Lite connections

uhci-hcd.ignore_oc=
[USB] Ignore overcurrent events (default N).
Some badly-designed motherboards generate lots of
bogus events, for ports that aren't wired to
anything. Set this parameter to avoid log spamming.
Note that genuine overcurrent events won't be
reported either.

unknown_nmi_panic
[X86] Cause panic on unknown NMI.

usbcore.authorized_default=
[USB] Default USB device authorization:
(default -1 = authorized except for wireless USB,
0 = not authorized, 1 = authorized)

usbcore.autosuspend=
[USB] The autosuspend time delay (in seconds) used
for newly-detected USB devices (default 2). This
is the time required before an idle device will be
autosuspended. Devices for which the delay is set
to a negative value won't be autosuspended at all.

usbcore.usbfs_snoop=

98 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

[USB] Set to log all usbfs traffic (default 0 = off).

usbcore.usbfs_snoop_max=
[USB] Maximum number of bytes to snoop in each URB
(default = 65536).

usbcore.blinkenlights=
[USB] Set to cycle leds on hubs (default 0 = off).

usbcore.old_scheme_first=
[USB] Start with the old device initialization
scheme, applies only to low and full-speed devices
(default 0 = off).

usbcore.usbfs_memory_mb=
[USB] Memory limit (in MB) for buffers allocated by
usbfs (default = 16, 0 = max = 2047).

usbcore.use_both_schemes=
[USB] Try the other device initialization scheme
if the first one fails (default 1 = enabled).

usbcore.initial_descriptor_timeout=
[USB] Specifies timeout for the initial 64-byte
USB_REQ_GET_DESCRIPTOR request in milliseconds
(default 5000 = 5.0 seconds).

usbcore.nousb [USB] Disable the USB subsystem

usbcore.quirks=
[USB] A list of quirk entries to augment the built-in
usb core quirk list. List entries are separated by
commas. Each entry has the form
VendorID:ProductID:Flags. The IDs are 4-digit hex
numbers and Flags is a set of letters. Each letter
will change the built-in quirk; setting it if it is
clear and clearing it if it is set. The letters have
the following meanings:

a = USB_QUIRK_STRING_FETCH_255 (string
descriptors must not be fetched using
a 255-byte read);

b = USB_QUIRK_RESET_RESUME (device can't resume
correctly so reset it instead);

c = USB_QUIRK_NO_SET_INTF (device can't handle
Set-Interface requests);

d = USB_QUIRK_CONFIG_INTF_STRINGS (device can't
handle its Configuration or Interface
strings);

e = USB_QUIRK_RESET (device can't be reset
(e.g morph devices), don't use reset);

f = USB_QUIRK_HONOR_BNUMINTERFACES (device has
more interface descriptions than the
bNumInterfaces count, and can't handle
talking to these interfaces);

2.1. cpu lists: 99



Linux Kernel User Documentation, v4.20.0

g = USB_QUIRK_DELAY_INIT (device needs a pause
during initialization, after we read
the device descriptor);

h = USB_QUIRK_LINEAR_UFRAME_INTR_BINTERVAL (For
high speed and super speed interrupt
endpoints, the USB 2.0 and USB 3.0 spec
require the interval in microframes (1
microframe = 125 microseconds) to be
calculated as interval = 2 ^
(bInterval-1).
Devices with this quirk report their
bInterval as the result of this
calculation instead of the exponent
variable used in the calculation);

i = USB_QUIRK_DEVICE_QUALIFIER (device can't
handle device_qualifier descriptor
requests);

j = USB_QUIRK_IGNORE_REMOTE_WAKEUP (device
generates spurious wakeup, ignore
remote wakeup capability);

k = USB_QUIRK_NO_LPM (device can't handle Link
Power Management);

l = USB_QUIRK_LINEAR_FRAME_INTR_BINTERVAL
(Device reports its bInterval as linear
frames instead of the USB 2.0
calculation);

m = USB_QUIRK_DISCONNECT_SUSPEND (Device needs
to be disconnected before suspend to
prevent spurious wakeup);

n = USB_QUIRK_DELAY_CTRL_MSG (Device needs a
pause after every control message);

o = USB_QUIRK_HUB_SLOW_RESET (Hub needs extra
delay after resetting its port);

Example: quirks=0781:5580:bk,0a5c:5834:gij

usbhid.mousepoll=
[USBHID] The interval which mice are to be polled at.

usbhid.jspoll=
[USBHID] The interval which joysticks are to be polled at.

usbhid.kbpoll=
[USBHID] The interval which keyboards are to be polled at.

usb-storage.delay_use=
[UMS] The delay in seconds before a new device is
scanned for Logical Units (default 1).

usb-storage.quirks=
[UMS] A list of quirks entries to supplement or
override the built-in unusual_devs list. List
entries are separated by commas. Each entry has
the form VID:PID:Flags where VID and PID are Vendor
and Product ID values (4-digit hex numbers) and

100 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Flags is a set of characters, each corresponding
to a common usb-storage quirk flag as follows:

a = SANE_SENSE (collect more than 18 bytes
of sense data);

b = BAD_SENSE (don't collect more than 18
bytes of sense data);

c = FIX_CAPACITY (decrease the reported
device capacity by one sector);

d = NO_READ_DISC_INFO (don't use
READ_DISC_INFO command);

e = NO_READ_CAPACITY_16 (don't use
READ_CAPACITY_16 command);

f = NO_REPORT_OPCODES (don't use report opcodes
command, uas only);

g = MAX_SECTORS_240 (don't transfer more than
240 sectors at a time, uas only);

h = CAPACITY_HEURISTICS (decrease the
reported device capacity by one
sector if the number is odd);

i = IGNORE_DEVICE (don't bind to this
device);

j = NO_REPORT_LUNS (don't use report luns
command, uas only);

l = NOT_LOCKABLE (don't try to lock and
unlock ejectable media);

m = MAX_SECTORS_64 (don't transfer more
than 64 sectors = 32 KB at a time);

n = INITIAL_READ10 (force a retry of the
initial READ(10) command);

o = CAPACITY_OK (accept the capacity
reported by the device);

p = WRITE_CACHE (the device cache is ON
by default);

r = IGNORE_RESIDUE (the device reports
bogus residue values);

s = SINGLE_LUN (the device has only one
Logical Unit);

t = NO_ATA_1X (don't allow ATA(12) and ATA(16)
commands, uas only);

u = IGNORE_UAS (don't bind to the uas driver);
w = NO_WP_DETECT (don't test whether the

medium is write-protected).
y = ALWAYS_SYNC (issue a SYNCHRONIZE_CACHE

even if the device claims no cache)
Example: quirks=0419:aaf5:rl,0421:0433:rc

user_debug= [KNL,ARM]
Format: <int>
See arch/arm/Kconfig.debug help text.

1 - undefined instruction events
2 - system calls
4 - invalid data aborts
8 - SIGSEGV faults
16 - SIGBUS faults

2.1. cpu lists: 101



Linux Kernel User Documentation, v4.20.0

Example: user_debug=31

userpte=
[X86] Flags controlling user PTE allocations.

nohigh = do not allocate PTE pages in
HIGHMEM regardless of setting
of CONFIG_HIGHPTE.

vdso= [X86,SH]
On X86_32, this is an alias for vdso32=. Otherwise:

vdso=1: enable VDSO (the default)
vdso=0: disable VDSO mapping

vdso32= [X86] Control the 32-bit vDSO
vdso32=1: enable 32-bit VDSO
vdso32=0 or vdso32=2: disable 32-bit VDSO

See the help text for CONFIG_COMPAT_VDSO for more
details. If CONFIG_COMPAT_VDSO is set, the default is
vdso32=0; otherwise, the default is vdso32=1.

For compatibility with older kernels, vdso32=2 is an
alias for vdso32=0.

Try vdso32=0 if you encounter an error that says:
dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!

vector= [IA-64,SMP]
vector=percpu: enable percpu vector domain

video= [FB] Frame buffer configuration
See Documentation/fb/modedb.txt.

video.brightness_switch_enabled= [0,1]
If set to 1, on receiving an ACPI notify event
generated by hotkey, video driver will adjust brightness
level and then send out the event to user space through
the allocated input device; If set to 0, video driver
will only send out the event without touching backlight
brightness level.
default: 1

virtio_mmio.device=
[VMMIO] Memory mapped virtio (platform) device.

<size>@<baseaddr>:<irq>[:<id>]
where:

<size> := size (can use standard suffixes
like K, M and G)

<baseaddr> := physical base address
<irq> := interrupt number (as passed to

request_irq())

102 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

<id> := (optional) platform device id
example:

virtio_mmio.device=1K@0x100b0000:48:7

Can be used multiple times for multiple devices.

vga= [BOOT,X86-32] Select a particular video mode
See Documentation/x86/boot.txt and
Documentation/svga.txt.
Use vga=ask for menu.
This is actually a boot loader parameter; the value is
passed to the kernel using a special protocol.

vm_debug[=options] [KNL] Available with CONFIG_DEBUG_VM=y.
May slow down system boot speed, especially when
enabled on systems with a large amount of memory.
All options are enabled by default, and this
interface is meant to allow for selectively
enabling or disabling specific virtual memory
debugging features.

Available options are:
P Enable page structure init time poisoning
- Disable all of the above options

vmalloc=nn[KMG] [KNL,BOOT] Forces the vmalloc area to have an exact
size of <nn>. This can be used to increase the
minimum size (128MB on x86). It can also be used to
decrease the size and leave more room for directly
mapped kernel RAM.

vmcp_cma=nn[MG] [KNL,S390]
Sets the memory size reserved for contiguous memory
allocations for the vmcp device driver.

vmhalt= [KNL,S390] Perform z/VM CP command after system halt.
Format: <command>

vmpanic= [KNL,S390] Perform z/VM CP command after kernel panic.
Format: <command>

vmpoff= [KNL,S390] Perform z/VM CP command after power off.
Format: <command>

vsyscall= [X86-64]
Controls the behavior of vsyscalls (i.e. calls to
fixed addresses of 0xffffffffff600x00 from legacy
code). Most statically-linked binaries and older
versions of glibc use these calls. Because these
functions are at fixed addresses, they make nice
targets for exploits that can control RIP.

emulate [default] Vsyscalls turn into traps and are
emulated reasonably safely.

2.1. cpu lists: 103



Linux Kernel User Documentation, v4.20.0

native Vsyscalls are native syscall instructions.
This is a little bit faster than trapping
and makes a few dynamic recompilers work
better than they would in emulation mode.
It also makes exploits much easier to write.

none Vsyscalls don't work at all. This makes
them quite hard to use for exploits but
might break your system.

vt.color= [VT] Default text color.
Format: 0xYX, X = foreground, Y = background.
Default: 0x07 = light gray on black.

vt.cur_default= [VT] Default cursor shape.
Format: 0xCCBBAA, where AA, BB, and CC are the same as
the parameters of the <Esc>[?A;B;Cc escape sequence;
see VGA-softcursor.txt. Default: 2 = underline.

vt.default_blu= [VT]
Format: <blue0>,<blue1>,<blue2>,...,<blue15>
Change the default blue palette of the console.
This is a 16-member array composed of values
ranging from 0-255.

vt.default_grn= [VT]
Format: <green0>,<green1>,<green2>,...,<green15>
Change the default green palette of the console.
This is a 16-member array composed of values
ranging from 0-255.

vt.default_red= [VT]
Format: <red0>,<red1>,<red2>,...,<red15>
Change the default red palette of the console.
This is a 16-member array composed of values
ranging from 0-255.

vt.default_utf8=
[VT]
Format=<0|1>
Set system-wide default UTF-8 mode for all tty's.
Default is 1, i.e. UTF-8 mode is enabled for all
newly opened terminals.

vt.global_cursor_default=
[VT]
Format=<-1|0|1>
Set system-wide default for whether a cursor
is shown on new VTs. Default is -1,
i.e. cursors will be created by default unless
overridden by individual drivers. 0 will hide
cursors, 1 will display them.

104 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

vt.italic= [VT] Default color for italic text; 0-15.
Default: 2 = green.

vt.underline= [VT] Default color for underlined text; 0-15.
Default: 3 = cyan.

watchdog timers [HW,WDT] For information on watchdog timers,
see Documentation/watchdog/watchdog-parameters.txt
or other driver-specific files in the
Documentation/watchdog/ directory.

workqueue.watchdog_thresh=
If CONFIG_WQ_WATCHDOG is configured, workqueue can
warn stall conditions and dump internal state to
help debugging. 0 disables workqueue stall
detection; otherwise, it's the stall threshold
duration in seconds. The default value is 30 and
it can be updated at runtime by writing to the
corresponding sysfs file.

workqueue.disable_numa
By default, all work items queued to unbound
workqueues are affine to the NUMA nodes they're
issued on, which results in better behavior in
general. If NUMA affinity needs to be disabled for
whatever reason, this option can be used. Note
that this also can be controlled per-workqueue for
workqueues visible under /sys/bus/workqueue/.

workqueue.power_efficient
Per-cpu workqueues are generally preferred because
they show better performance thanks to cache
locality; unfortunately, per-cpu workqueues tend to
be more power hungry than unbound workqueues.

Enabling this makes the per-cpu workqueues which
were observed to contribute significantly to power
consumption unbound, leading to measurably lower
power usage at the cost of small performance
overhead.

The default value of this parameter is determined by
the config option CONFIG_WQ_POWER_EFFICIENT_DEFAULT.

workqueue.debug_force_rr_cpu
Workqueue used to implicitly guarantee that work
items queued without explicit CPU specified are put
on the local CPU. This guarantee is no longer true
and while local CPU is still preferred work items
may be put on foreign CPUs. This debug option
forces round-robin CPU selection to flush out
usages which depend on the now broken guarantee.
When enabled, memory and cache locality will be
impacted.

2.1. cpu lists: 105



Linux Kernel User Documentation, v4.20.0

x2apic_phys [X86-64,APIC] Use x2apic physical mode instead of
default x2apic cluster mode on platforms
supporting x2apic.

x86_intel_mid_timer= [X86-32,APBT]
Choose timer option for x86 Intel MID platform.
Two valid options are apbt timer only and lapic timer
plus one apbt timer for broadcast timer.
x86_intel_mid_timer=apbt_only | lapic_and_apbt

xen_512gb_limit [KNL,X86-64,XEN]
Restricts the kernel running paravirtualized under Xen
to use only up to 512 GB of RAM. The reason to do so is
crash analysis tools and Xen tools for doing domain
save/restore/migration must be enabled to handle larger
domains.

xen_emul_unplug= [HW,X86,XEN]
Unplug Xen emulated devices
Format: [unplug0,][unplug1]
ide-disks -- unplug primary master IDE devices
aux-ide-disks -- unplug non-primary-master IDE devices
nics -- unplug network devices
all -- unplug all emulated devices (NICs and IDE disks)
unnecessary -- unplugging emulated devices is

unnecessary even if the host did not respond to
the unplug protocol

never -- do not unplug even if version check succeeds

xen_nopvspin [X86,XEN]
Disables the ticketlock slowpath using Xen PV
optimizations.

xen_nopv [X86]
Disables the PV optimizations forcing the HVM guest to
run as generic HVM guest with no PV drivers.

xen_scrub_pages= [XEN]
Boolean option to control scrubbing pages before giving them back
to Xen, for use by other domains. Can be also changed at runtime
with /sys/devices/system/xen_memory/xen_memory0/scrub_pages.
Default value controlled with CONFIG_XEN_SCRUB_PAGES_DEFAULT.

xirc2ps_cs= [NET,PCMCIA]
Format:
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]

xhci-hcd.quirks [USB,KNL]
A hex value specifying bitmask with supplemental xhci
host controller quirks. Meaning of each bit can be
consulted in header drivers/usb/host/xhci.h.

106 Chapter 2. The kernel’s command-line parameters



Linux Kernel User Documentation, v4.20.0

Todo

Add more DRM drivers.

2.2. Todo 107



Linux Kernel User Documentation, v4.20.0

108 Chapter 2. The kernel’s command-line parameters



CHAPTER 3

Linux allocated devices (4.x+ version)

This list is the Linux Device List, the official registry of allocated device numbers and /dev directory nodes for the Linux operating
system.

The LaTeX version of this document is no longer maintained, nor is the document that used to reside at lanana.org. This ver-
sion in the mainline Linux kernel is the master document. Updates shall be sent as patches to the kernel maintainers (see the
Documentation/process/submitting-patches.rst document). Specifically explore the sections titled “CHAR and MISC DRIVERS”, and
“BLOCK LAYER” in the MAINTAINERS file to find the right maintainers to involve for character and block devices.

This document is included by reference into the Filesystem Hierarchy Standard (FHS). The FHS is available from http://www.pathname.
com/fhs/.

Allocations marked (68k/Amiga) apply to Linux/68k on the Amiga platform only. Allocations marked (68k/Atari) apply to Linux/68k
on the Atari platform only.

This document is in the public domain. The authors requests, however, that semantically altered versions are not distributed without
permission of the authors, assuming the authors can be contacted without an unreasonable effort.

:

DEVICE DRIVERS AUTHORS PLEASE READ THIS
Linux now has extensive support for dynamic allocation of device numbering and can use sysfs and udev (systemd) to
handle the naming needs. There are still some exceptions in the serial and boot device area. Before asking for a device number
make sure you actually need one.
To have a major number allocated, or a minor number in situations where that applies (e.g. busmice), please submit a patch and
send to the authors as indicated above.
Keep the description of the device in the same format as this list. The reason for this is that it is the only way we have found to
ensure we have all the requisite information to publish your device and avoid conflicts.
Finally, sometimes we have to play “namespace police.” Please don’t be offended. We often get submissions for /dev names
that would be bound to cause conflicts down the road. We are trying to avoid getting in a situation where we would have to suffer
an incompatible forward change. Therefore, please consult with us before you make your device names and numbers in any way
public, at least to the point where it would be at all difficult to get them changed.
Your cooperation is appreciated.

0 Unnamed devices (e.g. non-device mounts)
0 = reserved as null device number

See block major 144, 145, 146 for expansion areas.

1 char Memory devices
1 = /dev/mem Physical memory access
2 = /dev/kmem Kernel virtual memory access
3 = /dev/null Null device

109

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/


Linux Kernel User Documentation, v4.20.0

4 = /dev/port I/O port access
5 = /dev/zero Null byte source
6 = /dev/core OBSOLETE - replaced by /proc/kcore
7 = /dev/full Returns ENOSPC on write
8 = /dev/random Nondeterministic random number gen.
9 = /dev/urandom Faster, less secure random number gen.

10 = /dev/aio Asynchronous I/O notification interface
11 = /dev/kmsg Writes to this come out as printk's, reads

export the buffered printk records.
12 = /dev/oldmem OBSOLETE - replaced by /proc/vmcore

1 block RAM disk
0 = /dev/ram0 First RAM disk
1 = /dev/ram1 Second RAM disk

...
250 = /dev/initrd Initial RAM disk

Older kernels had /dev/ramdisk (1, 1) here.
/dev/initrd refers to a RAM disk which was preloaded
by the boot loader; newer kernels use /dev/ram0 for
the initrd.

2 char Pseudo-TTY masters
0 = /dev/ptyp0 First PTY master
1 = /dev/ptyp1 Second PTY master

...
255 = /dev/ptyef 256th PTY master

Pseudo-tty's are named as follows:

* Masters are ``pty'', slaves are ``tty'';

* the fourth letter is one of pqrstuvwxyzabcde indicating
the 1st through 16th series of 16 pseudo-ttys each, and

* the fifth letter is one of 0123456789abcdef indicating
the position within the series.

These are the old-style (BSD) PTY devices; Unix98
devices are on major 128 and above and use the PTY
master multiplex (/dev/ptmx) to acquire a PTY on
demand.

2 block Floppy disks
0 = /dev/fd0 Controller 0, drive 0, autodetect
1 = /dev/fd1 Controller 0, drive 1, autodetect
2 = /dev/fd2 Controller 0, drive 2, autodetect
3 = /dev/fd3 Controller 0, drive 3, autodetect

128 = /dev/fd4 Controller 1, drive 0, autodetect
129 = /dev/fd5 Controller 1, drive 1, autodetect
130 = /dev/fd6 Controller 1, drive 2, autodetect
131 = /dev/fd7 Controller 1, drive 3, autodetect

To specify format, add to the autodetect device number:
0 = /dev/fd? Autodetect format
4 = /dev/fd?d360 5.25'' 360K in a 360K drive(1)

20 = /dev/fd?h360 5.25'' 360K in a 1200K drive(1)

110 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

48 = /dev/fd?h410 5.25'' 410K in a 1200K drive
64 = /dev/fd?h420 5.25'' 420K in a 1200K drive
24 = /dev/fd?h720 5.25'' 720K in a 1200K drive
80 = /dev/fd?h880 5.25'' 880K in a 1200K drive(1)
8 = /dev/fd?h1200 5.25'' 1200K in a 1200K drive(1)

40 = /dev/fd?h1440 5.25'' 1440K in a 1200K drive(1)
56 = /dev/fd?h1476 5.25'' 1476K in a 1200K drive
72 = /dev/fd?h1494 5.25'' 1494K in a 1200K drive
92 = /dev/fd?h1600 5.25'' 1600K in a 1200K drive(1)

12 = /dev/fd?u360 3.5'' 360K Double Density(2)
16 = /dev/fd?u720 3.5'' 720K Double Density(1)

120 = /dev/fd?u800 3.5'' 800K Double Density(2)
52 = /dev/fd?u820 3.5'' 820K Double Density
68 = /dev/fd?u830 3.5'' 830K Double Density
84 = /dev/fd?u1040 3.5'' 1040K Double Density(1)
88 = /dev/fd?u1120 3.5'' 1120K Double Density(1)
28 = /dev/fd?u1440 3.5'' 1440K High Density(1)

124 = /dev/fd?u1600 3.5'' 1600K High Density(1)
44 = /dev/fd?u1680 3.5'' 1680K High Density(3)
60 = /dev/fd?u1722 3.5'' 1722K High Density
76 = /dev/fd?u1743 3.5'' 1743K High Density
96 = /dev/fd?u1760 3.5'' 1760K High Density

116 = /dev/fd?u1840 3.5'' 1840K High Density(3)
100 = /dev/fd?u1920 3.5'' 1920K High Density(1)
32 = /dev/fd?u2880 3.5'' 2880K Extra Density(1)

104 = /dev/fd?u3200 3.5'' 3200K Extra Density
108 = /dev/fd?u3520 3.5'' 3520K Extra Density
112 = /dev/fd?u3840 3.5'' 3840K Extra Density(1)

36 = /dev/fd?CompaQ Compaq 2880K drive; obsolete?

(1) Autodetectable format
(2) Autodetectable format in a Double Density (720K) drive only
(3) Autodetectable format in a High Density (1440K) drive only

NOTE: The letter in the device name (d, q, h or u)
signifies the type of drive: 5.25'' Double Density (d),
5.25'' Quad Density (q), 5.25'' High Density (h) or 3.5''
(any model, u). The use of the capital letters D, H
and E for the 3.5'' models have been deprecated, since
the drive type is insignificant for these devices.

3 char Pseudo-TTY slaves
0 = /dev/ttyp0 First PTY slave
1 = /dev/ttyp1 Second PTY slave

...
255 = /dev/ttyef 256th PTY slave

These are the old-style (BSD) PTY devices; Unix98
devices are on major 136 and above.

3 block First MFM, RLL and IDE hard disk/CD-ROM interface
0 = /dev/hda Master: whole disk (or CD-ROM)

111



Linux Kernel User Documentation, v4.20.0

64 = /dev/hdb Slave: whole disk (or CD-ROM)

For partitions, add to the whole disk device number:
0 = /dev/hd? Whole disk
1 = /dev/hd?1 First partition
2 = /dev/hd?2 Second partition

...
63 = /dev/hd?63 63rd partition

For Linux/i386, partitions 1-4 are the primary
partitions, and 5 and above are logical partitions.
Other versions of Linux use partitioning schemes
appropriate to their respective architectures.

4 char TTY devices
0 = /dev/tty0 Current virtual console

1 = /dev/tty1 First virtual console
...

63 = /dev/tty63 63rd virtual console
64 = /dev/ttyS0 First UART serial port

...
255 = /dev/ttyS191 192nd UART serial port

UART serial ports refer to 8250/16450/16550 series devices.

Older versions of the Linux kernel used this major
number for BSD PTY devices. As of Linux 2.1.115, this
is no longer supported. Use major numbers 2 and 3.

4 block Aliases for dynamically allocated major devices to be used
when its not possible to create the real device nodes
because the root filesystem is mounted read-only.

0 = /dev/root

5 char Alternate TTY devices
0 = /dev/tty Current TTY device
1 = /dev/console System console
2 = /dev/ptmx PTY master multiplex
3 = /dev/ttyprintk User messages via printk TTY device

64 = /dev/cua0 Callout device for ttyS0
...

255 = /dev/cua191 Callout device for ttyS191

(5,1) is /dev/console starting with Linux 2.1.71. See
the section on terminal devices for more information
on /dev/console.

6 char Parallel printer devices
0 = /dev/lp0 Parallel printer on parport0
1 = /dev/lp1 Parallel printer on parport1

...

112 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

Current Linux kernels no longer have a fixed mapping
between parallel ports and I/O addresses. Instead,
they are redirected through the parport multiplex layer.

7 char Virtual console capture devices
0 = /dev/vcs Current vc text (glyph) contents
1 = /dev/vcs1 tty1 text (glyph) contents

...
63 = /dev/vcs63 tty63 text (glyph) contents
64 = /dev/vcsu Current vc text (unicode) contents

65 = /dev/vcsu1 tty1 text (unicode) contents
...

127 = /dev/vcsu63 tty63 text (unicode) contents
128 = /dev/vcsa Current vc text/attribute (glyph) contents
129 = /dev/vcsa1 tty1 text/attribute (glyph) contents

...
191 = /dev/vcsa63 tty63 text/attribute (glyph) contents

NOTE: These devices permit both read and write access.

7 block Loopback devices
0 = /dev/loop0 First loop device
1 = /dev/loop1 Second loop device

...

The loop devices are used to mount filesystems not
associated with block devices. The binding to the
loop devices is handled by mount(8) or losetup(8).

8 block SCSI disk devices (0-15)
0 = /dev/sda First SCSI disk whole disk

16 = /dev/sdb Second SCSI disk whole disk
32 = /dev/sdc Third SCSI disk whole disk

...
240 = /dev/sdp Sixteenth SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

9 char SCSI tape devices
0 = /dev/st0 First SCSI tape, mode 0
1 = /dev/st1 Second SCSI tape, mode 0

...
32 = /dev/st0l First SCSI tape, mode 1
33 = /dev/st1l Second SCSI tape, mode 1

...
64 = /dev/st0m First SCSI tape, mode 2
65 = /dev/st1m Second SCSI tape, mode 2

...
96 = /dev/st0a First SCSI tape, mode 3
97 = /dev/st1a Second SCSI tape, mode 3

...
128 = /dev/nst0 First SCSI tape, mode 0, no rewind

113



Linux Kernel User Documentation, v4.20.0

129 = /dev/nst1 Second SCSI tape, mode 0, no rewind
...

160 = /dev/nst0l First SCSI tape, mode 1, no rewind
161 = /dev/nst1l Second SCSI tape, mode 1, no rewind

...
192 = /dev/nst0m First SCSI tape, mode 2, no rewind
193 = /dev/nst1m Second SCSI tape, mode 2, no rewind

...
224 = /dev/nst0a First SCSI tape, mode 3, no rewind
225 = /dev/nst1a Second SCSI tape, mode 3, no rewind

...

``No rewind'' refers to the omission of the default
automatic rewind on device close. The MTREW or MTOFFL
ioctl()'s can be used to rewind the tape regardless of
the device used to access it.

9 block Metadisk (RAID) devices
0 = /dev/md0 First metadisk group
1 = /dev/md1 Second metadisk group

...

The metadisk driver is used to span a
filesystem across multiple physical disks.

10 char Non-serial mice, misc features
0 = /dev/logibm Logitech bus mouse
1 = /dev/psaux PS/2-style mouse port
2 = /dev/inportbm Microsoft Inport bus mouse
3 = /dev/atibm ATI XL bus mouse
4 = /dev/jbm J-mouse
4 = /dev/amigamouse Amiga mouse (68k/Amiga)
5 = /dev/atarimouse Atari mouse
6 = /dev/sunmouse Sun mouse
7 = /dev/amigamouse1 Second Amiga mouse
8 = /dev/smouse Simple serial mouse driver
9 = /dev/pc110pad IBM PC-110 digitizer pad

10 = /dev/adbmouse Apple Desktop Bus mouse
11 = /dev/vrtpanel Vr41xx embedded touch panel
13 = /dev/vpcmouse Connectix Virtual PC Mouse
14 = /dev/touchscreen/ucb1x00 UCB 1x00 touchscreen
15 = /dev/touchscreen/mk712 MK712 touchscreen

128 = /dev/beep Fancy beep device
129 =
130 = /dev/watchdog Watchdog timer port
131 = /dev/temperature Machine internal temperature
132 = /dev/hwtrap Hardware fault trap
133 = /dev/exttrp External device trap
134 = /dev/apm_bios Advanced Power Management BIOS
135 = /dev/rtc Real Time Clock
137 = /dev/vhci Bluetooth virtual HCI driver
139 = /dev/openprom SPARC OpenBoot PROM
140 = /dev/relay8 Berkshire Products Octal relay card
141 = /dev/relay16 Berkshire Products ISO-16 relay card

114 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

142 =
143 = /dev/pciconf PCI configuration space
144 = /dev/nvram Non-volatile configuration RAM
145 = /dev/hfmodem Soundcard shortwave modem control
146 = /dev/graphics Linux/SGI graphics device
147 = /dev/opengl Linux/SGI OpenGL pipe
148 = /dev/gfx Linux/SGI graphics effects device
149 = /dev/input/mouse Linux/SGI Irix emulation mouse
150 = /dev/input/keyboard Linux/SGI Irix emulation keyboard
151 = /dev/led Front panel LEDs
152 = /dev/kpoll Kernel Poll Driver
153 = /dev/mergemem Memory merge device
154 = /dev/pmu Macintosh PowerBook power manager
155 = /dev/isictl MultiTech ISICom serial control
156 = /dev/lcd Front panel LCD display
157 = /dev/ac Applicom Intl Profibus card
158 = /dev/nwbutton Netwinder external button
159 = /dev/nwdebug Netwinder debug interface
160 = /dev/nwflash Netwinder flash memory
161 = /dev/userdma User-space DMA access
162 = /dev/smbus System Management Bus
163 = /dev/lik Logitech Internet Keyboard
164 = /dev/ipmo Intel Intelligent Platform Management
165 = /dev/vmmon VMware virtual machine monitor
166 = /dev/i2o/ctl I2O configuration manager
167 = /dev/specialix_sxctl Specialix serial control
168 = /dev/tcldrv Technology Concepts serial control
169 = /dev/specialix_rioctl Specialix RIO serial control
170 = /dev/thinkpad/thinkpad IBM Thinkpad devices
171 = /dev/srripc QNX4 API IPC manager
172 = /dev/usemaclone Semaphore clone device
173 = /dev/ipmikcs Intelligent Platform Management
174 = /dev/uctrl SPARCbook 3 microcontroller
175 = /dev/agpgart AGP Graphics Address Remapping Table
176 = /dev/gtrsc Gorgy Timing radio clock
177 = /dev/cbm Serial CBM bus
178 = /dev/jsflash JavaStation OS flash SIMM
179 = /dev/xsvc High-speed shared-mem/semaphore service
180 = /dev/vrbuttons Vr41xx button input device
181 = /dev/toshiba Toshiba laptop SMM support
182 = /dev/perfctr Performance-monitoring counters
183 = /dev/hwrng Generic random number generator
184 = /dev/cpu/microcode CPU microcode update interface
186 = /dev/atomicps Atomic shapshot of process state data
187 = /dev/irnet IrNET device
188 = /dev/smbusbios SMBus BIOS
189 = /dev/ussp_ctl User space serial port control
190 = /dev/crash Mission Critical Linux crash dump facility
191 = /dev/pcl181 <information missing>
192 = /dev/nas_xbus NAS xbus LCD/buttons access
193 = /dev/d7s SPARC 7-segment display
194 = /dev/zkshim Zero-Knowledge network shim control
195 = /dev/elographics/e2201 Elographics touchscreen E271-2201
196 = /dev/vfio/vfio VFIO userspace driver interface

115



Linux Kernel User Documentation, v4.20.0

197 = /dev/pxa3xx-gcu PXA3xx graphics controller unit driver
198 = /dev/sexec Signed executable interface
199 = /dev/scanners/cuecat :CueCat barcode scanner
200 = /dev/net/tun TAP/TUN network device
201 = /dev/button/gulpb Transmeta GULP-B buttons
202 = /dev/emd/ctl Enhanced Metadisk RAID (EMD) control
203 = /dev/cuse Cuse (character device in user-space)
204 = /dev/video/em8300 EM8300 DVD decoder control
205 = /dev/video/em8300_mv EM8300 DVD decoder video
206 = /dev/video/em8300_ma EM8300 DVD decoder audio
207 = /dev/video/em8300_sp EM8300 DVD decoder subpicture
208 = /dev/compaq/cpqphpc Compaq PCI Hot Plug Controller
209 = /dev/compaq/cpqrid Compaq Remote Insight Driver
210 = /dev/impi/bt IMPI coprocessor block transfer
211 = /dev/impi/smic IMPI coprocessor stream interface
212 = /dev/watchdogs/0 First watchdog device
213 = /dev/watchdogs/1 Second watchdog device
214 = /dev/watchdogs/2 Third watchdog device
215 = /dev/watchdogs/3 Fourth watchdog device
216 = /dev/fujitsu/apanel Fujitsu/Siemens application panel
217 = /dev/ni/natmotn National Instruments Motion
218 = /dev/kchuid Inter-process chuid control
219 = /dev/modems/mwave MWave modem firmware upload
220 = /dev/mptctl Message passing technology (MPT) control
221 = /dev/mvista/hssdsi Montavista PICMG hot swap system driver
222 = /dev/mvista/hasi Montavista PICMG high availability
223 = /dev/input/uinput User level driver support for input
224 = /dev/tpm TCPA TPM driver
225 = /dev/pps Pulse Per Second driver
226 = /dev/systrace Systrace device
227 = /dev/mcelog X86_64 Machine Check Exception driver
228 = /dev/hpet HPET driver
229 = /dev/fuse Fuse (virtual filesystem in user-space)
230 = /dev/midishare MidiShare driver
231 = /dev/snapshot System memory snapshot device
232 = /dev/kvm Kernel-based virtual machine (hardware virtualization extensions)
233 = /dev/kmview View-OS A process with a view
234 = /dev/btrfs-control Btrfs control device
235 = /dev/autofs Autofs control device
236 = /dev/mapper/control Device-Mapper control device
237 = /dev/loop-control Loopback control device
238 = /dev/vhost-net Host kernel accelerator for virtio net
239 = /dev/uhid User-space I/O driver support for HID subsystem
240 = /dev/userio Serio driver testing device
241 = /dev/vhost-vsock Host kernel driver for virtio vsock

242-254 Reserved for local use
255 Reserved for MISC_DYNAMIC_MINOR

11 char Raw keyboard device (Linux/SPARC only)
0 = /dev/kbd Raw keyboard device

11 char Serial Mux device (Linux/PA-RISC only)
0 = /dev/ttyB0 First mux port

116 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

1 = /dev/ttyB1 Second mux port
...

11 block SCSI CD-ROM devices
0 = /dev/scd0 First SCSI CD-ROM
1 = /dev/scd1 Second SCSI CD-ROM

...

The prefix /dev/sr (instead of /dev/scd) has been deprecated.

12 char QIC-02 tape
2 = /dev/ntpqic11 QIC-11, no rewind-on-close
3 = /dev/tpqic11 QIC-11, rewind-on-close
4 = /dev/ntpqic24 QIC-24, no rewind-on-close
5 = /dev/tpqic24 QIC-24, rewind-on-close
6 = /dev/ntpqic120 QIC-120, no rewind-on-close
7 = /dev/tpqic120 QIC-120, rewind-on-close
8 = /dev/ntpqic150 QIC-150, no rewind-on-close
9 = /dev/tpqic150 QIC-150, rewind-on-close

The device names specified are proposed -- if there
are ``standard'' names for these devices, please let me know.

12 block

13 char Input core
0 = /dev/input/js0 First joystick
1 = /dev/input/js1 Second joystick

...
32 = /dev/input/mouse0 First mouse
33 = /dev/input/mouse1 Second mouse

...
63 = /dev/input/mice Unified mouse
64 = /dev/input/event0 First event queue
65 = /dev/input/event1 Second event queue

...

Each device type has 5 bits (32 minors).

13 block Previously used for the XT disk (/dev/xdN)
Deleted in kernel v3.9.

14 char Open Sound System (OSS)
0 = /dev/mixer Mixer control
1 = /dev/sequencer Audio sequencer
2 = /dev/midi00 First MIDI port
3 = /dev/dsp Digital audio
4 = /dev/audio Sun-compatible digital audio
6 =
7 = /dev/audioctl SPARC audio control device
8 = /dev/sequencer2 Sequencer -- alternate device

16 = /dev/mixer1 Second soundcard mixer control
17 = /dev/patmgr0 Sequencer patch manager
18 = /dev/midi01 Second MIDI port

117



Linux Kernel User Documentation, v4.20.0

19 = /dev/dsp1 Second soundcard digital audio
20 = /dev/audio1 Second soundcard Sun digital audio
33 = /dev/patmgr1 Sequencer patch manager
34 = /dev/midi02 Third MIDI port
50 = /dev/midi03 Fourth MIDI port

14 block

15 char Joystick
0 = /dev/js0 First analog joystick
1 = /dev/js1 Second analog joystick

...
128 = /dev/djs0 First digital joystick
129 = /dev/djs1 Second digital joystick

...
15 block Sony CDU-31A/CDU-33A CD-ROM

0 = /dev/sonycd Sony CDU-31a CD-ROM

16 char Non-SCSI scanners
0 = /dev/gs4500 Genius 4500 handheld scanner

16 block GoldStar CD-ROM
0 = /dev/gscd GoldStar CD-ROM

17 char OBSOLETE (was Chase serial card)
0 = /dev/ttyH0 First Chase port
1 = /dev/ttyH1 Second Chase port

...
17 block Optics Storage CD-ROM

0 = /dev/optcd Optics Storage CD-ROM

18 char OBSOLETE (was Chase serial card - alternate devices)
0 = /dev/cuh0 Callout device for ttyH0
1 = /dev/cuh1 Callout device for ttyH1

...
18 block Sanyo CD-ROM

0 = /dev/sjcd Sanyo CD-ROM

19 char Cyclades serial card
0 = /dev/ttyC0 First Cyclades port

...
31 = /dev/ttyC31 32nd Cyclades port

19 block ``Double'' compressed disk
0 = /dev/double0 First compressed disk

...
7 = /dev/double7 Eighth compressed disk

128 = /dev/cdouble0 Mirror of first compressed disk
...

135 = /dev/cdouble7 Mirror of eighth compressed disk

See the Double documentation for the meaning of the
mirror devices.

118 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

20 char Cyclades serial card - alternate devices
0 = /dev/cub0 Callout device for ttyC0

...
31 = /dev/cub31 Callout device for ttyC31

20 block Hitachi CD-ROM (under development)
0 = /dev/hitcd Hitachi CD-ROM

21 char Generic SCSI access
0 = /dev/sg0 First generic SCSI device
1 = /dev/sg1 Second generic SCSI device

...

Most distributions name these /dev/sga, /dev/sgb...;
this sets an unnecessary limit of 26 SCSI devices in
the system and is counter to standard Linux
device-naming practice.

21 block Acorn MFM hard drive interface
0 = /dev/mfma First MFM drive whole disk
64 = /dev/mfmb Second MFM drive whole disk

This device is used on the ARM-based Acorn RiscPC.
Partitions are handled the same way as for IDE disks
(see major number 3).

22 char Digiboard serial card
0 = /dev/ttyD0 First Digiboard port
1 = /dev/ttyD1 Second Digiboard port

...
22 block Second IDE hard disk/CD-ROM interface

0 = /dev/hdc Master: whole disk (or CD-ROM)
64 = /dev/hdd Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

23 char Digiboard serial card - alternate devices
0 = /dev/cud0 Callout device for ttyD0
1 = /dev/cud1 Callout device for ttyD1

...
23 block Mitsumi proprietary CD-ROM

0 = /dev/mcd Mitsumi CD-ROM

24 char Stallion serial card
0 = /dev/ttyE0 Stallion port 0 card 0
1 = /dev/ttyE1 Stallion port 1 card 0

...
64 = /dev/ttyE64 Stallion port 0 card 1
65 = /dev/ttyE65 Stallion port 1 card 1

...
128 = /dev/ttyE128 Stallion port 0 card 2
129 = /dev/ttyE129 Stallion port 1 card 2

...

119



Linux Kernel User Documentation, v4.20.0

192 = /dev/ttyE192 Stallion port 0 card 3
193 = /dev/ttyE193 Stallion port 1 card 3

...
24 block Sony CDU-535 CD-ROM

0 = /dev/cdu535 Sony CDU-535 CD-ROM

25 char Stallion serial card - alternate devices
0 = /dev/cue0 Callout device for ttyE0
1 = /dev/cue1 Callout device for ttyE1

...
64 = /dev/cue64 Callout device for ttyE64
65 = /dev/cue65 Callout device for ttyE65

...
128 = /dev/cue128 Callout device for ttyE128
129 = /dev/cue129 Callout device for ttyE129

...
192 = /dev/cue192 Callout device for ttyE192
193 = /dev/cue193 Callout device for ttyE193

...
25 block First Matsushita (Panasonic/SoundBlaster) CD-ROM

0 = /dev/sbpcd0 Panasonic CD-ROM controller 0 unit 0
1 = /dev/sbpcd1 Panasonic CD-ROM controller 0 unit 1
2 = /dev/sbpcd2 Panasonic CD-ROM controller 0 unit 2
3 = /dev/sbpcd3 Panasonic CD-ROM controller 0 unit 3

26 char

26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd4 Panasonic CD-ROM controller 1 unit 0
1 = /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 1
2 = /dev/sbpcd6 Panasonic CD-ROM controller 1 unit 2
3 = /dev/sbpcd7 Panasonic CD-ROM controller 1 unit 3

27 char QIC-117 tape
0 = /dev/qft0 Unit 0, rewind-on-close
1 = /dev/qft1 Unit 1, rewind-on-close
2 = /dev/qft2 Unit 2, rewind-on-close
3 = /dev/qft3 Unit 3, rewind-on-close
4 = /dev/nqft0 Unit 0, no rewind-on-close
5 = /dev/nqft1 Unit 1, no rewind-on-close
6 = /dev/nqft2 Unit 2, no rewind-on-close
7 = /dev/nqft3 Unit 3, no rewind-on-close

16 = /dev/zqft0 Unit 0, rewind-on-close, compression
17 = /dev/zqft1 Unit 1, rewind-on-close, compression
18 = /dev/zqft2 Unit 2, rewind-on-close, compression
19 = /dev/zqft3 Unit 3, rewind-on-close, compression
20 = /dev/nzqft0 Unit 0, no rewind-on-close, compression
21 = /dev/nzqft1 Unit 1, no rewind-on-close, compression
22 = /dev/nzqft2 Unit 2, no rewind-on-close, compression
23 = /dev/nzqft3 Unit 3, no rewind-on-close, compression
32 = /dev/rawqft0 Unit 0, rewind-on-close, no file marks
33 = /dev/rawqft1 Unit 1, rewind-on-close, no file marks
34 = /dev/rawqft2 Unit 2, rewind-on-close, no file marks
35 = /dev/rawqft3 Unit 3, rewind-on-close, no file marks

120 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

36 = /dev/nrawqft0 Unit 0, no rewind-on-close, no file marks
37 = /dev/nrawqft1 Unit 1, no rewind-on-close, no file marks
38 = /dev/nrawqft2 Unit 2, no rewind-on-close, no file marks
39 = /dev/nrawqft3 Unit 3, no rewind-on-close, no file marks

27 block Third Matsushita (Panasonic/SoundBlaster) CD-ROM
0 = /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 0
1 = /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 1
2 = /dev/sbpcd10 Panasonic CD-ROM controller 2 unit 2
3 = /dev/sbpcd11 Panasonic CD-ROM controller 2 unit 3

28 char Stallion serial card - card programming
0 = /dev/staliomem0 First Stallion card I/O memory
1 = /dev/staliomem1 Second Stallion card I/O memory
2 = /dev/staliomem2 Third Stallion card I/O memory
3 = /dev/staliomem3 Fourth Stallion card I/O memory

28 char Atari SLM ACSI laser printer (68k/Atari)
0 = /dev/slm0 First SLM laser printer
1 = /dev/slm1 Second SLM laser printer

...
28 block Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM

0 = /dev/sbpcd12 Panasonic CD-ROM controller 3 unit 0
1 = /dev/sbpcd13 Panasonic CD-ROM controller 3 unit 1
2 = /dev/sbpcd14 Panasonic CD-ROM controller 3 unit 2
3 = /dev/sbpcd15 Panasonic CD-ROM controller 3 unit 3

28 block ACSI disk (68k/Atari)
0 = /dev/ada First ACSI disk whole disk
16 = /dev/adb Second ACSI disk whole disk
32 = /dev/adc Third ACSI disk whole disk

...
240 = /dev/adp 16th ACSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15, like SCSI.

29 char Universal frame buffer
0 = /dev/fb0 First frame buffer
1 = /dev/fb1 Second frame buffer

...
31 = /dev/fb31 32nd frame buffer

29 block Aztech/Orchid/Okano/Wearnes CD-ROM
0 = /dev/aztcd Aztech CD-ROM

30 char iBCS-2 compatibility devices
0 = /dev/socksys Socket access
1 = /dev/spx SVR3 local X interface
32 = /dev/inet/ip Network access
33 = /dev/inet/icmp
34 = /dev/inet/ggp
35 = /dev/inet/ipip

121



Linux Kernel User Documentation, v4.20.0

36 = /dev/inet/tcp
37 = /dev/inet/egp
38 = /dev/inet/pup
39 = /dev/inet/udp
40 = /dev/inet/idp
41 = /dev/inet/rawip

Additionally, iBCS-2 requires the following links:

/dev/ip -> /dev/inet/ip
/dev/icmp -> /dev/inet/icmp
/dev/ggp -> /dev/inet/ggp
/dev/ipip -> /dev/inet/ipip
/dev/tcp -> /dev/inet/tcp
/dev/egp -> /dev/inet/egp
/dev/pup -> /dev/inet/pup
/dev/udp -> /dev/inet/udp
/dev/idp -> /dev/inet/idp
/dev/rawip -> /dev/inet/rawip
/dev/inet/arp -> /dev/inet/udp
/dev/inet/rip -> /dev/inet/udp
/dev/nfsd -> /dev/socksys
/dev/X0R -> /dev/null (? apparently not required ?)

30 block Philips LMS CM-205 CD-ROM
0 = /dev/cm205cd Philips LMS CM-205 CD-ROM

/dev/lmscd is an older name for this device. This
driver does not work with the CM-205MS CD-ROM.

31 char MPU-401 MIDI
0 = /dev/mpu401data MPU-401 data port
1 = /dev/mpu401stat MPU-401 status port

31 block ROM/flash memory card
0 = /dev/rom0 First ROM card (rw)

...
7 = /dev/rom7 Eighth ROM card (rw)
8 = /dev/rrom0 First ROM card (ro)

...
15 = /dev/rrom7 Eighth ROM card (ro)
16 = /dev/flash0 First flash memory card (rw)

...
23 = /dev/flash7 Eighth flash memory card (rw)
24 = /dev/rflash0 First flash memory card (ro)

...
31 = /dev/rflash7 Eighth flash memory card (ro)

The read-write (rw) devices support back-caching
written data in RAM, as well as writing to flash RAM
devices. The read-only devices (ro) support reading
only.

32 char Specialix serial card

122 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

0 = /dev/ttyX0 First Specialix port
1 = /dev/ttyX1 Second Specialix port

...
32 block Philips LMS CM-206 CD-ROM

0 = /dev/cm206cd Philips LMS CM-206 CD-ROM

33 char Specialix serial card - alternate devices
0 = /dev/cux0 Callout device for ttyX0
1 = /dev/cux1 Callout device for ttyX1

...
33 block Third IDE hard disk/CD-ROM interface

0 = /dev/hde Master: whole disk (or CD-ROM)
64 = /dev/hdf Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

34 char Z8530 HDLC driver
0 = /dev/scc0 First Z8530, first port
1 = /dev/scc1 First Z8530, second port
2 = /dev/scc2 Second Z8530, first port
3 = /dev/scc3 Second Z8530, second port

...

In a previous version these devices were named
/dev/sc1 for /dev/scc0, /dev/sc2 for /dev/scc1, and so
on.

34 block Fourth IDE hard disk/CD-ROM interface
0 = /dev/hdg Master: whole disk (or CD-ROM)

64 = /dev/hdh Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

35 char tclmidi MIDI driver
0 = /dev/midi0 First MIDI port, kernel timed
1 = /dev/midi1 Second MIDI port, kernel timed
2 = /dev/midi2 Third MIDI port, kernel timed
3 = /dev/midi3 Fourth MIDI port, kernel timed

64 = /dev/rmidi0 First MIDI port, untimed
65 = /dev/rmidi1 Second MIDI port, untimed
66 = /dev/rmidi2 Third MIDI port, untimed
67 = /dev/rmidi3 Fourth MIDI port, untimed

128 = /dev/smpte0 First MIDI port, SMPTE timed
129 = /dev/smpte1 Second MIDI port, SMPTE timed
130 = /dev/smpte2 Third MIDI port, SMPTE timed
131 = /dev/smpte3 Fourth MIDI port, SMPTE timed

35 block Slow memory ramdisk
0 = /dev/slram Slow memory ramdisk

36 char Netlink support
0 = /dev/route Routing, device updates, kernel to user

123



Linux Kernel User Documentation, v4.20.0

1 = /dev/skip enSKIP security cache control
3 = /dev/fwmonitor Firewall packet copies

16 = /dev/tap0 First Ethertap device
...

31 = /dev/tap15 16th Ethertap device

36 block OBSOLETE (was MCA ESDI hard disk)

37 char IDE tape
0 = /dev/ht0 First IDE tape
1 = /dev/ht1 Second IDE tape

...
128 = /dev/nht0 First IDE tape, no rewind-on-close
129 = /dev/nht1 Second IDE tape, no rewind-on-close

...

Currently, only one IDE tape drive is supported.

37 block Zorro II ramdisk
0 = /dev/z2ram Zorro II ramdisk

38 char Myricom PCI Myrinet board
0 = /dev/mlanai0 First Myrinet board
1 = /dev/mlanai1 Second Myrinet board

...

This device is used for status query, board control
and ``user level packet I/O.'' This board is also
accessible as a standard networking ``eth'' device.

38 block OBSOLETE (was Linux/AP+)

39 char ML-16P experimental I/O board
0 = /dev/ml16pa-a0 First card, first analog channel
1 = /dev/ml16pa-a1 First card, second analog channel

...
15 = /dev/ml16pa-a15 First card, 16th analog channel
16 = /dev/ml16pa-d First card, digital lines
17 = /dev/ml16pa-c0 First card, first counter/timer
18 = /dev/ml16pa-c1 First card, second counter/timer
19 = /dev/ml16pa-c2 First card, third counter/timer
32 = /dev/ml16pb-a0 Second card, first analog channel
33 = /dev/ml16pb-a1 Second card, second analog channel

...
47 = /dev/ml16pb-a15 Second card, 16th analog channel
48 = /dev/ml16pb-d Second card, digital lines
49 = /dev/ml16pb-c0 Second card, first counter/timer
50 = /dev/ml16pb-c1 Second card, second counter/timer
51 = /dev/ml16pb-c2 Second card, third counter/timer

...
39 block

40 char

124 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

40 block

41 char Yet Another Micro Monitor
0 = /dev/yamm Yet Another Micro Monitor

41 block

42 char Demo/sample use

42 block Demo/sample use

This number is intended for use in sample code, as
well as a general ``example'' device number. It
should never be used for a device driver that is being
distributed; either obtain an official number or use
the local/experimental range. The sudden addition or
removal of a driver with this number should not cause
ill effects to the system (bugs excepted.)

IN PARTICULAR, ANY DISTRIBUTION WHICH CONTAINS A
DEVICE DRIVER USING MAJOR NUMBER 42 IS NONCOMPLIANT.

43 char isdn4linux virtual modem
0 = /dev/ttyI0 First virtual modem

...
63 = /dev/ttyI63 64th virtual modem

43 block Network block devices
0 = /dev/nb0 First network block device
1 = /dev/nb1 Second network block device

...

Network Block Device is somehow similar to loopback
devices: If you read from it, it sends packet across
network asking server for data. If you write to it, it
sends packet telling server to write. It could be used
to mounting filesystems over the net, swapping over
the net, implementing block device in userland etc.

44 char isdn4linux virtual modem - alternate devices
0 = /dev/cui0 Callout device for ttyI0

...
63 = /dev/cui63 Callout device for ttyI63

44 block Flash Translation Layer (FTL) filesystems
0 = /dev/ftla FTL on first Memory Technology Device
16 = /dev/ftlb FTL on second Memory Technology Device
32 = /dev/ftlc FTL on third Memory Technology Device

...
240 = /dev/ftlp FTL on 16th Memory Technology Device

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the partition
limit is 15 rather than 63 per disk (same as SCSI.)

125



Linux Kernel User Documentation, v4.20.0

45 char isdn4linux ISDN BRI driver
0 = /dev/isdn0 First virtual B channel raw data

...
63 = /dev/isdn63 64th virtual B channel raw data
64 = /dev/isdnctrl0 First channel control/debug

...
127 = /dev/isdnctrl63 64th channel control/debug

128 = /dev/ippp0 First SyncPPP device
...

191 = /dev/ippp63 64th SyncPPP device

255 = /dev/isdninfo ISDN monitor interface

45 block Parallel port IDE disk devices
0 = /dev/pda First parallel port IDE disk
16 = /dev/pdb Second parallel port IDE disk
32 = /dev/pdc Third parallel port IDE disk
48 = /dev/pdd Fourth parallel port IDE disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the partition
limit is 15 rather than 63 per disk.

46 char Comtrol Rocketport serial card
0 = /dev/ttyR0 First Rocketport port
1 = /dev/ttyR1 Second Rocketport port

...
46 block Parallel port ATAPI CD-ROM devices

0 = /dev/pcd0 First parallel port ATAPI CD-ROM
1 = /dev/pcd1 Second parallel port ATAPI CD-ROM
2 = /dev/pcd2 Third parallel port ATAPI CD-ROM
3 = /dev/pcd3 Fourth parallel port ATAPI CD-ROM

47 char Comtrol Rocketport serial card - alternate devices
0 = /dev/cur0 Callout device for ttyR0
1 = /dev/cur1 Callout device for ttyR1

...
47 block Parallel port ATAPI disk devices

0 = /dev/pf0 First parallel port ATAPI disk
1 = /dev/pf1 Second parallel port ATAPI disk
2 = /dev/pf2 Third parallel port ATAPI disk
3 = /dev/pf3 Fourth parallel port ATAPI disk

This driver is intended for floppy disks and similar
devices and hence does not support partitioning.

48 char SDL RISCom serial card
0 = /dev/ttyL0 First RISCom port
1 = /dev/ttyL1 Second RISCom port

...
48 block Mylex DAC960 PCI RAID controller; first controller

0 = /dev/rd/c0d0 First disk, whole disk

126 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

8 = /dev/rd/c0d1 Second disk, whole disk
...

248 = /dev/rd/c0d31 32nd disk, whole disk

For partitions add:
0 = /dev/rd/c?d? Whole disk
1 = /dev/rd/c?d?p1 First partition

...
7 = /dev/rd/c?d?p7 Seventh partition

49 char SDL RISCom serial card - alternate devices
0 = /dev/cul0 Callout device for ttyL0
1 = /dev/cul1 Callout device for ttyL1

...
49 block Mylex DAC960 PCI RAID controller; second controller

0 = /dev/rd/c1d0 First disk, whole disk
8 = /dev/rd/c1d1 Second disk, whole disk

...
248 = /dev/rd/c1d31 32nd disk, whole disk

Partitions are handled as for major 48.

50 char Reserved for GLINT

50 block Mylex DAC960 PCI RAID controller; third controller
0 = /dev/rd/c2d0 First disk, whole disk
8 = /dev/rd/c2d1 Second disk, whole disk

...
248 = /dev/rd/c2d31 32nd disk, whole disk

51 char Baycom radio modem OR Radio Tech BIM-XXX-RS232 radio modem
0 = /dev/bc0 First Baycom radio modem
1 = /dev/bc1 Second Baycom radio modem

...
51 block Mylex DAC960 PCI RAID controller; fourth controller

0 = /dev/rd/c3d0 First disk, whole disk
8 = /dev/rd/c3d1 Second disk, whole disk

...
248 = /dev/rd/c3d31 32nd disk, whole disk

Partitions are handled as for major 48.

52 char Spellcaster DataComm/BRI ISDN card
0 = /dev/dcbri0 First DataComm card
1 = /dev/dcbri1 Second DataComm card
2 = /dev/dcbri2 Third DataComm card
3 = /dev/dcbri3 Fourth DataComm card

52 block Mylex DAC960 PCI RAID controller; fifth controller
0 = /dev/rd/c4d0 First disk, whole disk
8 = /dev/rd/c4d1 Second disk, whole disk

...
248 = /dev/rd/c4d31 32nd disk, whole disk

127



Linux Kernel User Documentation, v4.20.0

Partitions are handled as for major 48.

53 char BDM interface for remote debugging MC683xx microcontrollers
0 = /dev/pd_bdm0 PD BDM interface on lp0
1 = /dev/pd_bdm1 PD BDM interface on lp1
2 = /dev/pd_bdm2 PD BDM interface on lp2
4 = /dev/icd_bdm0 ICD BDM interface on lp0
5 = /dev/icd_bdm1 ICD BDM interface on lp1
6 = /dev/icd_bdm2 ICD BDM interface on lp2

This device is used for the interfacing to the MC683xx
microcontrollers via Background Debug Mode by use of a
Parallel Port interface. PD is the Motorola Public
Domain Interface and ICD is the commercial interface
by P&E.

53 block Mylex DAC960 PCI RAID controller; sixth controller
0 = /dev/rd/c5d0 First disk, whole disk
8 = /dev/rd/c5d1 Second disk, whole disk

...
248 = /dev/rd/c5d31 32nd disk, whole disk

Partitions are handled as for major 48.

54 char Electrocardiognosis Holter serial card
0 = /dev/holter0 First Holter port
1 = /dev/holter1 Second Holter port
2 = /dev/holter2 Third Holter port

A custom serial card used by Electrocardiognosis SRL
<mseritan@ottonel.pub.ro> to transfer data from Holter
24-hour heart monitoring equipment.

54 block Mylex DAC960 PCI RAID controller; seventh controller
0 = /dev/rd/c6d0 First disk, whole disk
8 = /dev/rd/c6d1 Second disk, whole disk

...
248 = /dev/rd/c6d31 32nd disk, whole disk

Partitions are handled as for major 48.

55 char DSP56001 digital signal processor
0 = /dev/dsp56k First DSP56001

55 block Mylex DAC960 PCI RAID controller; eighth controller
0 = /dev/rd/c7d0 First disk, whole disk
8 = /dev/rd/c7d1 Second disk, whole disk

...
248 = /dev/rd/c7d31 32nd disk, whole disk

Partitions are handled as for major 48.

56 char Apple Desktop Bus
0 = /dev/adb ADB bus control

128 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

Additional devices will be added to this number, all
starting with /dev/adb.

56 block Fifth IDE hard disk/CD-ROM interface
0 = /dev/hdi Master: whole disk (or CD-ROM)
64 = /dev/hdj Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

57 char Hayes ESP serial card
0 = /dev/ttyP0 First ESP port
1 = /dev/ttyP1 Second ESP port

...

57 block Sixth IDE hard disk/CD-ROM interface
0 = /dev/hdk Master: whole disk (or CD-ROM)
64 = /dev/hdl Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

58 char Hayes ESP serial card - alternate devices
0 = /dev/cup0 Callout device for ttyP0
1 = /dev/cup1 Callout device for ttyP1

...

58 block Reserved for logical volume manager

59 char sf firewall package
0 = /dev/firewall Communication with sf kernel module

59 block Generic PDA filesystem device
0 = /dev/pda0 First PDA device
1 = /dev/pda1 Second PDA device

...

The pda devices are used to mount filesystems on
remote pda's (basically slow handheld machines with
proprietary OS's and limited memory and storage
running small fs translation drivers) through serial /
IRDA / parallel links.

NAMING CONFLICT -- PROPOSED REVISED NAME /dev/rpda0 etc

60-63 char LOCAL/EXPERIMENTAL USE

60-63 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.

64 char ENskip kernel encryption package

129



Linux Kernel User Documentation, v4.20.0

0 = /dev/enskip Communication with ENskip kernel module

64 block Scramdisk/DriveCrypt encrypted devices
0 = /dev/scramdisk/master Master node for ioctls
1 = /dev/scramdisk/1 First encrypted device
2 = /dev/scramdisk/2 Second encrypted device
...

255 = /dev/scramdisk/255 255th encrypted device

The filename of the encrypted container and the passwords
are sent via ioctls (using the sdmount tool) to the master
node which then activates them via one of the
/dev/scramdisk/x nodes for loop mounting (all handled
through the sdmount tool).

Requested by: andy@scramdisklinux.org

65 char Sundance ``plink'' Transputer boards (obsolete, unused)
0 = /dev/plink0 First plink device
1 = /dev/plink1 Second plink device
2 = /dev/plink2 Third plink device
3 = /dev/plink3 Fourth plink device
64 = /dev/rplink0 First plink device, raw
65 = /dev/rplink1 Second plink device, raw
66 = /dev/rplink2 Third plink device, raw
67 = /dev/rplink3 Fourth plink device, raw

128 = /dev/plink0d First plink device, debug
129 = /dev/plink1d Second plink device, debug
130 = /dev/plink2d Third plink device, debug
131 = /dev/plink3d Fourth plink device, debug
192 = /dev/rplink0d First plink device, raw, debug
193 = /dev/rplink1d Second plink device, raw, debug
194 = /dev/rplink2d Third plink device, raw, debug
195 = /dev/rplink3d Fourth plink device, raw, debug

This is a commercial driver; contact James Howes
<jth@prosig.demon.co.uk> for information.

65 block SCSI disk devices (16-31)
0 = /dev/sdq 17th SCSI disk whole disk
16 = /dev/sdr 18th SCSI disk whole disk
32 = /dev/sds 19th SCSI disk whole disk

...
240 = /dev/sdaf 32nd SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

66 char YARC PowerPC PCI coprocessor card
0 = /dev/yppcpci0 First YARC card
1 = /dev/yppcpci1 Second YARC card

...

130 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

66 block SCSI disk devices (32-47)
0 = /dev/sdag 33th SCSI disk whole disk
16 = /dev/sdah 34th SCSI disk whole disk
32 = /dev/sdai 35th SCSI disk whole disk

...
240 = /dev/sdav 48nd SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

67 char Coda network file system
0 = /dev/cfs0 Coda cache manager

See http://www.coda.cs.cmu.edu for information about Coda.

67 block SCSI disk devices (48-63)
0 = /dev/sdaw 49th SCSI disk whole disk
16 = /dev/sdax 50th SCSI disk whole disk
32 = /dev/sday 51st SCSI disk whole disk

...
240 = /dev/sdbl 64th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

68 char CAPI 2.0 interface
0 = /dev/capi20 Control device
1 = /dev/capi20.00 First CAPI 2.0 application
2 = /dev/capi20.01 Second CAPI 2.0 application

...
20 = /dev/capi20.19 19th CAPI 2.0 application

ISDN CAPI 2.0 driver for use with CAPI 2.0
applications; currently supports the AVM B1 card.

68 block SCSI disk devices (64-79)
0 = /dev/sdbm 65th SCSI disk whole disk
16 = /dev/sdbn 66th SCSI disk whole disk
32 = /dev/sdbo 67th SCSI disk whole disk

...
240 = /dev/sdcb 80th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

69 char MA16 numeric accelerator card
0 = /dev/ma16 Board memory access

69 block SCSI disk devices (80-95)
0 = /dev/sdcc 81st SCSI disk whole disk
16 = /dev/sdcd 82nd SCSI disk whole disk

131



Linux Kernel User Documentation, v4.20.0

32 = /dev/sdce 83th SCSI disk whole disk
...

240 = /dev/sdcr 96th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

70 char SpellCaster Protocol Services Interface
0 = /dev/apscfg Configuration interface
1 = /dev/apsauth Authentication interface
2 = /dev/apslog Logging interface
3 = /dev/apsdbg Debugging interface
64 = /dev/apsisdn ISDN command interface
65 = /dev/apsasync Async command interface

128 = /dev/apsmon Monitor interface

70 block SCSI disk devices (96-111)
0 = /dev/sdcs 97th SCSI disk whole disk
16 = /dev/sdct 98th SCSI disk whole disk
32 = /dev/sdcu 99th SCSI disk whole disk

...
240 = /dev/sddh 112nd SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

71 char Computone IntelliPort II serial card
0 = /dev/ttyF0 IntelliPort II board 0, port 0
1 = /dev/ttyF1 IntelliPort II board 0, port 1

...
63 = /dev/ttyF63 IntelliPort II board 0, port 63
64 = /dev/ttyF64 IntelliPort II board 1, port 0
65 = /dev/ttyF65 IntelliPort II board 1, port 1

...
127 = /dev/ttyF127 IntelliPort II board 1, port 63
128 = /dev/ttyF128 IntelliPort II board 2, port 0
129 = /dev/ttyF129 IntelliPort II board 2, port 1

...
191 = /dev/ttyF191 IntelliPort II board 2, port 63
192 = /dev/ttyF192 IntelliPort II board 3, port 0
193 = /dev/ttyF193 IntelliPort II board 3, port 1

...
255 = /dev/ttyF255 IntelliPort II board 3, port 63

71 block SCSI disk devices (112-127)
0 = /dev/sddi 113th SCSI disk whole disk
16 = /dev/sddj 114th SCSI disk whole disk
32 = /dev/sddk 115th SCSI disk whole disk

...
240 = /dev/sddx 128th SCSI disk whole disk

Partitions are handled in the same way as for IDE

132 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

disks (see major number 3) except that the limit on
partitions is 15.

72 char Computone IntelliPort II serial card - alternate devices
0 = /dev/cuf0 Callout device for ttyF0
1 = /dev/cuf1 Callout device for ttyF1

...
63 = /dev/cuf63 Callout device for ttyF63
64 = /dev/cuf64 Callout device for ttyF64
65 = /dev/cuf65 Callout device for ttyF65

...
127 = /dev/cuf127 Callout device for ttyF127
128 = /dev/cuf128 Callout device for ttyF128
129 = /dev/cuf129 Callout device for ttyF129

...
191 = /dev/cuf191 Callout device for ttyF191
192 = /dev/cuf192 Callout device for ttyF192
193 = /dev/cuf193 Callout device for ttyF193

...
255 = /dev/cuf255 Callout device for ttyF255

72 block Compaq Intelligent Drive Array, first controller
0 = /dev/ida/c0d0 First logical drive whole disk
16 = /dev/ida/c0d1 Second logical drive whole disk

...
240 = /dev/ida/c0d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

73 char Computone IntelliPort II serial card - control devices
0 = /dev/ip2ipl0 Loadware device for board 0
1 = /dev/ip2stat0 Status device for board 0
4 = /dev/ip2ipl1 Loadware device for board 1
5 = /dev/ip2stat1 Status device for board 1
8 = /dev/ip2ipl2 Loadware device for board 2
9 = /dev/ip2stat2 Status device for board 2
12 = /dev/ip2ipl3 Loadware device for board 3
13 = /dev/ip2stat3 Status device for board 3

73 block Compaq Intelligent Drive Array, second controller
0 = /dev/ida/c1d0 First logical drive whole disk
16 = /dev/ida/c1d1 Second logical drive whole disk

...
240 = /dev/ida/c1d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

74 char SCI bridge
0 = /dev/SCI/0 SCI device 0
1 = /dev/SCI/1 SCI device 1

133



Linux Kernel User Documentation, v4.20.0

...

Currently for Dolphin Interconnect Solutions' PCI-SCI
bridge.

74 block Compaq Intelligent Drive Array, third controller
0 = /dev/ida/c2d0 First logical drive whole disk
16 = /dev/ida/c2d1 Second logical drive whole disk

...
240 = /dev/ida/c2d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

75 char Specialix IO8+ serial card
0 = /dev/ttyW0 First IO8+ port, first card
1 = /dev/ttyW1 Second IO8+ port, first card

...
8 = /dev/ttyW8 First IO8+ port, second card

...

75 block Compaq Intelligent Drive Array, fourth controller
0 = /dev/ida/c3d0 First logical drive whole disk
16 = /dev/ida/c3d1 Second logical drive whole disk

...
240 = /dev/ida/c3d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

76 char Specialix IO8+ serial card - alternate devices
0 = /dev/cuw0 Callout device for ttyW0
1 = /dev/cuw1 Callout device for ttyW1

...
8 = /dev/cuw8 Callout device for ttyW8

...

76 block Compaq Intelligent Drive Array, fifth controller
0 = /dev/ida/c4d0 First logical drive whole disk
16 = /dev/ida/c4d1 Second logical drive whole disk

...
240 = /dev/ida/c4d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

77 char ComScire Quantum Noise Generator
0 = /dev/qng ComScire Quantum Noise Generator

77 block Compaq Intelligent Drive Array, sixth controller

134 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

0 = /dev/ida/c5d0 First logical drive whole disk
16 = /dev/ida/c5d1 Second logical drive whole disk

...
240 = /dev/ida/c5d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

78 char PAM Software's multimodem boards
0 = /dev/ttyM0 First PAM modem
1 = /dev/ttyM1 Second PAM modem

...

78 block Compaq Intelligent Drive Array, seventh controller
0 = /dev/ida/c6d0 First logical drive whole disk

16 = /dev/ida/c6d1 Second logical drive whole disk
...

240 = /dev/ida/c6d15 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

79 char PAM Software's multimodem boards - alternate devices
0 = /dev/cum0 Callout device for ttyM0
1 = /dev/cum1 Callout device for ttyM1

...

79 block Compaq Intelligent Drive Array, eighth controller
0 = /dev/ida/c7d0 First logical drive whole disk

16 = /dev/ida/c7d1 Second logical drive whole disk
...

240 = /dev/ida/c715 16th logical drive whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

80 char Photometrics AT200 CCD camera
0 = /dev/at200 Photometrics AT200 CCD camera

80 block I2O hard disk
0 = /dev/i2o/hda First I2O hard disk, whole disk

16 = /dev/i2o/hdb Second I2O hard disk, whole disk
...

240 = /dev/i2o/hdp 16th I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

81 char video4linux
0 = /dev/video0 Video capture/overlay device

135



Linux Kernel User Documentation, v4.20.0

...
63 = /dev/video63 Video capture/overlay device
64 = /dev/radio0 Radio device

...
127 = /dev/radio63 Radio device
128 = /dev/swradio0 Software Defined Radio device

...
191 = /dev/swradio63 Software Defined Radio device
224 = /dev/vbi0 Vertical blank interrupt

...
255 = /dev/vbi31 Vertical blank interrupt

Minor numbers are allocated dynamically unless
CONFIG_VIDEO_FIXED_MINOR_RANGES (default n)
configuration option is set.

81 block I2O hard disk
0 = /dev/i2o/hdq 17th I2O hard disk, whole disk

16 = /dev/i2o/hdr 18th I2O hard disk, whole disk
...

240 = /dev/i2o/hdaf 32nd I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

82 char WiNRADiO communications receiver card
0 = /dev/winradio0 First WiNRADiO card
1 = /dev/winradio1 Second WiNRADiO card

...

The driver and documentation may be obtained from
http://www.winradio.com/

82 block I2O hard disk
0 = /dev/i2o/hdag 33rd I2O hard disk, whole disk

16 = /dev/i2o/hdah 34th I2O hard disk, whole disk
...

240 = /dev/i2o/hdav 48th I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

83 char Matrox mga_vid video driver
0 = /dev/mga_vid0 1st video card
1 = /dev/mga_vid1 2nd video card
2 = /dev/mga_vid2 3rd video card
...

15 = /dev/mga_vid15 16th video card

83 block I2O hard disk
0 = /dev/i2o/hdaw 49th I2O hard disk, whole disk

16 = /dev/i2o/hdax 50th I2O hard disk, whole disk

136 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

...
240 = /dev/i2o/hdbl 64th I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

84 char Ikon 1011[57] Versatec Greensheet Interface
0 = /dev/ihcp0 First Greensheet port
1 = /dev/ihcp1 Second Greensheet port

84 block I2O hard disk
0 = /dev/i2o/hdbm 65th I2O hard disk, whole disk
16 = /dev/i2o/hdbn 66th I2O hard disk, whole disk

...
240 = /dev/i2o/hdcb 80th I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

85 char Linux/SGI shared memory input queue
0 = /dev/shmiq Master shared input queue
1 = /dev/qcntl0 First device pushed
2 = /dev/qcntl1 Second device pushed

...

85 block I2O hard disk
0 = /dev/i2o/hdcc 81st I2O hard disk, whole disk
16 = /dev/i2o/hdcd 82nd I2O hard disk, whole disk

...
240 = /dev/i2o/hdcr 96th I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

86 char SCSI media changer
0 = /dev/sch0 First SCSI media changer
1 = /dev/sch1 Second SCSI media changer

...

86 block I2O hard disk
0 = /dev/i2o/hdcs 97th I2O hard disk, whole disk
16 = /dev/i2o/hdct 98th I2O hard disk, whole disk

...
240 = /dev/i2o/hddh 112th I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

87 char Sony Control-A1 stereo control bus
0 = /dev/controla0 First device on chain

137



Linux Kernel User Documentation, v4.20.0

1 = /dev/controla1 Second device on chain
...

87 block I2O hard disk
0 = /dev/i2o/hddi 113rd I2O hard disk, whole disk

16 = /dev/i2o/hddj 114th I2O hard disk, whole disk
...

240 = /dev/i2o/hddx 128th I2O hard disk, whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

88 char COMX synchronous serial card
0 = /dev/comx0 COMX channel 0
1 = /dev/comx1 COMX channel 1

...

88 block Seventh IDE hard disk/CD-ROM interface
0 = /dev/hdm Master: whole disk (or CD-ROM)

64 = /dev/hdn Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

89 char I2C bus interface
0 = /dev/i2c-0 First I2C adapter
1 = /dev/i2c-1 Second I2C adapter

...

89 block Eighth IDE hard disk/CD-ROM interface
0 = /dev/hdo Master: whole disk (or CD-ROM)

64 = /dev/hdp Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

90 char Memory Technology Device (RAM, ROM, Flash)
0 = /dev/mtd0 First MTD (rw)
1 = /dev/mtdr0 First MTD (ro)

...
30 = /dev/mtd15 16th MTD (rw)
31 = /dev/mtdr15 16th MTD (ro)

90 block Ninth IDE hard disk/CD-ROM interface
0 = /dev/hdq Master: whole disk (or CD-ROM)

64 = /dev/hdr Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

91 char CAN-Bus devices
0 = /dev/can0 First CAN-Bus controller
1 = /dev/can1 Second CAN-Bus controller

138 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

...

91 block Tenth IDE hard disk/CD-ROM interface
0 = /dev/hds Master: whole disk (or CD-ROM)

64 = /dev/hdt Slave: whole disk (or CD-ROM)

Partitions are handled the same way as for the first
interface (see major number 3).

92 char Reserved for ith Kommunikationstechnik MIC ISDN card

92 block PPDD encrypted disk driver
0 = /dev/ppdd0 First encrypted disk
1 = /dev/ppdd1 Second encrypted disk

...

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

93 char

93 block NAND Flash Translation Layer filesystem
0 = /dev/nftla First NFTL layer

16 = /dev/nftlb Second NFTL layer
...

240 = /dev/nftlp 16th NTFL layer

94 char

94 block IBM S/390 DASD block storage
0 = /dev/dasda First DASD device, major
1 = /dev/dasda1 First DASD device, block 1
2 = /dev/dasda2 First DASD device, block 2
3 = /dev/dasda3 First DASD device, block 3
4 = /dev/dasdb Second DASD device, major
5 = /dev/dasdb1 Second DASD device, block 1
6 = /dev/dasdb2 Second DASD device, block 2
7 = /dev/dasdb3 Second DASD device, block 3

...

95 char IP filter
0 = /dev/ipl Filter control device/log file
1 = /dev/ipnat NAT control device/log file
2 = /dev/ipstate State information log file
3 = /dev/ipauth Authentication control device/log file

...

96 char Parallel port ATAPI tape devices
0 = /dev/pt0 First parallel port ATAPI tape
1 = /dev/pt1 Second parallel port ATAPI tape

...
128 = /dev/npt0 First p.p. ATAPI tape, no rewind
129 = /dev/npt1 Second p.p. ATAPI tape, no rewind

139



Linux Kernel User Documentation, v4.20.0

...

96 block Inverse NAND Flash Translation Layer
0 = /dev/inftla First INFTL layer

16 = /dev/inftlb Second INFTL layer
...

240 = /dev/inftlp 16th INTFL layer

97 char Parallel port generic ATAPI interface
0 = /dev/pg0 First parallel port ATAPI device
1 = /dev/pg1 Second parallel port ATAPI device
2 = /dev/pg2 Third parallel port ATAPI device
3 = /dev/pg3 Fourth parallel port ATAPI device

These devices support the same API as the generic SCSI
devices.

98 char Control and Measurement Device (comedi)
0 = /dev/comedi0 First comedi device
1 = /dev/comedi1 Second comedi device

...

See http://stm.lbl.gov/comedi.

98 block User-mode virtual block device
0 = /dev/ubda First user-mode block device
16 = /dev/udbb Second user-mode block device

...

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

This device is used by the user-mode virtual kernel port.

99 char Raw parallel ports
0 = /dev/parport0 First parallel port
1 = /dev/parport1 Second parallel port

...

99 block JavaStation flash disk
0 = /dev/jsfd JavaStation flash disk

100 char Telephony for Linux
0 = /dev/phone0 First telephony device
1 = /dev/phone1 Second telephony device

...

101 char Motorola DSP 56xxx board
0 = /dev/mdspstat Status information
1 = /dev/mdsp1 First DSP board I/O controls

...
16 = /dev/mdsp16 16th DSP board I/O controls

140 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

101 block AMI HyperDisk RAID controller
0 = /dev/amiraid/ar0 First array whole disk

16 = /dev/amiraid/ar1 Second array whole disk
...

240 = /dev/amiraid/ar15 16th array whole disk

For each device, partitions are added as:
0 = /dev/amiraid/ar? Whole disk
1 = /dev/amiraid/ar?p1 First partition
2 = /dev/amiraid/ar?p2 Second partition

...
15 = /dev/amiraid/ar?p15 15th partition

102 char

102 block Compressed block device
0 = /dev/cbd/a First compressed block device, whole device

16 = /dev/cbd/b Second compressed block device, whole device
...

240 = /dev/cbd/p 16th compressed block device, whole device

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

103 char Arla network file system
0 = /dev/nnpfs0 First NNPFS device
1 = /dev/nnpfs1 Second NNPFS device

Arla is a free clone of the Andrew File System, AFS.
The NNPFS device gives user mode filesystem
implementations a kernel presence for caching and easy
mounting. For more information about the project,
write to <arla-drinkers@stacken.kth.se> or see
http://www.stacken.kth.se/project/arla/

103 block Audit device
0 = /dev/audit Audit device

104 char Flash BIOS support

104 block Compaq Next Generation Drive Array, first controller
0 = /dev/cciss/c0d0 First logical drive, whole disk

16 = /dev/cciss/c0d1 Second logical drive, whole disk
...

240 = /dev/cciss/c0d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

105 char Comtrol VS-1000 serial controller
0 = /dev/ttyV0 First VS-1000 port
1 = /dev/ttyV1 Second VS-1000 port

141



Linux Kernel User Documentation, v4.20.0

...

105 block Compaq Next Generation Drive Array, second controller
0 = /dev/cciss/c1d0 First logical drive, whole disk

16 = /dev/cciss/c1d1 Second logical drive, whole disk
...

240 = /dev/cciss/c1d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

106 char Comtrol VS-1000 serial controller - alternate devices
0 = /dev/cuv0 First VS-1000 port
1 = /dev/cuv1 Second VS-1000 port

...

106 block Compaq Next Generation Drive Array, third controller
0 = /dev/cciss/c2d0 First logical drive, whole disk

16 = /dev/cciss/c2d1 Second logical drive, whole disk
...

240 = /dev/cciss/c2d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

107 char 3Dfx Voodoo Graphics device
0 = /dev/3dfx Primary 3Dfx graphics device

107 block Compaq Next Generation Drive Array, fourth controller
0 = /dev/cciss/c3d0 First logical drive, whole disk

16 = /dev/cciss/c3d1 Second logical drive, whole disk
...

240 = /dev/cciss/c3d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

108 char Device independent PPP interface
0 = /dev/ppp Device independent PPP interface

108 block Compaq Next Generation Drive Array, fifth controller
0 = /dev/cciss/c4d0 First logical drive, whole disk

16 = /dev/cciss/c4d1 Second logical drive, whole disk
...

240 = /dev/cciss/c4d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

109 char Reserved for logical volume manager

142 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

109 block Compaq Next Generation Drive Array, sixth controller
0 = /dev/cciss/c5d0 First logical drive, whole disk

16 = /dev/cciss/c5d1 Second logical drive, whole disk
...

240 = /dev/cciss/c5d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

110 char miroMEDIA Surround board
0 = /dev/srnd0 First miroMEDIA Surround board
1 = /dev/srnd1 Second miroMEDIA Surround board

...

110 block Compaq Next Generation Drive Array, seventh controller
0 = /dev/cciss/c6d0 First logical drive, whole disk

16 = /dev/cciss/c6d1 Second logical drive, whole disk
...

240 = /dev/cciss/c6d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

111 char

111 block Compaq Next Generation Drive Array, eighth controller
0 = /dev/cciss/c7d0 First logical drive, whole disk

16 = /dev/cciss/c7d1 Second logical drive, whole disk
...

240 = /dev/cciss/c7d15 16th logical drive, whole disk

Partitions are handled the same way as for Mylex
DAC960 (see major number 48) except that the limit on
partitions is 15.

112 char ISI serial card
0 = /dev/ttyM0 First ISI port
1 = /dev/ttyM1 Second ISI port

...

There is currently a device-naming conflict between
these and PAM multimodems (major 78).

112 block IBM iSeries virtual disk
0 = /dev/iseries/vda First virtual disk, whole disk
8 = /dev/iseries/vdb Second virtual disk, whole disk

...
200 = /dev/iseries/vdz 26th virtual disk, whole disk
208 = /dev/iseries/vdaa 27th virtual disk, whole disk

...
248 = /dev/iseries/vdaf 32nd virtual disk, whole disk

143



Linux Kernel User Documentation, v4.20.0

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 7.

113 char ISI serial card - alternate devices
0 = /dev/cum0 Callout device for ttyM0
1 = /dev/cum1 Callout device for ttyM1

...

113 block IBM iSeries virtual CD-ROM
0 = /dev/iseries/vcda First virtual CD-ROM
1 = /dev/iseries/vcdb Second virtual CD-ROM

...

114 char Picture Elements ISE board
0 = /dev/ise0 First ISE board
1 = /dev/ise1 Second ISE board

...
128 = /dev/isex0 Control node for first ISE board
129 = /dev/isex1 Control node for second ISE board

...

The ISE board is an embedded computer, optimized for
image processing. The /dev/iseN nodes are the general
I/O access to the board, the /dev/isex0 nodes command
nodes used to control the board.

114 block IDE BIOS powered software RAID interfaces such as the
Promise Fastrak

0 = /dev/ataraid/d0
1 = /dev/ataraid/d0p1
2 = /dev/ataraid/d0p2
...
16 = /dev/ataraid/d1
17 = /dev/ataraid/d1p1
18 = /dev/ataraid/d1p2
...

255 = /dev/ataraid/d15p15

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

115 char TI link cable devices (115 was formerly the console driver speaker)
0 = /dev/tipar0 Parallel cable on first parallel port
...
7 = /dev/tipar7 Parallel cable on seventh parallel port

8 = /dev/tiser0 Serial cable on first serial port
...

15 = /dev/tiser7 Serial cable on seventh serial port

144 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

16 = /dev/tiusb0 First USB cable
...

47 = /dev/tiusb31 32nd USB cable

115 block NetWare (NWFS) Devices (0-255)

The NWFS (NetWare) devices are used to present a
collection of NetWare Mirror Groups or NetWare
Partitions as a logical storage segment for
use in mounting NetWare volumes. A maximum of
256 NetWare volumes can be supported in a single

machine.

http://cgfa.telepac.pt/ftp2/kernel.org/linux/kernel/people/jmerkey/nwfs/

0 = /dev/nwfs/v0 First NetWare (NWFS) Logical Volume
1 = /dev/nwfs/v1 Second NetWare (NWFS) Logical Volume
2 = /dev/nwfs/v2 Third NetWare (NWFS) Logical Volume

...
255 = /dev/nwfs/v255 Last NetWare (NWFS) Logical Volume

116 char Advanced Linux Sound Driver (ALSA)

116 block MicroMemory battery backed RAM adapter (NVRAM)
Supports 16 boards, 15 partitions each.
Requested by neilb at cse.unsw.edu.au.

0 = /dev/umem/d0 Whole of first board
1 = /dev/umem/d0p1 First partition of first board
2 = /dev/umem/d0p2 Second partition of first board

15 = /dev/umem/d0p15 15th partition of first board

16 = /dev/umem/d1 Whole of second board
17 = /dev/umem/d1p1 First partition of second board

...
255= /dev/umem/d15p15 15th partition of 16th board.

117 char COSA/SRP synchronous serial card
0 = /dev/cosa0c0 1st board, 1st channel
1 = /dev/cosa0c1 1st board, 2nd channel

...
16 = /dev/cosa1c0 2nd board, 1st channel
17 = /dev/cosa1c1 2nd board, 2nd channel

...

117 block Enterprise Volume Management System (EVMS)

The EVMS driver uses a layered, plug-in model to provide
unparalleled flexibility and extensibility in managing
storage. This allows for easy expansion or customization
of various levels of volume management. Requested by
Mark Peloquin (peloquin at us.ibm.com).

Note: EVMS populates and manages all the devnodes in

145



Linux Kernel User Documentation, v4.20.0

/dev/evms.

http://sf.net/projects/evms

0 = /dev/evms/block_device EVMS block device
1 = /dev/evms/legacyname1 First EVMS legacy device
2 = /dev/evms/legacyname2 Second EVMS legacy device
...
Both ranges can grow (down or up) until they meet.
...

254 = /dev/evms/EVMSname2 Second EVMS native device
255 = /dev/evms/EVMSname1 First EVMS native device

Note: legacyname(s) are derived from the normal legacy
device names. For example, /dev/hda5 would become
/dev/evms/hda5.

118 char IBM Cryptographic Accelerator
0 = /dev/ica Virtual interface to all IBM Crypto Accelerators
1 = /dev/ica0 IBMCA Device 0
2 = /dev/ica1 IBMCA Device 1

...

119 char VMware virtual network control
0 = /dev/vnet0 1st virtual network
1 = /dev/vnet1 2nd virtual network

...

120-127 char LOCAL/EXPERIMENTAL USE

120-127 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.

128-135 char Unix98 PTY masters

These devices should not have corresponding device
nodes; instead they should be accessed through the
/dev/ptmx cloning interface.

128 block SCSI disk devices (128-143)
0 = /dev/sddy 129th SCSI disk whole disk
16 = /dev/sddz 130th SCSI disk whole disk
32 = /dev/sdea 131th SCSI disk whole disk

...
240 = /dev/sden 144th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

129 block SCSI disk devices (144-159)
0 = /dev/sdeo 145th SCSI disk whole disk

146 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

16 = /dev/sdep 146th SCSI disk whole disk
32 = /dev/sdeq 147th SCSI disk whole disk

...
240 = /dev/sdfd 160th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

130 char (Misc devices)

130 block SCSI disk devices (160-175)
0 = /dev/sdfe 161st SCSI disk whole disk
16 = /dev/sdff 162nd SCSI disk whole disk
32 = /dev/sdfg 163rd SCSI disk whole disk

...
240 = /dev/sdft 176th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

131 block SCSI disk devices (176-191)
0 = /dev/sdfu 177th SCSI disk whole disk
16 = /dev/sdfv 178th SCSI disk whole disk
32 = /dev/sdfw 179th SCSI disk whole disk

...
240 = /dev/sdgj 192nd SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

132 block SCSI disk devices (192-207)
0 = /dev/sdgk 193rd SCSI disk whole disk
16 = /dev/sdgl 194th SCSI disk whole disk
32 = /dev/sdgm 195th SCSI disk whole disk

...
240 = /dev/sdgz 208th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

133 block SCSI disk devices (208-223)
0 = /dev/sdha 209th SCSI disk whole disk
16 = /dev/sdhb 210th SCSI disk whole disk
32 = /dev/sdhc 211th SCSI disk whole disk

...
240 = /dev/sdhp 224th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

147



Linux Kernel User Documentation, v4.20.0

134 block SCSI disk devices (224-239)
0 = /dev/sdhq 225th SCSI disk whole disk
16 = /dev/sdhr 226th SCSI disk whole disk
32 = /dev/sdhs 227th SCSI disk whole disk

...
240 = /dev/sdif 240th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

135 block SCSI disk devices (240-255)
0 = /dev/sdig 241st SCSI disk whole disk
16 = /dev/sdih 242nd SCSI disk whole disk
32 = /dev/sdih 243rd SCSI disk whole disk

...
240 = /dev/sdiv 256th SCSI disk whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

136-143 char Unix98 PTY slaves
0 = /dev/pts/0 First Unix98 pseudo-TTY
1 = /dev/pts/1 Second Unix98 pseudo-TTY

...

These device nodes are automatically generated with
the proper permissions and modes by mounting the
devpts filesystem onto /dev/pts with the appropriate
mount options (distribution dependent, however, on

*most* distributions the appropriate options are
``mode=0620,gid=<gid of the ``tty'' group>''.)

136 block Mylex DAC960 PCI RAID controller; ninth controller
0 = /dev/rd/c8d0 First disk, whole disk
8 = /dev/rd/c8d1 Second disk, whole disk

...
248 = /dev/rd/c8d31 32nd disk, whole disk

Partitions are handled as for major 48.

137 block Mylex DAC960 PCI RAID controller; tenth controller
0 = /dev/rd/c9d0 First disk, whole disk
8 = /dev/rd/c9d1 Second disk, whole disk

...
248 = /dev/rd/c9d31 32nd disk, whole disk

Partitions are handled as for major 48.

138 block Mylex DAC960 PCI RAID controller; eleventh controller
0 = /dev/rd/c10d0 First disk, whole disk
8 = /dev/rd/c10d1 Second disk, whole disk

148 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

...
248 = /dev/rd/c10d31 32nd disk, whole disk

Partitions are handled as for major 48.

139 block Mylex DAC960 PCI RAID controller; twelfth controller
0 = /dev/rd/c11d0 First disk, whole disk
8 = /dev/rd/c11d1 Second disk, whole disk

...
248 = /dev/rd/c11d31 32nd disk, whole disk

Partitions are handled as for major 48.

140 block Mylex DAC960 PCI RAID controller; thirteenth controller
0 = /dev/rd/c12d0 First disk, whole disk
8 = /dev/rd/c12d1 Second disk, whole disk

...
248 = /dev/rd/c12d31 32nd disk, whole disk

Partitions are handled as for major 48.

141 block Mylex DAC960 PCI RAID controller; fourteenth controller
0 = /dev/rd/c13d0 First disk, whole disk
8 = /dev/rd/c13d1 Second disk, whole disk

...
248 = /dev/rd/c13d31 32nd disk, whole disk

Partitions are handled as for major 48.

142 block Mylex DAC960 PCI RAID controller; fifteenth controller
0 = /dev/rd/c14d0 First disk, whole disk
8 = /dev/rd/c14d1 Second disk, whole disk

...
248 = /dev/rd/c14d31 32nd disk, whole disk

Partitions are handled as for major 48.

143 block Mylex DAC960 PCI RAID controller; sixteenth controller
0 = /dev/rd/c15d0 First disk, whole disk
8 = /dev/rd/c15d1 Second disk, whole disk

...
248 = /dev/rd/c15d31 32nd disk, whole disk

Partitions are handled as for major 48.

144 char Encapsulated PPP
0 = /dev/pppox0 First PPP over Ethernet

...
63 = /dev/pppox63 64th PPP over Ethernet

This is primarily used for ADSL.

The SST 5136-DN DeviceNet interface driver has been
relocated to major 183 due to an unfortunate conflict.

149



Linux Kernel User Documentation, v4.20.0

144 block Expansion Area #1 for more non-device (e.g. NFS) mounts
0 = mounted device 256

255 = mounted device 511

145 char SAM9407-based soundcard
0 = /dev/sam0_mixer
1 = /dev/sam0_sequencer
2 = /dev/sam0_midi00
3 = /dev/sam0_dsp
4 = /dev/sam0_audio
6 = /dev/sam0_sndstat

18 = /dev/sam0_midi01
34 = /dev/sam0_midi02
50 = /dev/sam0_midi03
64 = /dev/sam1_mixer

...
128 = /dev/sam2_mixer

...
192 = /dev/sam3_mixer

...

Device functions match OSS, but offer a number of
addons, which are sam9407 specific. OSS can be
operated simultaneously, taking care of the codec.

145 block Expansion Area #2 for more non-device (e.g. NFS) mounts
0 = mounted device 512

255 = mounted device 767

146 char SYSTRAM SCRAMNet mirrored-memory network
0 = /dev/scramnet0 First SCRAMNet device
1 = /dev/scramnet1 Second SCRAMNet device

...

146 block Expansion Area #3 for more non-device (e.g. NFS) mounts
0 = mounted device 768

255 = mounted device 1023

147 char Aureal Semiconductor Vortex Audio device
0 = /dev/aureal0 First Aureal Vortex
1 = /dev/aureal1 Second Aureal Vortex

...

147 block Distributed Replicated Block Device (DRBD)
0 = /dev/drbd0 First DRBD device
1 = /dev/drbd1 Second DRBD device

...

148 char Technology Concepts serial card
0 = /dev/ttyT0 First TCL port
1 = /dev/ttyT1 Second TCL port

...

150 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

149 char Technology Concepts serial card - alternate devices
0 = /dev/cut0 Callout device for ttyT0
1 = /dev/cut0 Callout device for ttyT1

...

150 char Real-Time Linux FIFOs
0 = /dev/rtf0 First RTLinux FIFO
1 = /dev/rtf1 Second RTLinux FIFO

...

151 char DPT I2O SmartRaid V controller
0 = /dev/dpti0 First DPT I2O adapter
1 = /dev/dpti1 Second DPT I2O adapter

...

152 char EtherDrive Control Device
0 = /dev/etherd/ctl Connect/Disconnect an EtherDrive
1 = /dev/etherd/err Monitor errors
2 = /dev/etherd/raw Raw AoE packet monitor

152 block EtherDrive Block Devices
0 = /dev/etherd/0 EtherDrive 0

...
255 = /dev/etherd/255 EtherDrive 255

153 char SPI Bus Interface (sometimes referred to as MicroWire)
0 = /dev/spi0 First SPI device on the bus
1 = /dev/spi1 Second SPI device on the bus

...
15 = /dev/spi15 Sixteenth SPI device on the bus

153 block Enhanced Metadisk RAID (EMD) storage units
0 = /dev/emd/0 First unit
1 = /dev/emd/0p1 Partition 1 on First unit
2 = /dev/emd/0p2 Partition 2 on First unit

...
15 = /dev/emd/0p15 Partition 15 on First unit

16 = /dev/emd/1 Second unit
32 = /dev/emd/2 Third unit

...
240 = /dev/emd/15 Sixteenth unit

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

154 char Specialix RIO serial card
0 = /dev/ttySR0 First RIO port

...
255 = /dev/ttySR255 256th RIO port

155 char Specialix RIO serial card - alternate devices
0 = /dev/cusr0 Callout device for ttySR0

151



Linux Kernel User Documentation, v4.20.0

...
255 = /dev/cusr255 Callout device for ttySR255

156 char Specialix RIO serial card
0 = /dev/ttySR256 257th RIO port

...
255 = /dev/ttySR511 512th RIO port

157 char Specialix RIO serial card - alternate devices
0 = /dev/cusr256 Callout device for ttySR256

...
255 = /dev/cusr511 Callout device for ttySR511

158 char Dialogic GammaLink fax driver
0 = /dev/gfax0 GammaLink channel 0
1 = /dev/gfax1 GammaLink channel 1

...

159 char RESERVED

159 block RESERVED

160 char General Purpose Instrument Bus (GPIB)
0 = /dev/gpib0 First GPIB bus
1 = /dev/gpib1 Second GPIB bus

...

160 block Carmel 8-port SATA Disks on First Controller
0 = /dev/carmel/0 SATA disk 0 whole disk
1 = /dev/carmel/0p1 SATA disk 0 partition 1

...
31 = /dev/carmel/0p31 SATA disk 0 partition 31

32 = /dev/carmel/1 SATA disk 1 whole disk
64 = /dev/carmel/2 SATA disk 2 whole disk

...
224 = /dev/carmel/7 SATA disk 7 whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 31.

161 char IrCOMM devices (IrDA serial/parallel emulation)
0 = /dev/ircomm0 First IrCOMM device
1 = /dev/ircomm1 Second IrCOMM device

...
16 = /dev/irlpt0 First IrLPT device
17 = /dev/irlpt1 Second IrLPT device

...

161 block Carmel 8-port SATA Disks on Second Controller
0 = /dev/carmel/8 SATA disk 8 whole disk
1 = /dev/carmel/8p1 SATA disk 8 partition 1

...

152 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

31 = /dev/carmel/8p31 SATA disk 8 partition 31

32 = /dev/carmel/9 SATA disk 9 whole disk
64 = /dev/carmel/10 SATA disk 10 whole disk

...
224 = /dev/carmel/15 SATA disk 15 whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 31.

162 char Raw block device interface
0 = /dev/rawctl Raw I/O control device
1 = /dev/raw/raw1 First raw I/O device
2 = /dev/raw/raw2 Second raw I/O device

...
max minor number of raw device is set by kernel config
MAX_RAW_DEVS or raw module parameter `max_raw_devs'

163 char

164 char Chase Research AT/PCI-Fast serial card
0 = /dev/ttyCH0 AT/PCI-Fast board 0, port 0

...
15 = /dev/ttyCH15 AT/PCI-Fast board 0, port 15
16 = /dev/ttyCH16 AT/PCI-Fast board 1, port 0

...
31 = /dev/ttyCH31 AT/PCI-Fast board 1, port 15
32 = /dev/ttyCH32 AT/PCI-Fast board 2, port 0

...
47 = /dev/ttyCH47 AT/PCI-Fast board 2, port 15
48 = /dev/ttyCH48 AT/PCI-Fast board 3, port 0

...
63 = /dev/ttyCH63 AT/PCI-Fast board 3, port 15

165 char Chase Research AT/PCI-Fast serial card - alternate devices
0 = /dev/cuch0 Callout device for ttyCH0

...
63 = /dev/cuch63 Callout device for ttyCH63

166 char ACM USB modems
0 = /dev/ttyACM0 First ACM modem
1 = /dev/ttyACM1 Second ACM modem

...

167 char ACM USB modems - alternate devices
0 = /dev/cuacm0 Callout device for ttyACM0
1 = /dev/cuacm1 Callout device for ttyACM1

...

168 char Eracom CSA7000 PCI encryption adaptor
0 = /dev/ecsa0 First CSA7000
1 = /dev/ecsa1 Second CSA7000

...

153



Linux Kernel User Documentation, v4.20.0

169 char Eracom CSA8000 PCI encryption adaptor
0 = /dev/ecsa8-0 First CSA8000
1 = /dev/ecsa8-1 Second CSA8000

...

170 char AMI MegaRAC remote access controller
0 = /dev/megarac0 First MegaRAC card
1 = /dev/megarac1 Second MegaRAC card

...

171 char Reserved for IEEE 1394 (Firewire)

172 char Moxa Intellio serial card
0 = /dev/ttyMX0 First Moxa port
1 = /dev/ttyMX1 Second Moxa port

...
127 = /dev/ttyMX127 128th Moxa port
128 = /dev/moxactl Moxa control port

173 char Moxa Intellio serial card - alternate devices
0 = /dev/cumx0 Callout device for ttyMX0
1 = /dev/cumx1 Callout device for ttyMX1

...
127 = /dev/cumx127 Callout device for ttyMX127

174 char SmartIO serial card
0 = /dev/ttySI0 First SmartIO port
1 = /dev/ttySI1 Second SmartIO port

...

175 char SmartIO serial card - alternate devices
0 = /dev/cusi0 Callout device for ttySI0
1 = /dev/cusi1 Callout device for ttySI1

...

176 char nCipher nFast PCI crypto accelerator
0 = /dev/nfastpci0 First nFast PCI device
1 = /dev/nfastpci1 First nFast PCI device

...

177 char TI PCILynx memory spaces
0 = /dev/pcilynx/aux0 AUX space of first PCILynx card

...
15 = /dev/pcilynx/aux15 AUX space of 16th PCILynx card
16 = /dev/pcilynx/rom0 ROM space of first PCILynx card

...
31 = /dev/pcilynx/rom15 ROM space of 16th PCILynx card
32 = /dev/pcilynx/ram0 RAM space of first PCILynx card

...
47 = /dev/pcilynx/ram15 RAM space of 16th PCILynx card

178 char Giganet cLAN1xxx virtual interface adapter
0 = /dev/clanvi0 First cLAN adapter

154 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

1 = /dev/clanvi1 Second cLAN adapter
...

179 block MMC block devices
0 = /dev/mmcblk0 First SD/MMC card
1 = /dev/mmcblk0p1 First partition on first MMC card
8 = /dev/mmcblk1 Second SD/MMC card

...

The start of next SD/MMC card can be configured with
CONFIG_MMC_BLOCK_MINORS, or overridden at boot/modprobe
time using the mmcblk.perdev_minors option. That would
bump the offset between each card to be the configured
value instead of the default 8.

179 char CCube DVXChip-based PCI products
0 = /dev/dvxirq0 First DVX device
1 = /dev/dvxirq1 Second DVX device

...

180 char USB devices
0 = /dev/usb/lp0 First USB printer

...
15 = /dev/usb/lp15 16th USB printer
48 = /dev/usb/scanner0 First USB scanner

...
63 = /dev/usb/scanner15 16th USB scanner
64 = /dev/usb/rio500 Diamond Rio 500
65 = /dev/usb/usblcd USBLCD Interface (info@usblcd.de)
66 = /dev/usb/cpad0 Synaptics cPad (mouse/LCD)
96 = /dev/usb/hiddev0 1st USB HID device

...
111 = /dev/usb/hiddev15 16th USB HID device
112 = /dev/usb/auer0 1st auerswald ISDN device

...
127 = /dev/usb/auer15 16th auerswald ISDN device
128 = /dev/usb/brlvgr0 First Braille Voyager device

...
131 = /dev/usb/brlvgr3 Fourth Braille Voyager device
132 = /dev/usb/idmouse ID Mouse (fingerprint scanner) device
133 = /dev/usb/sisusbvga1 First SiSUSB VGA device

...
140 = /dev/usb/sisusbvga8 Eighth SISUSB VGA device
144 = /dev/usb/lcd USB LCD device
160 = /dev/usb/legousbtower0 1st USB Legotower device

...
175 = /dev/usb/legousbtower15 16th USB Legotower device
176 = /dev/usb/usbtmc1 First USB TMC device

...
191 = /dev/usb/usbtmc16 16th USB TMC device
192 = /dev/usb/yurex1 First USB Yurex device

...
209 = /dev/usb/yurex16 16th USB Yurex device

155



Linux Kernel User Documentation, v4.20.0

180 block USB block devices
0 = /dev/uba First USB block device
8 = /dev/ubb Second USB block device

16 = /dev/ubc Third USB block device
...

181 char Conrad Electronic parallel port radio clocks
0 = /dev/pcfclock0 First Conrad radio clock
1 = /dev/pcfclock1 Second Conrad radio clock

...

182 char Picture Elements THR2 binarizer
0 = /dev/pethr0 First THR2 board
1 = /dev/pethr1 Second THR2 board

...

183 char SST 5136-DN DeviceNet interface
0 = /dev/ss5136dn0 First DeviceNet interface
1 = /dev/ss5136dn1 Second DeviceNet interface

...

This device used to be assigned to major number 144.
It had to be moved due to an unfortunate conflict.

184 char Picture Elements' video simulator/sender
0 = /dev/pevss0 First sender board
1 = /dev/pevss1 Second sender board

...

185 char InterMezzo high availability file system
0 = /dev/intermezzo0 First cache manager
1 = /dev/intermezzo1 Second cache manager

...

See http://web.archive.org/web/20080115195241/
http://inter-mezzo.org/index.html

186 char Object-based storage control device
0 = /dev/obd0 First obd control device
1 = /dev/obd1 Second obd control device

...

See ftp://ftp.lustre.org/pub/obd for code and information.

187 char DESkey hardware encryption device
0 = /dev/deskey0 First DES key
1 = /dev/deskey1 Second DES key

...

188 char USB serial converters
0 = /dev/ttyUSB0 First USB serial converter
1 = /dev/ttyUSB1 Second USB serial converter

...

156 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

189 char USB serial converters - alternate devices
0 = /dev/cuusb0 Callout device for ttyUSB0
1 = /dev/cuusb1 Callout device for ttyUSB1

...

190 char Kansas City tracker/tuner card
0 = /dev/kctt0 First KCT/T card
1 = /dev/kctt1 Second KCT/T card

...

191 char Reserved for PCMCIA

192 char Kernel profiling interface
0 = /dev/profile Profiling control device
1 = /dev/profile0 Profiling device for CPU 0
2 = /dev/profile1 Profiling device for CPU 1

...

193 char Kernel event-tracing interface
0 = /dev/trace Tracing control device
1 = /dev/trace0 Tracing device for CPU 0
2 = /dev/trace1 Tracing device for CPU 1

...

194 char linVideoStreams (LINVS)
0 = /dev/mvideo/status0 Video compression status
1 = /dev/mvideo/stream0 Video stream
2 = /dev/mvideo/frame0 Single compressed frame
3 = /dev/mvideo/rawframe0 Raw uncompressed frame
4 = /dev/mvideo/codec0 Direct codec access
5 = /dev/mvideo/video4linux0 Video4Linux compatibility

16 = /dev/mvideo/status1 Second device
...

32 = /dev/mvideo/status2 Third device
...
...

240 = /dev/mvideo/status15 16th device
...

195 char Nvidia graphics devices
0 = /dev/nvidia0 First Nvidia card
1 = /dev/nvidia1 Second Nvidia card

...
255 = /dev/nvidiactl Nvidia card control device

196 char Tormenta T1 card
0 = /dev/tor/0 Master control channel for all cards
1 = /dev/tor/1 First DS0
2 = /dev/tor/2 Second DS0

...
48 = /dev/tor/48 48th DS0
49 = /dev/tor/49 First pseudo-channel
50 = /dev/tor/50 Second pseudo-channel

157



Linux Kernel User Documentation, v4.20.0

...

197 char OpenTNF tracing facility
0 = /dev/tnf/t0 Trace 0 data extraction
1 = /dev/tnf/t1 Trace 1 data extraction

...
128 = /dev/tnf/status Tracing facility status
130 = /dev/tnf/trace Tracing device

198 char Total Impact TPMP2 quad coprocessor PCI card
0 = /dev/tpmp2/0 First card
1 = /dev/tpmp2/1 Second card

...

199 char Veritas volume manager (VxVM) volumes
0 = /dev/vx/rdsk/*/* First volume
1 = /dev/vx/rdsk/*/* Second volume

...

199 block Veritas volume manager (VxVM) volumes
0 = /dev/vx/dsk/*/* First volume
1 = /dev/vx/dsk/*/* Second volume

...

The namespace in these directories is maintained by
the user space VxVM software.

200 char Veritas VxVM configuration interface
0 = /dev/vx/config Configuration access node
1 = /dev/vx/trace Volume i/o trace access node
2 = /dev/vx/iod Volume i/o daemon access node
3 = /dev/vx/info Volume information access node
4 = /dev/vx/task Volume tasks access node
5 = /dev/vx/taskmon Volume tasks monitor daemon

201 char Veritas VxVM dynamic multipathing driver
0 = /dev/vx/rdmp/* First multipath device
1 = /dev/vx/rdmp/* Second multipath device

...
201 block Veritas VxVM dynamic multipathing driver

0 = /dev/vx/dmp/* First multipath device
1 = /dev/vx/dmp/* Second multipath device

...

The namespace in these directories is maintained by
the user space VxVM software.

202 char CPU model-specific registers
0 = /dev/cpu/0/msr MSRs on CPU 0
1 = /dev/cpu/1/msr MSRs on CPU 1

...

202 block Xen Virtual Block Device
0 = /dev/xvda First Xen VBD whole disk

158 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

16 = /dev/xvdb Second Xen VBD whole disk
32 = /dev/xvdc Third Xen VBD whole disk

...
240 = /dev/xvdp Sixteenth Xen VBD whole disk

Partitions are handled in the same way as for IDE
disks (see major number 3) except that the limit on
partitions is 15.

203 char CPU CPUID information
0 = /dev/cpu/0/cpuid CPUID on CPU 0
1 = /dev/cpu/1/cpuid CPUID on CPU 1

...

204 char Low-density serial ports
0 = /dev/ttyLU0 LinkUp Systems L72xx UART - port 0
1 = /dev/ttyLU1 LinkUp Systems L72xx UART - port 1
2 = /dev/ttyLU2 LinkUp Systems L72xx UART - port 2
3 = /dev/ttyLU3 LinkUp Systems L72xx UART - port 3
4 = /dev/ttyFB0 Intel Footbridge (ARM)
5 = /dev/ttySA0 StrongARM builtin serial port 0
6 = /dev/ttySA1 StrongARM builtin serial port 1
7 = /dev/ttySA2 StrongARM builtin serial port 2
8 = /dev/ttySC0 SCI serial port (SuperH) - port 0
9 = /dev/ttySC1 SCI serial port (SuperH) - port 1

10 = /dev/ttySC2 SCI serial port (SuperH) - port 2
11 = /dev/ttySC3 SCI serial port (SuperH) - port 3
12 = /dev/ttyFW0 Firmware console - port 0
13 = /dev/ttyFW1 Firmware console - port 1
14 = /dev/ttyFW2 Firmware console - port 2
15 = /dev/ttyFW3 Firmware console - port 3
16 = /dev/ttyAM0 ARM ``AMBA'' serial port 0

...
31 = /dev/ttyAM15 ARM ``AMBA'' serial port 15
32 = /dev/ttyDB0 DataBooster serial port 0

...
39 = /dev/ttyDB7 DataBooster serial port 7
40 = /dev/ttySG0 SGI Altix console port
41 = /dev/ttySMX0 Motorola i.MX - port 0
42 = /dev/ttySMX1 Motorola i.MX - port 1
43 = /dev/ttySMX2 Motorola i.MX - port 2
44 = /dev/ttyMM0 Marvell MPSC - port 0
45 = /dev/ttyMM1 Marvell MPSC - port 1
46 = /dev/ttyCPM0 PPC CPM (SCC or SMC) - port 0

...
47 = /dev/ttyCPM5 PPC CPM (SCC or SMC) - port 5
50 = /dev/ttyIOC0 Altix serial card

...
81 = /dev/ttyIOC31 Altix serial card
82 = /dev/ttyVR0 NEC VR4100 series SIU
83 = /dev/ttyVR1 NEC VR4100 series DSIU
84 = /dev/ttyIOC84 Altix ioc4 serial card

...
115 = /dev/ttyIOC115 Altix ioc4 serial card

159



Linux Kernel User Documentation, v4.20.0

116 = /dev/ttySIOC0 Altix ioc3 serial card
...

147 = /dev/ttySIOC31 Altix ioc3 serial card
148 = /dev/ttyPSC0 PPC PSC - port 0

...
153 = /dev/ttyPSC5 PPC PSC - port 5
154 = /dev/ttyAT0 ATMEL serial port 0

...
169 = /dev/ttyAT15 ATMEL serial port 15
170 = /dev/ttyNX0 Hilscher netX serial port 0

...
185 = /dev/ttyNX15 Hilscher netX serial port 15
186 = /dev/ttyJ0 JTAG1 DCC protocol based serial port emulation
187 = /dev/ttyUL0 Xilinx uartlite - port 0

...
190 = /dev/ttyUL3 Xilinx uartlite - port 3
191 = /dev/xvc0 Xen virtual console - port 0
192 = /dev/ttyPZ0 pmac_zilog - port 0

...
195 = /dev/ttyPZ3 pmac_zilog - port 3
196 = /dev/ttyTX0 TX39/49 serial port 0

...
204 = /dev/ttyTX7 TX39/49 serial port 7
205 = /dev/ttySC0 SC26xx serial port 0
206 = /dev/ttySC1 SC26xx serial port 1
207 = /dev/ttySC2 SC26xx serial port 2
208 = /dev/ttySC3 SC26xx serial port 3
209 = /dev/ttyMAX0 MAX3100 serial port 0
210 = /dev/ttyMAX1 MAX3100 serial port 1
211 = /dev/ttyMAX2 MAX3100 serial port 2
212 = /dev/ttyMAX3 MAX3100 serial port 3

205 char Low-density serial ports (alternate device)
0 = /dev/culu0 Callout device for ttyLU0
1 = /dev/culu1 Callout device for ttyLU1
2 = /dev/culu2 Callout device for ttyLU2
3 = /dev/culu3 Callout device for ttyLU3
4 = /dev/cufb0 Callout device for ttyFB0
5 = /dev/cusa0 Callout device for ttySA0
6 = /dev/cusa1 Callout device for ttySA1
7 = /dev/cusa2 Callout device for ttySA2
8 = /dev/cusc0 Callout device for ttySC0
9 = /dev/cusc1 Callout device for ttySC1

10 = /dev/cusc2 Callout device for ttySC2
11 = /dev/cusc3 Callout device for ttySC3
12 = /dev/cufw0 Callout device for ttyFW0
13 = /dev/cufw1 Callout device for ttyFW1
14 = /dev/cufw2 Callout device for ttyFW2
15 = /dev/cufw3 Callout device for ttyFW3
16 = /dev/cuam0 Callout device for ttyAM0

...
31 = /dev/cuam15 Callout device for ttyAM15
32 = /dev/cudb0 Callout device for ttyDB0

...

160 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

39 = /dev/cudb7 Callout device for ttyDB7
40 = /dev/cusg0 Callout device for ttySG0
41 = /dev/ttycusmx0 Callout device for ttySMX0
42 = /dev/ttycusmx1 Callout device for ttySMX1
43 = /dev/ttycusmx2 Callout device for ttySMX2
46 = /dev/cucpm0 Callout device for ttyCPM0

...
49 = /dev/cucpm5 Callout device for ttyCPM5
50 = /dev/cuioc40 Callout device for ttyIOC40

...
81 = /dev/cuioc431 Callout device for ttyIOC431
82 = /dev/cuvr0 Callout device for ttyVR0
83 = /dev/cuvr1 Callout device for ttyVR1

206 char OnStream SC-x0 tape devices
0 = /dev/osst0 First OnStream SCSI tape, mode 0
1 = /dev/osst1 Second OnStream SCSI tape, mode 0

...
32 = /dev/osst0l First OnStream SCSI tape, mode 1
33 = /dev/osst1l Second OnStream SCSI tape, mode 1

...
64 = /dev/osst0m First OnStream SCSI tape, mode 2
65 = /dev/osst1m Second OnStream SCSI tape, mode 2

...
96 = /dev/osst0a First OnStream SCSI tape, mode 3
97 = /dev/osst1a Second OnStream SCSI tape, mode 3

...
128 = /dev/nosst0 No rewind version of /dev/osst0
129 = /dev/nosst1 No rewind version of /dev/osst1

...
160 = /dev/nosst0l No rewind version of /dev/osst0l
161 = /dev/nosst1l No rewind version of /dev/osst1l

...
192 = /dev/nosst0m No rewind version of /dev/osst0m
193 = /dev/nosst1m No rewind version of /dev/osst1m

...
224 = /dev/nosst0a No rewind version of /dev/osst0a
225 = /dev/nosst1a No rewind version of /dev/osst1a

...

The OnStream SC-x0 SCSI tapes do not support the
standard SCSI SASD command set and therefore need
their own driver ``osst''. Note that the IDE, USB (and
maybe ParPort) versions may be driven via ide-scsi or
usb-storage SCSI emulation and this osst device and
driver as well. The ADR-x0 drives are QIC-157
compliant and don't need osst.

207 char Compaq ProLiant health feature indicate
0 = /dev/cpqhealth/cpqw Redirector interface
1 = /dev/cpqhealth/crom EISA CROM
2 = /dev/cpqhealth/cdt Data Table
3 = /dev/cpqhealth/cevt Event Log
4 = /dev/cpqhealth/casr Automatic Server Recovery

161



Linux Kernel User Documentation, v4.20.0

5 = /dev/cpqhealth/cecc ECC Memory
6 = /dev/cpqhealth/cmca Machine Check Architecture
7 = /dev/cpqhealth/ccsm Deprecated CDT
8 = /dev/cpqhealth/cnmi NMI Handling
9 = /dev/cpqhealth/css Sideshow Management

10 = /dev/cpqhealth/cram CMOS interface
11 = /dev/cpqhealth/cpci PCI IRQ interface

208 char User space serial ports
0 = /dev/ttyU0 First user space serial port
1 = /dev/ttyU1 Second user space serial port

...

209 char User space serial ports (alternate devices)
0 = /dev/cuu0 Callout device for ttyU0
1 = /dev/cuu1 Callout device for ttyU1

...

210 char SBE, Inc. sync/async serial card
0 = /dev/sbei/wxcfg0 Configuration device for board 0
1 = /dev/sbei/dld0 Download device for board 0
2 = /dev/sbei/wan00 WAN device, port 0, board 0
3 = /dev/sbei/wan01 WAN device, port 1, board 0
4 = /dev/sbei/wan02 WAN device, port 2, board 0
5 = /dev/sbei/wan03 WAN device, port 3, board 0
6 = /dev/sbei/wanc00 WAN clone device, port 0, board 0
7 = /dev/sbei/wanc01 WAN clone device, port 1, board 0
8 = /dev/sbei/wanc02 WAN clone device, port 2, board 0
9 = /dev/sbei/wanc03 WAN clone device, port 3, board 0

10 = /dev/sbei/wxcfg1 Configuration device for board 1
11 = /dev/sbei/dld1 Download device for board 1
12 = /dev/sbei/wan10 WAN device, port 0, board 1
13 = /dev/sbei/wan11 WAN device, port 1, board 1
14 = /dev/sbei/wan12 WAN device, port 2, board 1
15 = /dev/sbei/wan13 WAN device, port 3, board 1
16 = /dev/sbei/wanc10 WAN clone device, port 0, board 1
17 = /dev/sbei/wanc11 WAN clone device, port 1, board 1
18 = /dev/sbei/wanc12 WAN clone device, port 2, board 1
19 = /dev/sbei/wanc13 WAN clone device, port 3, board 1

...

Yes, each board is really spaced 10 (decimal) apart.

211 char Addinum CPCI1500 digital I/O card
0 = /dev/addinum/cpci1500/0 First CPCI1500 card
1 = /dev/addinum/cpci1500/1 Second CPCI1500 card

...

212 char LinuxTV.org DVB driver subsystem
0 = /dev/dvb/adapter0/video0 first video decoder of first card
1 = /dev/dvb/adapter0/audio0 first audio decoder of first card
2 = /dev/dvb/adapter0/sec0 (obsolete/unused)
3 = /dev/dvb/adapter0/frontend0 first frontend device of first card
4 = /dev/dvb/adapter0/demux0 first demux device of first card

162 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

5 = /dev/dvb/adapter0/dvr0 first digital video recoder device of first card
6 = /dev/dvb/adapter0/ca0 first common access port of first card
7 = /dev/dvb/adapter0/net0 first network device of first card
8 = /dev/dvb/adapter0/osd0 first on-screen-display device of first card
9 = /dev/dvb/adapter0/video1 second video decoder of first card

...
64 = /dev/dvb/adapter1/video0 first video decoder of second card

...
128 = /dev/dvb/adapter2/video0 first video decoder of third card

...
196 = /dev/dvb/adapter3/video0 first video decoder of fourth card

216 char Bluetooth RFCOMM TTY devices
0 = /dev/rfcomm0 First Bluetooth RFCOMM TTY device
1 = /dev/rfcomm1 Second Bluetooth RFCOMM TTY device

...

217 char Bluetooth RFCOMM TTY devices (alternate devices)
0 = /dev/curf0 Callout device for rfcomm0
1 = /dev/curf1 Callout device for rfcomm1

...

218 char The Logical Company bus Unibus/Qbus adapters
0 = /dev/logicalco/bci/0 First bus adapter
1 = /dev/logicalco/bci/1 First bus adapter

...

219 char The Logical Company DCI-1300 digital I/O card
0 = /dev/logicalco/dci1300/0 First DCI-1300 card
1 = /dev/logicalco/dci1300/1 Second DCI-1300 card

...

220 char Myricom Myrinet ``GM'' board
0 = /dev/myricom/gm0 First Myrinet GM board
1 = /dev/myricom/gmp0 First board ``root access''
2 = /dev/myricom/gm1 Second Myrinet GM board
3 = /dev/myricom/gmp1 Second board ``root access''

...

221 char VME bus
0 = /dev/bus/vme/m0 First master image
1 = /dev/bus/vme/m1 Second master image
2 = /dev/bus/vme/m2 Third master image
3 = /dev/bus/vme/m3 Fourth master image
4 = /dev/bus/vme/s0 First slave image
5 = /dev/bus/vme/s1 Second slave image
6 = /dev/bus/vme/s2 Third slave image
7 = /dev/bus/vme/s3 Fourth slave image
8 = /dev/bus/vme/ctl Control

It is expected that all VME bus drivers will use the
same interface. For interface documentation see
http://www.vmelinux.org/.

163



Linux Kernel User Documentation, v4.20.0

224 char A2232 serial card
0 = /dev/ttyY0 First A2232 port
1 = /dev/ttyY1 Second A2232 port

...

225 char A2232 serial card (alternate devices)
0 = /dev/cuy0 Callout device for ttyY0
1 = /dev/cuy1 Callout device for ttyY1

...

226 char Direct Rendering Infrastructure (DRI)
0 = /dev/dri/card0 First graphics card
1 = /dev/dri/card1 Second graphics card

...

227 char IBM 3270 terminal Unix tty access
1 = /dev/3270/tty1 First 3270 terminal
2 = /dev/3270/tty2 Seconds 3270 terminal

...

228 char IBM 3270 terminal block-mode access
0 = /dev/3270/tub Controlling interface
1 = /dev/3270/tub1 First 3270 terminal
2 = /dev/3270/tub2 Second 3270 terminal

...

229 char IBM iSeries/pSeries virtual console
0 = /dev/hvc0 First console port
1 = /dev/hvc1 Second console port

...

230 char IBM iSeries virtual tape
0 = /dev/iseries/vt0 First virtual tape, mode 0
1 = /dev/iseries/vt1 Second virtual tape, mode 0

...
32 = /dev/iseries/vt0l First virtual tape, mode 1
33 = /dev/iseries/vt1l Second virtual tape, mode 1

...
64 = /dev/iseries/vt0m First virtual tape, mode 2
65 = /dev/iseries/vt1m Second virtual tape, mode 2

...
96 = /dev/iseries/vt0a First virtual tape, mode 3
97 = /dev/iseries/vt1a Second virtual tape, mode 3

...
128 = /dev/iseries/nvt0 First virtual tape, mode 0, no rewind
129 = /dev/iseries/nvt1 Second virtual tape, mode 0, no rewind

...
160 = /dev/iseries/nvt0l First virtual tape, mode 1, no rewind
161 = /dev/iseries/nvt1l Second virtual tape, mode 1, no rewind

...
192 = /dev/iseries/nvt0m First virtual tape, mode 2, no rewind
193 = /dev/iseries/nvt1m Second virtual tape, mode 2, no rewind

...
224 = /dev/iseries/nvt0a First virtual tape, mode 3, no rewind

164 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

225 = /dev/iseries/nvt1a Second virtual tape, mode 3, no rewind
...

``No rewind'' refers to the omission of the default
automatic rewind on device close. The MTREW or MTOFFL
ioctl()'s can be used to rewind the tape regardless of
the device used to access it.

231 char InfiniBand
0 = /dev/infiniband/umad0
1 = /dev/infiniband/umad1

...
63 = /dev/infiniband/umad63 63rd InfiniBandMad device
64 = /dev/infiniband/issm0 First InfiniBand IsSM device
65 = /dev/infiniband/issm1 Second InfiniBand IsSM device

...
127 = /dev/infiniband/issm63 63rd InfiniBand IsSM device
128 = /dev/infiniband/uverbs0 First InfiniBand verbs device
129 = /dev/infiniband/uverbs1 Second InfiniBand verbs device

...
159 = /dev/infiniband/uverbs31 31st InfiniBand verbs device

232 char Biometric Devices
0 = /dev/biometric/sensor0/fingerprint first fingerprint sensor on first device
1 = /dev/biometric/sensor0/iris first iris sensor on first device
2 = /dev/biometric/sensor0/retina first retina sensor on first device
3 = /dev/biometric/sensor0/voiceprint first voiceprint sensor on first device
4 = /dev/biometric/sensor0/facial first facial sensor on first device
5 = /dev/biometric/sensor0/hand first hand sensor on first device

...
10 = /dev/biometric/sensor1/fingerprint first fingerprint sensor on second device

...
20 = /dev/biometric/sensor2/fingerprint first fingerprint sensor on third device

...

233 char PathScale InfiniPath interconnect
0 = /dev/ipath Primary device for programs (any unit)
1 = /dev/ipath0 Access specifically to unit 0
2 = /dev/ipath1 Access specifically to unit 1

...
4 = /dev/ipath3 Access specifically to unit 3
129 = /dev/ipath_sma Device used by Subnet Management Agent
130 = /dev/ipath_diag Device used by diagnostics programs

234-254 char RESERVED FOR DYNAMIC ASSIGNMENT
Character devices that request a dynamic allocation of major number will
take numbers starting from 254 and downward.

240-254 block LOCAL/EXPERIMENTAL USE
Allocated for local/experimental use. For devices not
assigned official numbers, these ranges should be
used in order to avoid conflicting with future assignments.

255 char RESERVED

165



Linux Kernel User Documentation, v4.20.0

255 block RESERVED

This major is reserved to assist the expansion to a
larger number space. No device nodes with this major
should ever be created on the filesystem.
(This is probably not true anymore, but I'll leave it
for now /Torben)

---LARGE MAJORS!!!!!---

256 char Equinox SST multi-port serial boards
0 = /dev/ttyEQ0 First serial port on first Equinox SST board

127 = /dev/ttyEQ127 Last serial port on first Equinox SST board
128 = /dev/ttyEQ128 First serial port on second Equinox SST board
...

1027 = /dev/ttyEQ1027 Last serial port on eighth Equinox SST board

256 block Resident Flash Disk Flash Translation Layer
0 = /dev/rfda First RFD FTL layer

16 = /dev/rfdb Second RFD FTL layer
...

240 = /dev/rfdp 16th RFD FTL layer

257 char Phoenix Technologies Cryptographic Services Driver
0 = /dev/ptlsec Crypto Services Driver

257 block SSFDC Flash Translation Layer filesystem
0 = /dev/ssfdca First SSFDC layer
8 = /dev/ssfdcb Second SSFDC layer

16 = /dev/ssfdcc Third SSFDC layer
24 = /dev/ssfdcd 4th SSFDC layer
32 = /dev/ssfdce 5th SSFDC layer
40 = /dev/ssfdcf 6th SSFDC layer
48 = /dev/ssfdcg 7th SSFDC layer
56 = /dev/ssfdch 8th SSFDC layer

258 block ROM/Flash read-only translation layer
0 = /dev/blockrom0 First ROM card's translation layer interface
1 = /dev/blockrom1 Second ROM card's translation layer interface
...

259 block Block Extended Major
Used dynamically to hold additional partition minor
numbers and allow large numbers of partitions per device

259 char FPGA configuration interfaces
0 = /dev/icap0 First Xilinx internal configuration
1 = /dev/icap1 Second Xilinx internal configuration

260 char OSD (Object-based-device) SCSI Device
0 = /dev/osd0 First OSD Device
1 = /dev/osd1 Second OSD Device
...

166 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

255 = /dev/osd255 256th OSD Device

384-511 char RESERVED FOR DYNAMIC ASSIGNMENT
Character devices that request a dynamic allocation of major
number will take numbers starting from 511 and downward,
once the 234-254 range is full.

Additional /dev/ directory entries

This section details additional entries that should or may exist in the /dev directory. It is preferred that symbolic links use the same
form (absolute or relative) as is indicated here. Links are classified as “hard” or “symbolic” depending on the preferred type of link; if
possible, the indicated type of link should be used.

Compulsory links

These links should exist on all systems:

/dev/fd /proc/self/fd symbolic File descriptors
/dev/stdin fd/0 symbolic stdin file descriptor
/dev/stdout fd/1 symbolic stdout file descriptor
/dev/stderr fd/2 symbolic stderr file descriptor
/dev/nfsd socksys symbolic Required by iBCS-2
/dev/X0R null symbolic Required by iBCS-2

Note: /dev/X0R is <letter X>-<digit 0>-<letter R>.

Recommended links

It is recommended that these links exist on all systems:

/dev/core /proc/kcore symbolic Backward compatibility
/dev/ramdisk ram0 symbolic Backward compatibility
/dev/ftape qft0 symbolic Backward compatibility
/dev/bttv0 video0 symbolic Backward compatibility
/dev/radio radio0 symbolic Backward compatibility
/dev/i2o* /dev/i2o/* symbolic Backward compatibility
/dev/scd? sr? hard Alternate SCSI CD-ROM name

Locally defined links

The following links may be established locally to conform to the configuration of the system. This is merely a tabulation of existing
practice, and does not constitute a recommendation. However, if they exist, they should have the following uses.

3.1. Additional /dev/ directory entries 167



Linux Kernel User Documentation, v4.20.0

/dev/mouse mouse port symbolic Current mouse device
/dev/tape tape device symbolic Current tape device
/dev/cdrom CD-ROM device symbolic Current CD-ROM device
/dev/cdwriter CD-writer symbolic Current CD-writer device
/dev/scanner scanner symbolic Current scanner device
/dev/modem modem port symbolic Current dialout device
/dev/root root device symbolic Current root filesystem
/dev/swap swap device symbolic Current swap device

/dev/modem should not be used for a modem which supports dialin as well as dialout, as it tends to cause lock file problems. If it
exists, /dev/modem should point to the appropriate primary TTY device (the use of the alternate callout devices is deprecated).

For SCSI devices, /dev/tape and /dev/cdrom should point to the cooked devices (/dev/st* and /dev/sr*, respectively),
whereas /dev/cdwriter and /dev/scanner should point to the appropriate generic SCSI devices (/dev/sg*).

/dev/mouse may point to a primary serial TTY device, a hardware mouse device, or a socket for a mouse driver program (e.g.
/dev/gpmdata).

Sockets and pipes

Non-transient sockets and named pipes may exist in /dev. Common entries are:

/dev/printer socket lpd local socket
/dev/log socket syslog local socket
/dev/gpmdata socket gpm mouse multiplexer

Mount points

The following names are reserved for mounting special filesystems under /dev. These special filesystems provide kernel interfaces that
cannot be provided with standard device nodes.

/dev/pts devpts PTY slave filesystem
/dev/shm tmpfs POSIX shared memory maintenance access

Terminal devices

Terminal, or TTY devices are a special class of character devices. A terminal device is any device that could act as a controlling terminal
for a session; this includes virtual consoles, serial ports, and pseudoterminals (PTYs).

All terminal devices share a common set of capabilities known as line disciplines; these include the common terminal line discipline as
well as SLIP and PPP modes.

All terminal devices are named similarly; this section explains the naming and use of the various types of TTYs. Note that the naming
conventions include several historical warts; some of these are Linux-specific, some were inherited from other systems, and some reflect
Linux outgrowing a borrowed convention.

A hash mark (#) in a device name is used here to indicate a decimal number without leading zeroes.

Virtual consoles and the console device

Virtual consoles are full-screen terminal displays on the system video monitor. Virtual consoles are named /dev/tty#, with numbering
starting at /dev/tty1; /dev/tty0 is the current virtual console. /dev/tty0 is the device that should be used to access the system

168 Chapter 3. Linux allocated devices (4.x+ version)



Linux Kernel User Documentation, v4.20.0

video card on those architectures for which the frame buffer devices (/dev/fb*) are not applicable. Do not use /dev/console for
this purpose.

The console device, /dev/console, is the device to which system messages should be sent, and on which logins should be permitted
in single-user mode. Starting with Linux 2.1.71, /dev/console is managed by the kernel; for previous versions it should be a
symbolic link to either /dev/tty0, a specific virtual console such as /dev/tty1, or to a serial port primary (tty*, not cu*)
device, depending on the configuration of the system.

Serial ports

Serial ports are RS-232 serial ports and any device which simulates one, either in hardware (such as internal modems) or in software
(such as the ISDN driver.) Under Linux, each serial ports has two device names, the primary or callin device and the alternate or callout
one. Each kind of device is indicated by a different letter. For any letter X, the names of the devices are /dev/ttyX# and /dev/cux#,
respectively; for historical reasons, /dev/ttyS# and /dev/ttyC# correspond to /dev/cua# and /dev/cub#. In the future, it
should be expected that multiple letters will be used; all letters will be upper case for the “tty” device (e.g. /dev/ttyDP#) and lower
case for the “cu” device (e.g. /dev/cudp#).

The names /dev/ttyQ# and /dev/cuq# are reserved for local use.

The alternate devices provide for kernel-based exclusion and somewhat different defaults than the primary devices. Their main purpose
is to allow the use of serial ports with programs with no inherent or broken support for serial ports. Their use is deprecated, and they
may be removed from a future version of Linux.

Arbitration of serial ports is provided by the use of lock files with the names /var/lock/LCK..ttyX#. The contents of the lock file
should be the PID of the locking process as an ASCII number.

It is common practice to install links such as /dev/modem which point to serial ports. In order to ensure proper locking in the presence
of these links, it is recommended that software chase symlinks and lock all possible names; additionally, it is recommended that a lock
file be installed with the corresponding alternate device. In order to avoid deadlocks, it is recommended that the locks are acquired in
the following order, and released in the reverse:

1. The symbolic link name, if any (/var/lock/LCK..modem)

2. The “tty” name (/var/lock/LCK..ttyS2)

3. The alternate device name (/var/lock/LCK..cua2)

In the case of nested symbolic links, the lock files should be installed in the order the symlinks are resolved.

Under no circumstances should an application hold a lock while waiting for another to be released. In addition, applications which
attempt to create lock files for the corresponding alternate device names should take into account the possibility of being used on a
non-serial port TTY, for which no alternate device would exist.

Pseudoterminals (PTYs)

Pseudoterminals, or PTYs, are used to create login sessions or provide other capabilities requiring a TTY line discipline (including SLIP
or PPP capability) to arbitrary data-generation processes. Each PTY has a master side, named /dev/pty[p-za-e][0-9a-f], and a
slave side, named /dev/tty[p-za-e][0-9a-f]. The kernel arbitrates the use of PTYs by allowing each master side to be opened
only once.

Once the master side has been opened, the corresponding slave device can be used in the same manner as any TTY device. The master
and slave devices are connected by the kernel, generating the equivalent of a bidirectional pipe with TTY capabilities.

Recent versions of the Linux kernels and GNU libc contain support for the System V/Unix98 naming scheme for PTYs, which assigns a
common device, /dev/ptmx, to all the masters (opening it will automatically give you a previously unassigned PTY) and a subdirec-
tory, /dev/pts, for the slaves; the slaves are named with decimal integers (/dev/pts/# in our notation). This removes the problem
of exhausting the namespace and enables the kernel to automatically create the device nodes for the slaves on demand using the “devpts”
filesystem.

3.2. Terminal devices 169



Linux Kernel User Documentation, v4.20.0

This section describes CPU vulnerabilities and provides an overview of the possible mitigations along with guidance for selecting
mitigations if they are configurable at compile, boot or run time.

170 Chapter 3. Linux allocated devices (4.x+ version)



CHAPTER 4

L1TF - L1 Terminal Fault

L1 Terminal Fault is a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data
Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved
bits set.

Affected processors

This vulnerability affects a wide range of Intel processors. The vulnerability is not present on:

• Processors from AMD, Centaur and other non Intel vendors

• Older processor models, where the CPU family is < 6

• A range of Intel ATOM processors (Cedarview, Cloverview, Lincroft, Penwell, Pineview, Silvermont, Airmont, Merrifield)

• The Intel XEON PHI family

• Intel processors which have the ARCH_CAP_RDCL_NO bit set in the IA32_ARCH_CAPABILITIES MSR. If the bit is set the
CPU is not affected by the Meltdown vulnerability either. These CPUs should become available by end of 2018.

Whether a processor is affected or not can be read out from the L1TF vulnerability file in sysfs. See L1TF system information .

Related CVEs

The following CVE entries are related to the L1TF vulnerability:

CVE-2018-3615 L1 Terminal Fault SGX related aspects
CVE-2018-3620 L1 Terminal Fault OS, SMM related aspects
CVE-2018-3646 L1 Terminal Fault Virtualization related aspects

Problem

If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits
set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the
page referenced by the address bits in the PTE was still present and accessible.

While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged
malicious code, similar to the Meltdown attack.

171



Linux Kernel User Documentation, v4.20.0

While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system
and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the
speculation bypasses the extended page table (EPT) protection mechanism.

Attack scenarios

1. Malicious user space

Operating Systems store arbitrary information in the address bits of a PTE which is marked non present. This allows a
malicious user space application to attack the physical memory to which these PTEs resolve. In some cases user-space can
maliciously influence the information encoded in the address bits of the PTE, thus making attacks more deterministic and
more practical.

The Linux kernel contains a mitigation for this attack vector, PTE inversion, which is permanently enabled and has no
performance impact. The kernel ensures that the address bits of PTEs, which are not marked present, never point to
cacheable physical memory space.

A system with an up to date kernel is protected against attacks from malicious user space applications.

2. Malicious guest in a virtual machine

The fact that L1TF breaks all domain protections allows malicious guest OSes, which can control the PTEs directly, and
malicious guest user space applications, which run on an unprotected guest kernel lacking the PTE inversion mitigation for
L1TF, to attack physical host memory.

A special aspect of L1TF in the context of virtualization is symmetric multi threading (SMT). The Intel implementation
of SMT is called HyperThreading. The fact that Hyperthreads on the affected processors share the L1 Data Cache (L1D)
is important for this. As the flaw allows only to attack data which is present in L1D, a malicious guest running on one
Hyperthread can attack the data which is brought into the L1D by the context which runs on the sibling Hyperthread of the
same physical core. This context can be host OS, host user space or a different guest.

If the processor does not support Extended Page Tables, the attack is only possible, when the hypervisor does not sanitize
the content of the effective (shadow) page tables.

While solutions exist to mitigate these attack vectors fully, these mitigations are not enabled by default in the Linux kernel
because they can affect performance significantly. The kernel provides several mechanisms which can be utilized to address
the problem depending on the deployment scenario. The mitigations, their protection scope and impact are described in the
next sections.

The default mitigations and the rationale for choosing them are explained at the end of this document. See Default mitiga-
tions .

L1TF system information

The Linux kernel provides a sysfs interface to enumerate the current L1TF status of the system: whether the system is vulnerable, and
which mitigations are active. The relevant sysfs file is:

/sys/devices/system/cpu/vulnerabilities/l1tf

The possible values in this file are:

‘Not affected’ The processor is not vulnerable
‘Mitigation: PTE Inversion’ The host protection is active

172 Chapter 4. L1TF - L1 Terminal Fault



Linux Kernel User Documentation, v4.20.0

If KVM/VMX is enabled and the processor is vulnerable then the following information is appended to the ‘Mitigation: PTE Inversion’
part:

• SMT status:

‘VMX: SMT vulnerable’ SMT is enabled
‘VMX: SMT disabled’ SMT is disabled

• L1D Flush mode:

‘L1D vulnerable’ L1D flushing is disabled
‘L1D conditional cache flushes’ L1D flush is conditionally enabled
‘L1D cache flushes’ L1D flush is unconditionally enabled

The resulting grade of protection is discussed in the following sections.

Host mitigation mechanism

The kernel is unconditionally protected against L1TF attacks from malicious user space running on the host.

Guest mitigation mechanisms

1. L1D flush on VMENTER

To make sure that a guest cannot attack data which is present in the L1D the hypervisor flushes the L1D before entering the
guest.

Flushing the L1D evicts not only the data which should not be accessed by a potentially malicious guest, it also flushes
the guest data. Flushing the L1D has a performance impact as the processor has to bring the flushed guest data back into
the L1D. Depending on the frequency of VMEXIT/VMENTER and the type of computations in the guest performance
degradation in the range of 1% to 50% has been observed. For scenarios where guest VMEXIT/VMENTER are rare the
performance impact is minimal. Virtio and mechanisms like posted interrupts are designed to confine the VMEXITs to a
bare minimum, but specific configurations and application scenarios might still suffer from a high VMEXIT rate.

The kernel provides two L1D flush modes:

• conditional (‘cond’)

• unconditional (‘always’)

The conditional mode avoids L1D flushing after VMEXITs which execute only audited code paths before the corresponding
VMENTER. These code paths have been verified that they cannot expose secrets or other interesting data to an attacker, but
they can leak information about the address space layout of the hypervisor.

Unconditional mode flushes L1D on all VMENTER invocations and provides maximum protection. It has a higher overhead
than the conditional mode. The overhead cannot be quantified correctly as it depends on the workload scenario and the
resulting number of VMEXITs.

The general recommendation is to enable L1D flush on VMENTER. The kernel defaults to conditional mode on affected
processors.

Note, that L1D flush does not prevent the SMT problem because the sibling thread will also bring back its data into the L1D
which makes it attackable again.

L1D flush can be controlled by the administrator via the kernel command line and sysfs control files. See Mitigation control
on the kernel command line and Mitigation control for KVM - module parameter .

4.6. Host mitigation mechanism 173



Linux Kernel User Documentation, v4.20.0

2. Guest VCPU confinement to dedicated physical cores

To address the SMT problem, it is possible to make a guest or a group of guests affine to one or more physical cores. The
proper mechanism for that is to utilize exclusive cpusets to ensure that no other guest or host tasks can run on these cores.

If only a single guest or related guests run on sibling SMT threads on the same physical core then they can only attack their
own memory and restricted parts of the host memory.

Host memory is attackable, when one of the sibling SMT threads runs in host OS (hypervisor) context and the other in guest
context. The amount of valuable information from the host OS context depends on the context which the host OS executes,
i.e. interrupts, soft interrupts and kernel threads. The amount of valuable data from these contexts cannot be declared as
non-interesting for an attacker without deep inspection of the code.

Note, that assigning guests to a fixed set of physical cores affects the ability of the scheduler to do load balancing and might
have negative effects on CPU utilization depending on the hosting scenario. Disabling SMT might be a viable alternative
for particular scenarios.

For further information about confining guests to a single or to a group of cores consult the cpusets documentation:

https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

3. Interrupt affinity

Interrupts can be made affine to logical CPUs. This is not universally true because there are types of interrupts which are
truly per CPU interrupts, e.g. the local timer interrupt. Aside of that multi queue devices affine their interrupts to single
CPUs or groups of CPUs per queue without allowing the administrator to control the affinities.

Moving the interrupts, which can be affinity controlled, away from CPUs which run untrusted guests, reduces the attack
vector space.

Whether the interrupts with are affine to CPUs, which run untrusted guests, provide interesting data for an attacker depends
on the system configuration and the scenarios which run on the system. While for some of the interrupts it can be assumed
that they won’t expose interesting information beyond exposing hints about the host OS memory layout, there is no way to
make general assumptions.

Interrupt affinity can be controlled by the administrator via the /proc/irq/$NR/smp_affinity[_list] files. Limited documenta-
tion is available at:

https://www.kernel.org/doc/Documentation/IRQ-affinity.txt

4. SMT control

To prevent the SMT issues of L1TF it might be necessary to disable SMT completely. Disabling SMT can have a significant
performance impact, but the impact depends on the hosting scenario and the type of workloads. The impact of disabling
SMT needs also to be weighted against the impact of other mitigation solutions like confining guests to dedicated cores.

The kernel provides a sysfs interface to retrieve the status of SMT and to control it. It also provides a kernel command line
interface to control SMT.

The kernel command line interface consists of the following options:

nosmt Affects the bring up of the secondary CPUs during boot. The kernel tries to bring all present
CPUs online during the boot process. “nosmt” makes sure that from each physical core only one -
the so called primary (hyper) thread is activated. Due to a design flaw of Intel processors related to
Machine Check Exceptions the non primary siblings have to be brought up at least partially and
are then shut down again. “nosmt” can be undone via the sysfs interface.

nosmt=forceHas the same effect as “nosmt” but it does not allow to undo the SMT disable via the sysfs
interface.

174 Chapter 4. L1TF - L1 Terminal Fault

https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://www.kernel.org/doc/Documentation/IRQ-affinity.txt


Linux Kernel User Documentation, v4.20.0

The sysfs interface provides two files:

• /sys/devices/system/cpu/smt/control

• /sys/devices/system/cpu/smt/active

/sys/devices/system/cpu/smt/control:

This file allows to read out the SMT control state and provides the ability to disable or (re)enable SMT. The
possible states are:

on SMT is supported by the CPU and enabled. All logical CPUs can be onlined and offlined
without restrictions.

off SMT is supported by the CPU and disabled. Only the so called primary SMT threads can
be onlined and offlined without restrictions. An attempt to online a non-primary sibling is
rejected

force-
off

Same as ‘off’ but the state cannot be controlled. Attempts to write to the control file are
rejected.

not-
sup-
ported

The processor does not support SMT. It’s therefore not affected by the SMT implications
of L1TF. Attempts to write to the control file are rejected.

The possible states which can be written into this file to control SMT state are:

• on

• off

• forceoff

/sys/devices/system/cpu/smt/active:

This file reports whether SMT is enabled and active, i.e. if on any physical core two or more sibling threads are
online.

SMT control is also possible at boot time via the l1tf kernel command line parameter in combination with L1D flush control.
See Mitigation control on the kernel command line .

5. Disabling EPT

Disabling EPT for virtual machines provides full mitigation for L1TF even with SMT enabled, because the effective page
tables for guests are managed and sanitized by the hypervisor. Though disabling EPT has a significant performance impact
especially when the Meltdown mitigation KPTI is enabled.

EPT can be disabled in the hypervisor via the ‘kvm-intel.ept’ parameter.

There is ongoing research and development for new mitigation mechanisms to address the performance impact of disabling SMT or
EPT.

Mitigation control on the kernel command line

The kernel command line allows to control the L1TF mitigations at boot time with the option “l1tf=”. The valid arguments for this
option are:

4.8. Mitigation control on the kernel command line 175



Linux Kernel User Documentation, v4.20.0

full Provides all available mitigations for the L1TF vulnerabil-
ity. Disables SMT and enables all mitigations in the hyper-
visors, i.e. unconditional L1D flushing
SMT control and L1D flush control via the sysfs interface
is still possible after boot. Hypervisors will issue a warn-
ing when the first VM is started in a potentially insecure
configuration, i.e. SMT enabled or L1D flush disabled.

full,force Same as ‘full’, but disables SMT and L1D flush runtime
control. Implies the ‘nosmt=force’ command line option.
(i.e. sysfs control of SMT is disabled.)

flush Leaves SMT enabled and enables the default hypervisor
mitigation, i.e. conditional L1D flushing
SMT control and L1D flush control via the sysfs interface
is still possible after boot. Hypervisors will issue a warn-
ing when the first VM is started in a potentially insecure
configuration, i.e. SMT enabled or L1D flush disabled.

flush,nosmt Disables SMT and enables the default hypervisor mitiga-
tion, i.e. conditional L1D flushing.
SMT control and L1D flush control via the sysfs interface
is still possible after boot. Hypervisors will issue a warn-
ing when the first VM is started in a potentially insecure
configuration, i.e. SMT enabled or L1D flush disabled.

flush,nowarn Same as ‘flush’, but hypervisors will not warn when a VM
is started in a potentially insecure configuration.

off Disables hypervisor mitigations and doesn’t emit any
warnings.

The default is ‘flush’. For details about L1D flushing see 1. L1D flush on VMENTER .

Mitigation control for KVM - module parameter

The KVM hypervisor mitigation mechanism, flushing the L1D cache when entering a guest, can be controlled with a module parameter.

The option/parameter is “kvm-intel.vmentry_l1d_flush=”. It takes the following arguments:

al-
ways

L1D cache flush on every VMENTER.

cond Flush L1D on VMENTER only when the code between VMEXIT and VMENTER can leak host memory which
is considered interesting for an attacker. This still can leak host memory which allows e.g. to determine the
hosts address space layout.

never Disables the mitigation

The parameter can be provided on the kernel command line, as a module parameter when loading the modules and at runtime modified
via the sysfs file:

/sys/module/kvm_intel/parameters/vmentry_l1d_flush

The default is ‘cond’. If ‘l1tf=full,force’ is given on the kernel command line, then ‘always’ is enforced and the kvm-
intel.vmentry_l1d_flush module parameter is ignored and writes to the sysfs file are rejected.

176 Chapter 4. L1TF - L1 Terminal Fault



Linux Kernel User Documentation, v4.20.0

Mitigation selection guide

1. No virtualization in use

The system is protected by the kernel unconditionally and no further action is required.

2. Virtualization with trusted guests

If the guest comes from a trusted source and the guest OS kernel is guaranteed to have the L1TF mitigations in place the
system is fully protected against L1TF and no further action is required.

To avoid the overhead of the default L1D flushing on VMENTER the administrator can disable the flushing via the kernel
command line and sysfs control files. See Mitigation control on the kernel command line and Mitigation control for KVM
- module parameter .

3. Virtualization with untrusted guests

3.1. SMT not supported or disabled

If SMT is not supported by the processor or disabled in the BIOS or by the kernel, it’s only required to enforce L1D flushing
on VMENTER.

Conditional L1D flushing is the default behaviour and can be tuned. See Mitigation control on the kernel command line
and Mitigation control for KVM - module parameter .

3.2. EPT not supported or disabled

If EPT is not supported by the processor or disabled in the hypervisor, the system is fully protected. SMT can stay enabled
and L1D flushing on VMENTER is not required.

EPT can be disabled in the hypervisor via the ‘kvm-intel.ept’ parameter.

3.3. SMT and EPT supported and active

If SMT and EPT are supported and active then various degrees of mitigations can be employed:

• L1D flushing on VMENTER:

L1D flushing on VMENTER is the minimal protection requirement, but it is only potent in combination with other
mitigation methods.

Conditional L1D flushing is the default behaviour and can be tuned. See Mitigation control on the kernel command
line and Mitigation control for KVM - module parameter .

• Guest confinement:

Confinement of guests to a single or a group of physical cores which are not running any other processes, can reduce
the attack surface significantly, but interrupts, soft interrupts and kernel threads can still expose valuable data to a
potential attacker. See 2. Guest VCPU confinement to dedicated physical cores .

• Interrupt isolation:

Isolating the guest CPUs from interrupts can reduce the attack surface further, but still allows a malicious guest to
explore a limited amount of host physical memory. This can at least be used to gain knowledge about the host address
space layout. The interrupts which have a fixed affinity to the CPUs which run the untrusted guests can depending on

4.10. Mitigation selection guide 177



Linux Kernel User Documentation, v4.20.0

the scenario still trigger soft interrupts and schedule kernel threads which might expose valuable information. See 3.
Interrupt affinity .

The above three mitigation methods combined can provide protection to a certain degree, but the risk of the remaining attack surface has
to be carefully analyzed. For full protection the following methods are available:

• Disabling SMT:

Disabling SMT and enforcing the L1D flushing provides the maximum amount of protection. This mitigation is not depending on
any of the above mitigation methods.

SMT control and L1D flushing can be tuned by the command line parameters ‘nosmt’, ‘l1tf’, ‘kvm-intel.vmentry_l1d_flush’ and
at run time with the matching sysfs control files. See 4. SMT control , Mitigation control on the kernel command line and
Mitigation control for KVM - module parameter .

• Disabling EPT:

Disabling EPT provides the maximum amount of protection as well. It is not depending on any of the above mitigation methods.
SMT can stay enabled and L1D flushing is not required, but the performance impact is significant.

EPT can be disabled in the hypervisor via the ‘kvm-intel.ept’ parameter.

3.4. Nested virtual machines

When nested virtualization is in use, three operating systems are involved: the bare metal hypervisor, the nested hypervisor and the
nested virtual machine. VMENTER operations from the nested hypervisor into the nested guest will always be processed by the bare
metal hypervisor. If KVM is the bare metal hypervisor it will:

• Flush the L1D cache on every switch from the nested hypervisor to the nested virtual machine, so that the nested hypervisor’s
secrets are not exposed to the nested virtual machine;

• Flush the L1D cache on every switch from the nested virtual machine to the nested hypervisor; this is a complex operation, and
flushing the L1D cache avoids that the bare metal hypervisor’s secrets are exposed to the nested virtual machine;

• Instruct the nested hypervisor to not perform any L1D cache flush. This is an optimization to avoid double L1D flushing.

Default mitigations

The kernel default mitigations for vulnerable processors are:

• PTE inversion to protect against malicious user space. This is done unconditionally and cannot be controlled.

• L1D conditional flushing on VMENTER when EPT is enabled for a guest.

The kernel does not by default enforce the disabling of SMT, which leaves SMT systems vulnerable when running untrusted
guests with EPT enabled.

The rationale for this choice is:

• Force disabling SMT can break existing setups, especially with unattended updates.

• If regular users run untrusted guests on their machine, then L1TF is just an add on to other malware which might be
embedded in an untrusted guest, e.g. spam-bots or attacks on the local network.

There is no technical way to prevent a user from running untrusted code on their machines blindly.

• It’s technically extremely unlikely and from today’s knowledge even impossible that L1TF can be exploited via the
most popular attack mechanisms like JavaScript because these mechanisms have no way to control PTEs. If this would
be possible and not other mitigation would be possible, then the default might be different.

178 Chapter 4. L1TF - L1 Terminal Fault



Linux Kernel User Documentation, v4.20.0

• The administrators of cloud and hosting setups have to carefully analyze the risk for their scenarios and make the
appropriate mitigation choices, which might even vary across their deployed machines and also result in other changes
of their overall setup. There is no way for the kernel to provide a sensible default for this kind of scenarios.

Here is a set of documents aimed at users who are trying to track down problems and bugs in particular.

4.11. Default mitigations 179



Linux Kernel User Documentation, v4.20.0

180 Chapter 4. L1TF - L1 Terminal Fault



CHAPTER 5

Reporting bugs

Background

The upstream Linux kernel maintainers only fix bugs for specific kernel versions. Those versions include the current “release candidate”
(or -rc) kernel, any “stable” kernel versions, and any “long term” kernels.

Please see https://www.kernel.org/ for a list of supported kernels. Any kernel marked with [EOL] is “end of life” and will not have any
fixes backported to it.

If you’ve found a bug on a kernel version that isn’t listed on kernel.org, contact your Linux distribution or embedded vendor for support.
Alternatively, you can attempt to run one of the supported stable or -rc kernels, and see if you can reproduce the bug on that. It’s
preferable to reproduce the bug on the latest -rc kernel.

How to report Linux kernel bugs

Identify the problematic subsystem

Identifying which part of the Linux kernel might be causing your issue increases your chances of getting your bug fixed. Simply posting
to the generic linux-kernel mailing list (LKML) may cause your bug report to be lost in the noise of a mailing list that gets 1000+ emails
a day.

Instead, try to figure out which kernel subsystem is causing the issue, and email that subsystem’s maintainer and mailing list. If the
subsystem maintainer doesn’t answer, then expand your scope to mailing lists like LKML.

Identify who to notify

Once you know the subsystem that is causing the issue, you should send a bug report. Some maintainers prefer bugs to be reported via
bugzilla (https://bugzilla.kernel.org), while others prefer that bugs be reported via the subsystem mailing list.

To find out where to send an emailed bug report, find your subsystem or device driver in the MAINTAINERS file. Search in the file for
relevant entries, and send your bug report to the person(s) listed in the “M:” lines, making sure to Cc the mailing list(s) in the “L:” lines.
When the maintainer replies to you, make sure to ‘Reply-all’ in order to keep the public mailing list(s) in the email thread.

If you know which driver is causing issues, you can pass one of the driver files to the get_maintainer.pl script:

perl scripts/get_maintainer.pl -f <filename>

If it is a security bug, please copy the Security Contact listed in the MAINTAINERS file. They can help coordinate bugfix and disclosure.
See Documentation/admin-guide/security-bugs.rst for more information.

181

https://www.kernel.org/
https://bugzilla.kernel.org


Linux Kernel User Documentation, v4.20.0

If you can’t figure out which subsystem caused the issue, you should file a bug in kernel.org bugzilla and send email to linux-
kernel@vger.kernel.org, referencing the bugzilla URL. (For more information on the linux-kernel mailing list see http://www.tux.org/
lkml/).

Tips for reporting bugs

If you haven’t reported a bug before, please read:

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

http://www.catb.org/esr/faqs/smart-questions.html

It’s REALLY important to report bugs that seem unrelated as separate email threads or separate bugzilla entries. If you report several
unrelated bugs at once, it’s difficult for maintainers to tease apart the relevant data.

Gather information

The most important information in a bug report is how to reproduce the bug. This includes system information, and (most importantly)
step-by-step instructions for how a user can trigger the bug.

If the failure includes an “OOPS:”, take a picture of the screen, capture a netconsole trace, or type the message from your screen into the
bug report. Please read “Documentation/admin-guide/bug-hunting.rst” before posting your bug report. This explains what you should
do with the “Oops” information to make it useful to the recipient.

This is a suggested format for a bug report sent via email or bugzilla. Having a standardized bug report form makes it easier for you not
to overlook things, and easier for the developers to find the pieces of information they’re really interested in. If some information is not
relevant to your bug, feel free to exclude it.

First run the ver_linux script included as scripts/ver_linux, which reports the version of some important subsystems. Run this script with
the command awk -f scripts/ver_linux.

Use that information to fill in all fields of the bug report form, and post it to the mailing list with a subject of “PROBLEM: <one line
summary from [1.]>” for easy identification by the developers:

[1.] One line summary of the problem:
[2.] Full description of the problem/report:
[3.] Keywords (i.e., modules, networking, kernel):
[4.] Kernel information
[4.1.] Kernel version (from /proc/version):
[4.2.] Kernel .config file:
[5.] Most recent kernel version which did not have the bug:
[6.] Output of Oops.. message (if applicable) with symbolic information

resolved (see Documentation/admin-guide/bug-hunting.rst)
[7.] A small shell script or example program which triggers the

problem (if possible)
[8.] Environment
[8.1.] Software (add the output of the ver_linux script here)
[8.2.] Processor information (from /proc/cpuinfo):
[8.3.] Module information (from /proc/modules):
[8.4.] Loaded driver and hardware information (/proc/ioports, /proc/iomem)
[8.5.] PCI information ('lspci -vvv' as root)
[8.6.] SCSI information (from /proc/scsi/scsi)
[8.7.] Other information that might be relevant to the problem

(please look in /proc and include all information that you
think to be relevant):

[X.] Other notes, patches, fixes, workarounds:

182 Chapter 5. Reporting bugs

mailto:linux-kernel@vger.kernel.org
mailto:linux-kernel@vger.kernel.org
http://www.tux.org/lkml/
http://www.tux.org/lkml/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.catb.org/esr/faqs/smart-questions.html


Linux Kernel User Documentation, v4.20.0

Follow up

Expectations for bug reporters

Linux kernel maintainers expect bug reporters to be able to follow up on bug reports. That may include running new tests, applying
patches, recompiling your kernel, and/or re-triggering your bug. The most frustrating thing for maintainers is for someone to report a
bug, and then never follow up on a request to try out a fix.

That said, it’s still useful for a kernel maintainer to know a bug exists on a supported kernel, even if you can’t follow up with retests.
Follow up reports, such as replying to the email thread with “I tried the latest kernel and I can’t reproduce my bug anymore” are also
helpful, because maintainers have to assume silence means things are still broken.

Expectations for kernel maintainers

Linux kernel maintainers are busy, overworked human beings. Some times they may not be able to address your bug in a day, a week,
or two weeks. If they don’t answer your email, they may be on vacation, or at a Linux conference. Check the conference schedule at
https://LWN.net for more info:

https://lwn.net/Calendar/

In general, kernel maintainers take 1 to 5 business days to respond to bugs. The majority of kernel maintainers are employed to work on
the kernel, and they may not work on the weekends. Maintainers are scattered around the world, and they may not work in your time
zone. Unless you have a high priority bug, please wait at least a week after the first bug report before sending the maintainer a reminder
email.

The exceptions to this rule are regressions, kernel crashes, security holes, or userspace breakage caused by new kernel behavior. Those
bugs should be addressed by the maintainers ASAP. If you suspect a maintainer is not responding to these types of bugs in a timely
manner (especially during a merge window), escalate the bug to LKML and Linus Torvalds.

Thank you!

[Some of this is taken from Frohwalt Egerer’s original linux-kernel FAQ]

5.3. Follow up 183

https://LWN.net
https://lwn.net/Calendar/


Linux Kernel User Documentation, v4.20.0

184 Chapter 5. Reporting bugs



CHAPTER 6

Security bugs

Linux kernel developers take security very seriously. As such, we’d like to know when a security bug is found so that it can be fixed and
disclosed as quickly as possible. Please report security bugs to the Linux kernel security team.

Contact

The Linux kernel security team can be contacted by email at <security@kernel.org>. This is a private list of security officers who will
help verify the bug report and develop and release a fix. If you already have a fix, please include it with your report, as that can speed
up the process considerably. It is possible that the security team will bring in extra help from area maintainers to understand and fix the
security vulnerability.

As it is with any bug, the more information provided the easier it will be to diagnose and fix. Please review the procedure outlined in
admin-guide/reporting-bugs.rst if you are unclear about what information is helpful. Any exploit code is very helpful and will not be
released without consent from the reporter unless it has already been made public.

Disclosure and embargoed information

The security list is not a disclosure channel. For that, see Coordination below.

Once a robust fix has been developed, the release process starts. Fixes for publicly known bugs are released immediately.

Although our preference is to release fixes for publicly undisclosed bugs as soon as they become available, this may be postponed at the
request of the reporter or an affected party for up to 7 calendar days from the start of the release process, with an exceptional extension
to 14 calendar days if it is agreed that the criticality of the bug requires more time. The only valid reason for deferring the publication of
a fix is to accommodate the logistics of QA and large scale rollouts which require release coordination.

Whilst embargoed information may be shared with trusted individuals in order to develop a fix, such information will not be published
alongside the fix or on any other disclosure channel without the permission of the reporter. This includes but is not limited to the original
bug report and followup discussions (if any), exploits, CVE information or the identity of the reporter.

In other words our only interest is in getting bugs fixed. All other information submitted to the security list and any followup discussions
of the report are treated confidentially even after the embargo has been lifted, in perpetuity.

Coordination

Fixes for sensitive bugs, such as those that might lead to privilege escalations, may need to be coordinated with the private <linux-
distros@vs.openwall.org> mailing list so that distribution vendors are well prepared to issue a fixed kernel upon public disclosure of
the upstream fix. Distros will need some time to test the proposed patch and will generally request at least a few days of embargo,

185

mailto:security@kernel.org
mailto:linux-distros@vs.openwall.org
mailto:linux-distros@vs.openwall.org


Linux Kernel User Documentation, v4.20.0

and vendor update publication prefers to happen Tuesday through Thursday. When appropriate, the security team can assist with this
coordination, or the reporter can include linux-distros from the start. In this case, remember to prefix the email Subject line with “[vs]”
as described in the linux-distros wiki: <http://oss-security.openwall.org/wiki/mailing-lists/distros#how-to-use-the-lists>

CVE assignment

The security team does not normally assign CVEs, nor do we require them for reports or fixes, as this can needlessly complicate the
process and may delay the bug handling. If a reporter wishes to have a CVE identifier assigned ahead of public disclosure, they will need
to contact the private linux-distros list, described above. When such a CVE identifier is known before a patch is provided, it is desirable
to mention it in the commit message if the reporter agrees.

Non-disclosure agreements

The Linux kernel security team is not a formal body and therefore unable to enter any non-disclosure agreements.

186 Chapter 6. Security bugs

http://oss-security.openwall.org/wiki/mailing-lists/distros#how-to-use-the-lists


CHAPTER 7

Bug hunting

Kernel bug reports often come with a stack dump like the one below:

------------[ cut here ]------------
WARNING: CPU: 1 PID: 28102 at kernel/module.c:1108 module_put+0x57/0x70
Modules linked in: dvb_usb_gp8psk(-) dvb_usb dvb_core nvidia_drm(PO) nvidia_modeset(PO) snd_hda_
→˓codec_hdmi snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm snd_timer snd soundcore
→˓nvidia(PO) [last unloaded: rc_core]
CPU: 1 PID: 28102 Comm: rmmod Tainted: P WC O 4.8.4-build.1 #1
Hardware name: MSI MS-7309/MS-7309, BIOS V1.12 02/23/2009
00000000 c12ba080 00000000 00000000 c103ed6a c1616014 00000001 00006dc6
c1615862 00000454 c109e8a7 c109e8a7 00000009 ffffffff 00000000 f13f6a10
f5f5a600 c103ee33 00000009 00000000 00000000 c109e8a7 f80ca4d0 c109f617

Call Trace:
[<c12ba080>] ? dump_stack+0x44/0x64
[<c103ed6a>] ? __warn+0xfa/0x120
[<c109e8a7>] ? module_put+0x57/0x70
[<c109e8a7>] ? module_put+0x57/0x70
[<c103ee33>] ? warn_slowpath_null+0x23/0x30
[<c109e8a7>] ? module_put+0x57/0x70
[<f80ca4d0>] ? gp8psk_fe_set_frontend+0x460/0x460 [dvb_usb_gp8psk]
[<c109f617>] ? symbol_put_addr+0x27/0x50
[<f80bc9ca>] ? dvb_usb_adapter_frontend_exit+0x3a/0x70 [dvb_usb]
[<f80bb3bf>] ? dvb_usb_exit+0x2f/0xd0 [dvb_usb]
[<c13d03bc>] ? usb_disable_endpoint+0x7c/0xb0
[<f80bb48a>] ? dvb_usb_device_exit+0x2a/0x50 [dvb_usb]
[<c13d2882>] ? usb_unbind_interface+0x62/0x250
[<c136b514>] ? __pm_runtime_idle+0x44/0x70
[<c13620d8>] ? __device_release_driver+0x78/0x120
[<c1362907>] ? driver_detach+0x87/0x90
[<c1361c48>] ? bus_remove_driver+0x38/0x90
[<c13d1c18>] ? usb_deregister+0x58/0xb0
[<c109fbb0>] ? SyS_delete_module+0x130/0x1f0
[<c1055654>] ? task_work_run+0x64/0x80
[<c1000fa5>] ? exit_to_usermode_loop+0x85/0x90
[<c10013f0>] ? do_fast_syscall_32+0x80/0x130
[<c1549f43>] ? sysenter_past_esp+0x40/0x6a

---[ end trace 6ebc60ef3981792f ]---

Such stack traces provide enough information to identify the line inside the Kernel’s source code where the bug happened. Depending
on the severity of the issue, it may also contain the word Oops, as on this one:

BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<c06969d4>] iret_exc+0x7d0/0xa59

187



Linux Kernel User Documentation, v4.20.0

*pdpt = 000000002258a001 *pde = 0000000000000000
Oops: 0002 [#1] PREEMPT SMP
...

Despite being an Oops or some other sort of stack trace, the offended line is usually required to identify and handle the bug. Along this
chapter, we’ll refer to “Oops” for all kinds of stack traces that need to be analized.

:

ksymoops is useless on 2.6 or upper. Please use the Oops in its original format (from dmesg, etc). Ignore any references in this
or other docs to “decoding the Oops” or “running it through ksymoops”. If you post an Oops from 2.6+ that has been run through
ksymoops, people will just tell you to repost it.

Where is the Oops message is located?

Normally the Oops text is read from the kernel buffers by klogd and handed to syslogd which writes it to a syslog file, typically
/var/log/messages (depends on /etc/syslog.conf). On systems with systemd, it may also be stored by the journald
daemon, and accessed by running journalctl command.

Sometimes klogd dies, in which case you can run dmesg > file to read the data from the kernel buffers and save it. Or you can
cat /proc/kmsg > file, however you have to break in to stop the transfer, kmsg is a “never ending file”.

If the machine has crashed so badly that you cannot enter commands or the disk is not available then you have three options:

1. Hand copy the text from the screen and type it in after the machine has restarted. Messy but it is the only option if you have not
planned for a crash. Alternatively, you can take a picture of the screen with a digital camera - not nice, but better than nothing. If
the messages scroll off the top of the console, you may find that booting with a higher resolution (eg, vga=791) will allow you
to read more of the text. (Caveat: This needs vesafb, so won’t help for ‘early’ oopses)

2. Boot with a serial console (see Documentation/admin-guide/serial-console.rst ), run a null modem to a second machine and
capture the output there using your favourite communication program. Minicom works well.

3. Use Kdump (see Documentation/kdump/kdump.txt), extract the kernel ring buffer from old memory with using dmesg gdbmacro
in Documentation/kdump/gdbmacros.txt.

Finding the bug’s location

Reporting a bug works best if you point the location of the bug at the Kernel source file. There are two methods for doing that. Usually,
using gdb is easier, but the Kernel should be pre-compiled with debug info.

gdb

The GNU debug (gdb) is the best way to figure out the exact file and line number of the OOPS from the vmlinux file.

The usage of gdb works best on a kernel compiled with CONFIG_DEBUG_INFO. This can be set by running:

$ ./scripts/config -d COMPILE_TEST -e DEBUG_KERNEL -e DEBUG_INFO

On a kernel compiled with CONFIG_DEBUG_INFO, you can simply copy the EIP value from the OOPS:

EIP: 0060:[<c021e50e>] Not tainted VLI

188 Chapter 7. Bug hunting



Linux Kernel User Documentation, v4.20.0

And use GDB to translate that to human-readable form:

$ gdb vmlinux
(gdb) l *0xc021e50e

If you don’t have CONFIG_DEBUG_INFO enabled, you use the function offset from the OOPS:

EIP is at vt_ioctl+0xda8/0x1482

And recompile the kernel with CONFIG_DEBUG_INFO enabled:

$ ./scripts/config -d COMPILE_TEST -e DEBUG_KERNEL -e DEBUG_INFO
$ make vmlinux
$ gdb vmlinux
(gdb) l *vt_ioctl+0xda8
0x1888 is in vt_ioctl (drivers/tty/vt/vt_ioctl.c:293).
288 {
289 struct vc_data *vc = NULL;
290 int ret = 0;
291
292 console_lock();
293 if (VT_BUSY(vc_num))
294 ret = -EBUSY;
295 else if (vc_num)
296 vc = vc_deallocate(vc_num);
297 console_unlock();

or, if you want to be more verbose:

(gdb) p vt_ioctl
$1 = {int (struct tty_struct *, unsigned int, unsigned long)} 0xae0 <vt_ioctl>
(gdb) l *0xae0+0xda8

You could, instead, use the object file:

$ make drivers/tty/
$ gdb drivers/tty/vt/vt_ioctl.o
(gdb) l *vt_ioctl+0xda8

If you have a call trace, such as:

Call Trace:
[<ffffffff8802c8e9>] :jbd:log_wait_commit+0xa3/0xf5
[<ffffffff810482d9>] autoremove_wake_function+0x0/0x2e
[<ffffffff8802770b>] :jbd:journal_stop+0x1be/0x1ee
...

this shows the problem likely in the :jbd: module. You can load that module in gdb and list the relevant code:

$ gdb fs/jbd/jbd.ko
(gdb) l *log_wait_commit+0xa3

7.2. Finding the bug’s location 189



Linux Kernel User Documentation, v4.20.0

:

You can also do the same for any function call at the stack trace, like this one:

[<f80bc9ca>] ? dvb_usb_adapter_frontend_exit+0x3a/0x70 [dvb_usb]

The position where the above call happened can be seen with:

$ gdb drivers/media/usb/dvb-usb/dvb-usb.o
(gdb) l *dvb_usb_adapter_frontend_exit+0x3a

objdump

To debug a kernel, use objdump and look for the hex offset from the crash output to find the valid line of code/assembler. Without debug
symbols, you will see the assembler code for the routine shown, but if your kernel has debug symbols the C code will also be available.
(Debug symbols can be enabled in the kernel hacking menu of the menu configuration.) For example:

$ objdump -r -S -l --disassemble net/dccp/ipv4.o

:

You need to be at the top level of the kernel tree for this to pick up your C files.

If you don’t have access to the code you can also debug on some crash dumps e.g. crash dump output as shown by Dave Miller:

EIP is at +0x14/0x4c0
...

Code: 44 24 04 e8 6f 05 00 00 e9 e8 fe ff ff 8d 76 00 8d bc 27 00 00
00 00 55 57 56 53 81 ec bc 00 00 00 8b ac 24 d0 00 00 00 8b 5d 08
<8b> 83 3c 01 00 00 89 44 24 14 8b 45 28 85 c0 89 44 24 18 0f 85

Put the bytes into a "foo.s" file like this:

.text

.globl foo
foo:

.byte .... /* bytes from Code: part of OOPS dump */

Compile it with "gcc -c -o foo.o foo.s" then look at the output of
"objdump --disassemble foo.o".

Output:

ip_queue_xmit:
push %ebp
push %edi
push %esi
push %ebx
sub $0xbc, %esp
mov 0xd0(%esp), %ebp ! %ebp = arg0 (skb)
mov 0x8(%ebp), %ebx ! %ebx = skb->sk
mov 0x13c(%ebx), %eax ! %eax = inet_sk(sk)->opt

190 Chapter 7. Bug hunting



Linux Kernel User Documentation, v4.20.0

Reporting the bug

Once you find where the bug happened, by inspecting its location, you could either try to fix it yourself or report it upstream.

In order to report it upstream, you should identify the mailing list used for the development of the affected code. This can be done by
using the get_maintainer.pl script.

For example, if you find a bug at the gspca’s sonixj.c file, you can get their maintainers with:

$ ./scripts/get_maintainer.pl -f drivers/media/usb/gspca/sonixj.c
Hans Verkuil <hverkuil@xs4all.nl> (odd fixer:GSPCA USB WEBCAM DRIVER,commit_signer:1/1=100%)
Mauro Carvalho Chehab <mchehab@kernel.org> (maintainer:MEDIA INPUT INFRASTRUCTURE (V4L/DVB),commit_
→˓signer:1/1=100%)
Tejun Heo <tj@kernel.org> (commit_signer:1/1=100%)
Bhaktipriya Shridhar <bhaktipriya96@gmail.com> (commit_signer:1/1=100%,authored:1/1=100%,added_
→˓lines:4/4=100%,removed_lines:9/9=100%)
linux-media@vger.kernel.org (open list:GSPCA USB WEBCAM DRIVER)
linux-kernel@vger.kernel.org (open list)

Please notice that it will point to:

• The last developers that touched on the source code. On the above example, Tejun and Bhaktipriya (in this specific case, none
really envolved on the development of this file);

• The driver maintainer (Hans Verkuil);

• The subsystem maintainer (Mauro Carvalho Chehab);

• The driver and/or subsystem mailing list (linux-media@vger.kernel.org);

• the Linux Kernel mailing list (linux-kernel@vger.kernel.org).

Usually, the fastest way to have your bug fixed is to report it to mailing list used for the development of the code (linux-media ML)
copying the driver maintainer (Hans).

If you are totally stumped as to whom to send the report, and get_maintainer.pl didn’t provide you anything useful, send it to
linux-kernel@vger.kernel.org.

Thanks for your help in making Linux as stable as humanly possible.

Fixing the bug

If you know programming, you could help us by not only reporting the bug, but also providing us with a solution. After all, open source
is about sharing what you do and don’t you want to be recognised for your genius?

If you decide to take this way, once you have worked out a fix please submit it upstream.

Please do read Documentation/process/submitting-patches.rst though to help your code get accepted.

Notes on Oops tracing with klogd

In order to help Linus and the other kernel developers there has been substantial support incorporated into klogd for processing
protection faults. In order to have full support for address resolution at least version 1.3-pl3 of the sysklogd package should be used.

7.3. Reporting the bug 191

mailto:linux-media@vger.kernel.org
mailto:linux-kernel@vger.kernel.org
mailto:linux-kernel@vger.kernel.org


Linux Kernel User Documentation, v4.20.0

When a protection fault occurs the klogd daemon automatically translates important addresses in the kernel log messages to their
symbolic equivalents. This translated kernel message is then forwarded through whatever reporting mechanism klogd is using. The
protection fault message can be simply cut out of the message files and forwarded to the kernel developers.

Two types of address resolution are performed by klogd. The first is static translation and the second is dynamic translation. Static
translation uses the System.map file in much the same manner that ksymoops does. In order to do static translation the klogd daemon
must be able to find a system map file at daemon initialization time. See the klogd man page for information on how klogd searches
for map files.

Dynamic address translation is important when kernel loadable modules are being used. Since memory for kernel modules is allocated
from the kernel’s dynamic memory pools there are no fixed locations for either the start of the module or for functions and symbols in
the module.

The kernel supports system calls which allow a program to determine which modules are loaded and their location in memory. Using
these system calls the klogd daemon builds a symbol table which can be used to debug a protection fault which occurs in a loadable
kernel module.

At the very minimum klogd will provide the name of the module which generated the protection fault. There may be additional symbolic
information available if the developer of the loadable module chose to export symbol information from the module.

Since the kernel module environment can be dynamic there must be a mechanism for notifying the klogd daemon when a change in
module environment occurs. There are command line options available which allow klogd to signal the currently executing daemon that
symbol information should be refreshed. See the klogd manual page for more information.

A patch is included with the sysklogd distribution which modifies the modules-2.0.0 package to automatically signal klogd when-
ever a module is loaded or unloaded. Applying this patch provides essentially seamless support for debugging protection faults which
occur with kernel loadable modules.

The following is an example of a protection fault in a loadable module processed by klogd:

Aug 29 09:51:01 blizard kernel: Unable to handle kernel paging request at virtual address f15e97cc
Aug 29 09:51:01 blizard kernel: current->tss.cr3 = 0062d000, %cr3 = 0062d000
Aug 29 09:51:01 blizard kernel: *pde = 00000000
Aug 29 09:51:01 blizard kernel: Oops: 0002
Aug 29 09:51:01 blizard kernel: CPU: 0
Aug 29 09:51:01 blizard kernel: EIP: 0010:[oops:_oops+16/3868]
Aug 29 09:51:01 blizard kernel: EFLAGS: 00010212
Aug 29 09:51:01 blizard kernel: eax: 315e97cc ebx: 003a6f80 ecx: 001be77b edx: 00237c0c
Aug 29 09:51:01 blizard kernel: esi: 00000000 edi: bffffdb3 ebp: 00589f90 esp: 00589f8c
Aug 29 09:51:01 blizard kernel: ds: 0018 es: 0018 fs: 002b gs: 002b ss: 0018
Aug 29 09:51:01 blizard kernel: Process oops_test (pid: 3374, process nr: 21, stackpage=00589000)
Aug 29 09:51:01 blizard kernel: Stack: 315e97cc 00589f98 0100b0b4 bffffed4 0012e38e 00240c64
→˓003a6f80 00000001
Aug 29 09:51:01 blizard kernel: 00000000 00237810 bfffff00 0010a7fa 00000003 00000001
→˓00000000 bfffff00
Aug 29 09:51:01 blizard kernel: bffffdb3 bffffed4 ffffffda 0000002b 0007002b 0000002b
→˓0000002b 00000036
Aug 29 09:51:01 blizard kernel: Call Trace: [oops:_oops_ioctl+48/80] [_sys_ioctl+254/272] [_system_
→˓call+82/128]
Aug 29 09:51:01 blizard kernel: Code: c7 00 05 00 00 00 eb 08 90 90 90 90 90 90 90 90 89 ec 5d c3

Dr. G.W. Wettstein Oncology Research Div. Computing Facility
Roger Maris Cancer Center INTERNET: greg@wind.rmcc.com
820 4th St. N.
Fargo, ND 58122
Phone: 701-234-7556

192 Chapter 7. Bug hunting



CHAPTER 8

Bisecting a bug

Last updated: 28 October 2016

Introduction

Always try the latest kernel from kernel.org and build from source. If you are not confident in doing that please report the bug to your
distribution vendor instead of to a kernel developer.

Finding bugs is not always easy. Have a go though. If you can’t find it don’t give up. Report as much as you have found to the relevant
maintainer. See MAINTAINERS for who that is for the subsystem you have worked on.

Before you submit a bug report read Documentation/admin-guide/reporting-bugs.rst .

Devices not appearing

Often this is caused by udev/systemd. Check that first before blaming it on the kernel.

Finding patch that caused a bug

Using the provided tools with git makes finding bugs easy provided the bug is reproducible.

Steps to do it:

• build the Kernel from its git source

• start bisect with 1:

$ git bisect start

• mark the broken changeset with:

$ git bisect bad [commit]

• mark a changeset where the code is known to work with:

$ git bisect good [commit]

1 You can, optionally, provide both good and bad arguments at git start with git bisect start [BAD] [GOOD]

193



Linux Kernel User Documentation, v4.20.0

• rebuild the Kernel and test

• interact with git bisect by using either:

$ git bisect good

or:

$ git bisect bad

depending if the bug happened on the changeset you’re testing

• After some interactions, git bisect will give you the changeset that likely caused the bug.

• For example, if you know that the current version is bad, and version 4.8 is good, you could do:

$ git bisect start
$ git bisect bad # Current version is bad
$ git bisect good v4.8

For further references, please read:

• The man page for git-bisect

• Fighting regressions with git bisect

• Fully automated bisecting with “git bisect run”

• Using Git bisect to figure out when brokenness was introduced

194 Chapter 8. Bisecting a bug

https://www.kernel.org/pub/software/scm/git/docs/git-bisect-lk2009.html
https://lwn.net/Articles/317154
http://webchick.net/node/99


CHAPTER 9

Tainted kernels

Some oops reports contain the string ‘Tainted: ‘ after the program counter. This indicates that the kernel has been tainted by some
mechanism. The string is followed by a series of position-sensitive characters, each representing a particular tainted value.

1. G if all modules loaded have a GPL or compatible license, P if any proprietary module has been loaded. Modules without a
MODULE_LICENSE or with a MODULE_LICENSE that is not recognised by insmod as GPL compatible are assumed to be
proprietary.

2. F if any module was force loaded by insmod -f, ' ' if all modules were loaded normally.

3. S if the oops occurred on an SMP kernel running on hardware that hasn’t been certified as safe to run multiprocessor. Currently
this occurs only on various Athlons that are not SMP capable.

4. R if a module was force unloaded by rmmod -f, ' ' if all modules were unloaded normally.

5. M if any processor has reported a Machine Check Exception, ' ' if no Machine Check Exceptions have occurred.

6. B if a page-release function has found a bad page reference or some unexpected page flags.

7. U if a user or user application specifically requested that the Tainted flag be set, ' ' otherwise.

8. D if the kernel has died recently, i.e. there was an OOPS or BUG.

9. A if the ACPI table has been overridden.

10. W if a warning has previously been issued by the kernel. (Though some warnings may set more specific taint flags.)

11. C if a staging driver has been loaded.

12. I if the kernel is working around a severe bug in the platform firmware (BIOS or similar).

13. O if an externally-built (“out-of-tree”) module has been loaded.

14. E if an unsigned module has been loaded in a kernel supporting module signature.

15. L if a soft lockup has previously occurred on the system.

16. K if the kernel has been live patched.

The primary reason for the ‘Tainted: ‘ string is to tell kernel debuggers if this is a clean kernel or if anything unusual has occurred.
Tainting is permanent: even if an offending module is unloaded, the tainted value remains to indicate that the kernel is not trustworthy.

195



Linux Kernel User Documentation, v4.20.0

196 Chapter 9. Tainted kernels



CHAPTER 10

Ramoops oops/panic logger

Sergiu Iordache <sergiu@chromium.org>

Updated: 17 November 2011

Introduction

Ramoops is an oops/panic logger that writes its logs to RAM before the system crashes. It works by logging oopses and panics in a
circular buffer. Ramoops needs a system with persistent RAM so that the content of that area can survive after a restart.

Ramoops concepts

Ramoops uses a predefined memory area to store the dump. The start and size and type of the memory area are set using three variables:

• mem_address for the start

• mem_size for the size. The memory size will be rounded down to a power of two.

• mem_type to specifiy if the memory type (default is pgprot_writecombine).

Typically the default value of mem_type=0 should be used as that sets the pstore mapping to pgprot_writecombine. Setting
mem_type=1 attempts to use pgprot_noncached, which only works on some platforms. This is because pstore depends on
atomic operations. At least on ARM, pgprot_noncached causes the memory to be mapped strongly ordered, and atomic operations on
strongly ordered memory are implementation defined, and won’t work on many ARMs such as omaps.

The memory area is divided into record_size chunks (also rounded down to power of two) and each oops/panic writes a
record_size chunk of information.

Dumping both oopses and panics can be done by setting 1 in the dump_oops variable while setting 0 in that variable dumps only the
panics.

The module uses a counter to record multiple dumps but the counter gets reset on restart (i.e. new dumps after the restart will overwrite
old ones).

Ramoops also supports software ECC protection of persistent memory regions. This might be useful when a hardware reset was used to
bring the machine back to life (i.e. a watchdog triggered). In such cases, RAM may be somewhat corrupt, but usually it is restorable.

Setting the parameters

Setting the ramoops parameters can be done in several different manners:

197

mailto:sergiu@chromium.org


Linux Kernel User Documentation, v4.20.0

A. Use the module parameters (which have the names of the variables described as before). For quick debugging, you can
also reserve parts of memory during boot and then use the reserved memory for ramoops. For example, assuming a machine
with > 128 MB of memory, the following kernel command line will tell the kernel to use only the first 128 MB of memory,
and place ECC-protected ramoops region at 128 MB boundary:

mem=128M ramoops.mem_address=0x8000000 ramoops.ecc=1

B. Use Device Tree bindings, as described in Documentation/devicetree/bindings/reserved-memory/ramoops.txt.
For example:

reserved-memory {
#address-cells = <2>;
#size-cells = <2>;
ranges;

ramoops@8f000000 {
compatible = "ramoops";
reg = <0 0x8f000000 0 0x100000>;
record-size = <0x4000>;
console-size = <0x4000>;

};
};

C. Use a platform device and set the platform data. The parameters can then be set through that platform data. An example
of doing that is:

#include <linux/pstore_ram.h>
[...]

static struct ramoops_platform_data ramoops_data = {
.mem_size = <...>,
.mem_address = <...>,
.mem_type = <...>,
.record_size = <...>,
.dump_oops = <...>,
.ecc = <...>,

};

static struct platform_device ramoops_dev = {
.name = "ramoops",
.dev = {

.platform_data = &ramoops_data,
},

};

[... inside a function ...]
int ret;

ret = platform_device_register(&ramoops_dev);
if (ret) {

printk(KERN_ERR "unable to register platform device\n");
return ret;

}

You can specify either RAM memory or peripheral devices’ memory. However, when specifying RAM, be sure to reserve the memory
by issuing memblock_reserve() very early in the architecture code, e.g.:

198 Chapter 10. Ramoops oops/panic logger



Linux Kernel User Documentation, v4.20.0

#include <linux/memblock.h>

memblock_reserve(ramoops_data.mem_address, ramoops_data.mem_size);

Dump format

The data dump begins with a header, currently defined as ==== followed by a timestamp and a new line. The dump then continues with
the actual data.

Reading the data

The dump data can be read from the pstore filesystem. The format for these files is dmesg-ramoops-N, where N is the record number
in memory. To delete a stored record from RAM, simply unlink the respective pstore file.

Persistent function tracing

Persistent function tracing might be useful for debugging software or hardware related hangs. The functions call chain log is stored in a
ftrace-ramoops file. Here is an example of usage:

# mount -t debugfs debugfs /sys/kernel/debug/
# echo 1 > /sys/kernel/debug/pstore/record_ftrace
# reboot -f
[...]
# mount -t pstore pstore /mnt/
# tail /mnt/ftrace-ramoops
0 ffffffff8101ea64 ffffffff8101bcda native_apic_mem_read <- disconnect_bsp_APIC+0x6a/0xc0
0 ffffffff8101ea44 ffffffff8101bcf6 native_apic_mem_write <- disconnect_bsp_APIC+0x86/0xc0
0 ffffffff81020084 ffffffff8101a4b5 hpet_disable <- native_machine_shutdown+0x75/0x90
0 ffffffff81005f94 ffffffff8101a4bb iommu_shutdown_noop <- native_machine_shutdown+0x7b/0x90
0 ffffffff8101a6a1 ffffffff8101a437 native_machine_emergency_restart <- native_machine_
→˓restart+0x37/0x40
0 ffffffff811f9876 ffffffff8101a73a acpi_reboot <- native_machine_emergency_restart+0xaa/0x1e0
0 ffffffff8101a514 ffffffff8101a772 mach_reboot_fixups <- native_machine_emergency_restart+0xe2/
→˓0x1e0
0 ffffffff811d9c54 ffffffff8101a7a0 __const_udelay <- native_machine_emergency_restart+0x110/0x1e0
0 ffffffff811d9c34 ffffffff811d9c80 __delay <- __const_udelay+0x30/0x40
0 ffffffff811d9d14 ffffffff811d9c3f delay_tsc <- __delay+0xf/0x20

10.4. Dump format 199



Linux Kernel User Documentation, v4.20.0

200 Chapter 10. Ramoops oops/panic logger



CHAPTER 11

Dynamic debug

Introduction

This document describes how to use the dynamic debug (dyndbg) feature.

Dynamic debug is designed to allow you to dynamically enable/disable kernel code to obtain additional ker-
nel information. Currently, if CONFIG_DYNAMIC_DEBUG is set, then all pr_debug()/dev_dbg() and
print_hex_dump_debug()/print_hex_dump_bytes() calls can be dynamically enabled per-callsite.

If CONFIG_DYNAMIC_DEBUG is not set, print_hex_dump_debug() is just shortcut for print_hex_dump(KERN_DEBUG).

For print_hex_dump_debug()/print_hex_dump_bytes(), format string is its prefix_str argument, if it is constant
string; or hexdump in case prefix_str is built dynamically.

Dynamic debug has even more useful features:

• Simple query language allows turning on and off debugging statements by matching any combination of 0 or 1 of:

– source filename

– function name

– line number (including ranges of line numbers)

– module name

– format string

• Provides a debugfs control file: <debugfs>/dynamic_debug/control which can be read to display the complete list of
known debug statements, to help guide you

Controlling dynamic debug Behaviour

The behaviour of pr_debug()/dev_dbg() are controlled via writing to a control file in the ‘debugfs’ filesystem. Thus, you
must first mount the debugfs filesystem, in order to make use of this feature. Subsequently, we refer to the control file as:
<debugfs>/dynamic_debug/control. For example, if you want to enable printing from source file svcsock.c, line 1603
you simply do:

nullarbor:~ # echo 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control

If you make a mistake with the syntax, the write will fail thus:

201



Linux Kernel User Documentation, v4.20.0

nullarbor:~ # echo 'file svcsock.c wtf 1 +p' >
<debugfs>/dynamic_debug/control

-bash: echo: write error: Invalid argument

Viewing Dynamic Debug Behaviour

You can view the currently configured behaviour of all the debug statements via:

nullarbor:~ # cat <debugfs>/dynamic_debug/control
# filename:lineno [module]function flags format
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:323 [svcxprt_rdma]svc_
→˓rdma_cleanup =_ "SVCRDMA Module Removed, deregister RPC RDMA transport\012"
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:341 [svcxprt_rdma]svc_
→˓rdma_init =_ "\011max_inline : %d\012"
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:340 [svcxprt_rdma]svc_
→˓rdma_init =_ "\011sq_depth : %d\012"
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svc_rdma.c:338 [svcxprt_rdma]svc_
→˓rdma_init =_ "\011max_requests : %d\012"
...

You can also apply standard Unix text manipulation filters to this data, e.g.:

nullarbor:~ # grep -i rdma <debugfs>/dynamic_debug/control | wc -l
62

nullarbor:~ # grep -i tcp <debugfs>/dynamic_debug/control | wc -l
42

The third column shows the currently enabled flags for each debug statement callsite (see below for definitions of the flags). The default
value, with no flags enabled, is =_. So you can view all the debug statement callsites with any non-default flags:

nullarbor:~ # awk '$3 != "=_"' <debugfs>/dynamic_debug/control
# filename:lineno [module]function flags format
/usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c:1603 [sunrpc]svc_send p
→˓"svc_process: st_sendto returned %d\012"

Command Language Reference

At the lexical level, a command comprises a sequence of words separated by spaces or tabs. So these are all equivalent:

nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control

nullarbor:~ # echo -n ' file svcsock.c line 1603 +p ' >
<debugfs>/dynamic_debug/control

nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >
<debugfs>/dynamic_debug/control

Command submissions are bounded by a write() system call. Multiple commands can be written together, separated by ; or \n:

~# echo "func pnpacpi_get_resources +p; func pnp_assign_mem +p" \
> <debugfs>/dynamic_debug/control

202 Chapter 11. Dynamic debug



Linux Kernel User Documentation, v4.20.0

If your query set is big, you can batch them too:

~# cat query-batch-file > <debugfs>/dynamic_debug/control

A another way is to use wildcard. The match rule support * (matches zero or more characters) and ? (matches exactly one character).For
example, you can match all usb drivers:

~# echo "file drivers/usb/* +p" > <debugfs>/dynamic_debug/control

At the syntactical level, a command comprises a sequence of match specifications, followed by a flags change specification:

command ::= match-spec* flags-spec

The match-spec’s are used to choose a subset of the known pr_debug() callsites to which to apply the flags-spec. Think of them as a
query with implicit ANDs between each pair. Note that an empty list of match-specs will select all debug statement callsites.

A match specification comprises a keyword, which controls the attribute of the callsite to be compared, and a value to compare against.
Possible keywords are::

match-spec ::= 'func' string |
'file' string |
'module' string |
'format' string |
'line' line-range

line-range ::= lineno |
'-'lineno |
lineno'-' |
lineno'-'lineno

lineno ::= unsigned-int

:

line-range cannot contain space, e.g. “1-30” is valid range but “1 - 30” is not.

The meanings of each keyword are:

func The given string is compared against the function name of each callsite. Example:

func svc_tcp_accept

file The given string is compared against either the full pathname, the src-root relative pathname, or the basename of the source file of
each callsite. Examples:

file svcsock.c
file kernel/freezer.c
file /usr/src/packages/BUILD/sgi-enhancednfs-1.4/default/net/sunrpc/svcsock.c

module The given string is compared against the module name of each callsite. The module name is the string as seen in lsmod, i.e.
without the directory or the .ko suffix and with - changed to _. Examples:

module sunrpc
module nfsd

format The given string is searched for in the dynamic debug format string. Note that the string does not need to match the entire
format, only some part. Whitespace and other special characters can be escaped using C octal character escape \ooo notation,

11.4. Command Language Reference 203



Linux Kernel User Documentation, v4.20.0

e.g. the space character is \040. Alternatively, the string can be enclosed in double quote characters (") or single quote characters
('). Examples:

format svcrdma: // many of the NFS/RDMA server pr_debugs
format readahead // some pr_debugs in the readahead cache
format nfsd:\040SETATTR // one way to match a format with whitespace
format "nfsd: SETATTR" // a neater way to match a format with whitespace
format 'nfsd: SETATTR' // yet another way to match a format with whitespace

line The given line number or range of line numbers is compared against the line number of each pr_debug() callsite. A single
line number matches the callsite line number exactly. A range of line numbers matches any callsite between the first and last line
number inclusive. An empty first number means the first line in the file, an empty last line number means the last line number in
the file. Examples:

line 1603 // exactly line 1603
line 1600-1605 // the six lines from line 1600 to line 1605
line -1605 // the 1605 lines from line 1 to line 1605
line 1600- // all lines from line 1600 to the end of the file

The flags specification comprises a change operation followed by one or more flag characters. The change operation is one of the
characters:

- remove the given flags
+ add the given flags
= set the flags to the given flags

The flags are:

p enables the pr_debug() callsite.
f Include the function name in the printed message
l Include line number in the printed message
m Include module name in the printed message
t Include thread ID in messages not generated from interrupt context
_ No flags are set. (Or'd with others on input)

For print_hex_dump_debug() and print_hex_dump_bytes(), only p flag have meaning, other flags ignored.

For display, the flags are preceded by = (mnemonic: what the flags are currently equal to).

Note the regexp ^[-+=][flmpt_]+$ matches a flags specification. To clear all flags at once, use =_ or -flmpt.

Debug messages during Boot Process

To activate debug messages for core code and built-in modules during the boot process, even before userspace and debugfs exists, use
dyndbg="QUERY", module.dyndbg="QUERY", or ddebug_query="QUERY" (ddebug_query is obsoleted by dyndbg,
and deprecated). QUERY follows the syntax described above, but must not exceed 1023 characters. Your bootloader may impose lower
limits.

These dyndbg params are processed just after the ddebug tables are processed, as part of the arch_initcall. Thus you can enable debug
messages in all code run after this arch_initcall via this boot parameter.

On an x86 system for example ACPI enablement is a subsys_initcall and:

dyndbg="file ec.c +p"

will show early Embedded Controller transactions during ACPI setup if your machine (typically a laptop) has an Embedded Controller.
PCI (or other devices) initialization also is a hot candidate for using this boot parameter for debugging purposes.

204 Chapter 11. Dynamic debug



Linux Kernel User Documentation, v4.20.0

If foo module is not built-in, foo.dyndbg will still be processed at boot time, without effect, but will be reprocessed when module is
loaded later. dyndbg_query= and bare dyndbg= are only processed at boot.

Debug Messages at Module Initialization Time

When modprobe foo is called, modprobe scans /proc/cmdline for foo.params, strips foo., and passes them to the kernel
along with params given in modprobe args or /etc/modprob.d/*.conf files, in the following order:

1. parameters given via /etc/modprobe.d/*.conf:

options foo dyndbg=+pt
options foo dyndbg # defaults to +p

2. foo.dyndbg as given in boot args, foo. is stripped and passed:

foo.dyndbg=" func bar +p; func buz +mp"

3. args to modprobe:

modprobe foo dyndbg==pmf # override previous settings

These dyndbg queries are applied in order, with last having final say. This allows boot args to override or modify those from
/etc/modprobe.d (sensible, since 1 is system wide, 2 is kernel or boot specific), and modprobe args to override both.

In the foo.dyndbg="QUERY" form, the query must exclude module foo. foo is extracted from the param-name, and applied to
each query in QUERY, and only 1 match-spec of each type is allowed.

The dyndbg option is a “fake” module parameter, which means:

• modules do not need to define it explicitly

• every module gets it tacitly, whether they use pr_debug or not

• it doesn’t appear in /sys/module/$module/parameters/ To see it, grep the control file, or inspect /proc/cmdline.

For CONFIG_DYNAMIC_DEBUG kernels, any settings given at boot-time (or enabled by -DDEBUG flag during compilation) can be
disabled later via the sysfs interface if the debug messages are no longer needed:

echo "module module_name -p" > <debugfs>/dynamic_debug/control

Examples

// enable the message at line 1603 of file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c line 1603 +p' >

<debugfs>/dynamic_debug/control

// enable all the messages in file svcsock.c
nullarbor:~ # echo -n 'file svcsock.c +p' >

<debugfs>/dynamic_debug/control

// enable all the messages in the NFS server module
nullarbor:~ # echo -n 'module nfsd +p' >

<debugfs>/dynamic_debug/control

// enable all 12 messages in the function svc_process()

11.6. Debug Messages at Module Initialization Time 205



Linux Kernel User Documentation, v4.20.0

nullarbor:~ # echo -n 'func svc_process +p' >
<debugfs>/dynamic_debug/control

// disable all 12 messages in the function svc_process()
nullarbor:~ # echo -n 'func svc_process -p' >

<debugfs>/dynamic_debug/control

// enable messages for NFS calls READ, READLINK, READDIR and READDIR+.
nullarbor:~ # echo -n 'format "nfsd: READ" +p' >

<debugfs>/dynamic_debug/control

// enable messages in files of which the paths include string "usb"
nullarbor:~ # echo -n '*usb* +p' > <debugfs>/dynamic_debug/control

// enable all messages
nullarbor:~ # echo -n '+p' > <debugfs>/dynamic_debug/control

// add module, function to all enabled messages
nullarbor:~ # echo -n '+mf' > <debugfs>/dynamic_debug/control

// boot-args example, with newlines and comments for readability
Kernel command line: ...

// see whats going on in dyndbg=value processing
dynamic_debug.verbose=1
// enable pr_debugs in 2 builtins, #cmt is stripped
dyndbg="module params +p #cmt ; module sys +p"
// enable pr_debugs in 2 functions in a module loaded later
pc87360.dyndbg="func pc87360_init_device +p; func pc87360_find +p"

206 Chapter 11. Dynamic debug



CHAPTER 12

Explaining the dreaded “No init found.” boot hang message

OK, so you’ve got this pretty unintuitive message (currently located in init/main.c) and are wondering what the H*** went wrong. Some
high-level reasons for failure (listed roughly in order of execution) to load the init binary are:

1. Unable to mount root FS

2. init binary doesn’t exist on rootfs

3. broken console device

4. binary exists but dependencies not available

5. binary cannot be loaded

Detailed explanations:

1. Set “debug” kernel parameter (in bootloader config file or CONFIG_CMDLINE) to get more detailed kernel messages.

2. make sure you have the correct root FS type (and root= kernel parameter points to the correct partition), required drivers such
as storage hardware (such as SCSI or USB!) and filesystem (ext3, jffs2 etc.) are builtin (alternatively as modules, to be pre-loaded
by an initrd)

3. Possibly a conflict in console= setup –> initial console unavailable. E.g. some serial consoles are unreliable due to serial
IRQ issues (e.g. missing interrupt-based configuration). Try using a different console= device or e.g. netconsole=.

4. e.g. required library dependencies of the init binary such as /lib/ld-linux.so.2 missing or broken. Use readelf -d
<INIT>|grep NEEDED to find out which libraries are required.

5. make sure the binary’s architecture matches your hardware. E.g. i386 vs. x86_64 mismatch, or trying to load x86 on ARM
hardware. In case you tried loading a non-binary file here (shell script?), you should make sure that the script specifies an
interpreter in its shebang header line (#!/...) that is fully working (including its library dependencies). And before tackling
scripts, better first test a simple non-script binary such as /bin/sh and confirm its successful execution. To find out more, add
code to init/main.c to display kernel_execve()s return values.

Please extend this explanation whenever you find new failure causes (after all loading the init binary is a CRITICAL and hard transition
step which needs to be made as painless as possible), then submit patch to LKML. Further TODOs:

• Implement the various run_init_process() invocations via a struct array which can then store the kernel_execve()
result value and on failure log it all by iterating over all results (very important usability fix).

• try to make the implementation itself more helpful in general, e.g. by providing additional error messages at affected places.

Andreas Mohr <andi at lisas period de>

This is the beginning of a section with information of interest to application developers. Documents covering various aspects of the
kernel ABI will be found here.

207



Linux Kernel User Documentation, v4.20.0

208 Chapter 12. Explaining the dreaded “No init found.” boot hang message



CHAPTER 13

Rules on how to access information in sysfs

The kernel-exported sysfs exports internal kernel implementation details and depends on internal kernel structures and layout. It is
agreed upon by the kernel developers that the Linux kernel does not provide a stable internal API. Therefore, there are aspects of the
sysfs interface that may not be stable across kernel releases.

To minimize the risk of breaking users of sysfs, which are in most cases low-level userspace applications, with a new kernel release,
the users of sysfs must follow some rules to use an as-abstract-as-possible way to access this filesystem. The current udev and HAL
programs already implement this and users are encouraged to plug, if possible, into the abstractions these programs provide instead of
accessing sysfs directly.

But if you really do want or need to access sysfs directly, please follow the following rules and then your programs should work with
future versions of the sysfs interface.

• Do not use libsysfs It makes assumptions about sysfs which are not true. Its API does not offer any abstraction, it exposes all
the kernel driver-core implementation details in its own API. Therefore it is not better than reading directories and opening
the files yourself. Also, it is not actively maintained, in the sense of reflecting the current kernel development. The goal of
providing a stable interface to sysfs has failed; it causes more problems than it solves. It violates many of the rules in this
document.

• sysfs is always at /sys Parsing /proc/mounts is a waste of time. Other mount points are a system configuration bug you
should not try to solve. For test cases, possibly support a SYSFS_PATH environment variable to overwrite the application’s
behavior, but never try to search for sysfs. Never try to mount it, if you are not an early boot script.

• devices are only “devices” There is no such thing like class-, bus-, physical devices, interfaces, and such that you can rely on in
userspace. Everything is just simply a “device”. Class-, bus-, physical, ... types are just kernel implementation details which
should not be expected by applications that look for devices in sysfs.

The properties of a device are:

– devpath (/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0)

* identical to the DEVPATH value in the event sent from the kernel at device creation and removal

* the unique key to the device at that point in time

* the kernel’s path to the device directory without the leading /sys, and always starting with a slash

* all elements of a devpath must be real directories. Symlinks pointing to /sys/devices must always be resolved to
their real target and the target path must be used to access the device. That way the devpath to the device matches
the devpath of the kernel used at event time.

* using or exposing symlink values as elements in a devpath string is a bug in the application

– kernel name (sda, tty, 0000:00:1f.2, ...)

* a directory name, identical to the last element of the devpath

* applications need to handle spaces and characters like ! in the name

209



Linux Kernel User Documentation, v4.20.0

– subsystem (block, tty, pci, ...)

* simple string, never a path or a link

* retrieved by reading the “subsystem”-link and using only the last element of the target path

– driver (tg3, ata_piix, uhci_hcd)

* a simple string, which may contain spaces, never a path or a link

* it is retrieved by reading the “driver”-link and using only the last element of the target path

* devices which do not have “driver”-link just do not have a driver; copying the driver value in a child device context
is a bug in the application

– attributes

* the files in the device directory or files below subdirectories of the same device directory

* accessing attributes reached by a symlink pointing to another device, like the “device”-link, is a bug in the applica-
tion

Everything else is just a kernel driver-core implementation detail that should not be assumed to be stable across kernel
releases.

• Properties of parent devices never belong into a child device. Always look at the parent devices themselves for determining
device context properties. If the device eth0 or sda does not have a “driver”-link, then this device does not have a driver.
Its value is empty. Never copy any property of the parent-device into a child-device. Parent device properties may change
dynamically without any notice to the child device.

• Hierarchy in a single device tree There is only one valid place in sysfs where hierarchy can be examined and this is below:
/sys/devices. It is planned that all device directories will end up in the tree below this directory.

• Classification by subsystem There are currently three places for classification of devices: /sys/block, /sys/class and
/sys/bus. It is planned that these will not contain any device directories themselves, but only flat lists of symlinks
pointing to the unified /sys/devices tree. All three places have completely different rules on how to access device
information. It is planned to merge all three classification directories into one place at /sys/subsystem, following the
layout of the bus directories. All buses and classes, including the converted block subsystem, will show up there. The devices
belonging to a subsystem will create a symlink in the “devices” directory at /sys/subsystem/<name>/devices,

If /sys/subsystem exists, /sys/bus, /sys/class and /sys/block can be ignored. If it does not exist, you
always have to scan all three places, as the kernel is free to move a subsystem from one place to the other, as long as the
devices are still reachable by the same subsystem name.

Assuming /sys/class/<subsystem> and /sys/bus/<subsystem>, or /sys/block and
/sys/class/block are not interchangeable is a bug in the application.

• Block The converted block subsystem at /sys/class/block or /sys/subsystem/block will contain the links for disks
and partitions at the same level, never in a hierarchy. Assuming the block subsystem to contain only disks and not partition
devices in the same flat list is a bug in the application.

• “device”-link and <subsystem>:<kernel name>-links Never depend on the “device”-link. The “device”-link is a workaround
for the old layout, where class devices are not created in /sys/devices/ like the bus devices. If the link-resolving
of a device directory does not end in /sys/devices/, you can use the “device”-link to find the parent devices in
/sys/devices/, That is the single valid use of the “device”-link; it must never appear in any path as an element.
Assuming the existence of the “device”-link for a device in /sys/devices/ is a bug in the application. Accessing
/sys/class/net/eth0/device is a bug in the application.

Never depend on the class-specific links back to the /sys/class directory. These links are also a workaround for the
design mistake that class devices are not created in /sys/devices. If a device directory does not contain directories for
child devices, these links may be used to find the child devices in /sys/class. That is the single valid use of these links;
they must never appear in any path as an element. Assuming the existence of these links for devices which are real child
device directories in the /sys/devices tree is a bug in the application.

210 Chapter 13. Rules on how to access information in sysfs



Linux Kernel User Documentation, v4.20.0

It is planned to remove all these links when all class device directories live in /sys/devices.

• Position of devices along device chain can change. Never depend on a specific parent device position in the devpath, or the
chain of parent devices. The kernel is free to insert devices into the chain. You must always request the parent device you
are looking for by its subsystem value. You need to walk up the chain until you find the device that matches the expected
subsystem. Depending on a specific position of a parent device or exposing relative paths using ../ to access the chain of
parents is a bug in the application.

• When reading and writing sysfs device attribute files, avoid dependency on specific error codes wherever possible. This min-
imizes coupling to the error handling implementation within the kernel.

In general, failures to read or write sysfs device attributes shall propagate errors wherever possible. Common errors include,
but are not limited to:

-EIO: The read or store operation is not supported, typically returned by the sysfs system itself if the read or store
pointer is NULL.

-ENXIO: The read or store operation failed

Error codes will not be changed without good reason, and should a change to error codes result in user-space breakage, it
will be fixed, or the the offending change will be reverted.

Userspace applications can, however, expect the format and contents of the attribute files to remain consistent in the absence
of a version attribute change in the context of a given attribute.

The rest of this manual consists of various unordered guides on how to configure specific aspects of kernel behavior to your liking.

211



Linux Kernel User Documentation, v4.20.0

212 Chapter 13. Rules on how to access information in sysfs



CHAPTER 14

Using the initial RAM disk (initrd)

Written 1996,2000 by Werner Almesberger <werner.almesberger@epfl.ch> and Hans Lermen <lermen@fgan.de>

initrd provides the capability to load a RAM disk by the boot loader. This RAM disk can then be mounted as the root file system and
programs can be run from it. Afterwards, a new root file system can be mounted from a different device. The previous root (from initrd)
is then moved to a directory and can be subsequently unmounted.

initrd is mainly designed to allow system startup to occur in two phases, where the kernel comes up with a minimum set of compiled-in
drivers, and where additional modules are loaded from initrd.

This document gives a brief overview of the use of initrd. A more detailed discussion of the boot process can be found in 1.

Operation

When using initrd, the system typically boots as follows:

1. the boot loader loads the kernel and the initial RAM disk

2. the kernel converts initrd into a “normal” RAM disk and frees the memory used by initrd

3. if the root device is not /dev/ram0, the old (deprecated) change_root procedure is followed. see the “Obsolete root change
mechanism” section below.

4. root device is mounted. if it is /dev/ram0, the initrd image is then mounted as root

5. /sbin/init is executed (this can be any valid executable, including shell scripts; it is run with uid 0 and can do basically everything
init can do).

6. init mounts the “real” root file system

7. init places the root file system at the root directory using the pivot_root system call

8. init execs the /sbin/init on the new root filesystem, performing the usual boot sequence

9. the initrd file system is removed

Note that changing the root directory does not involve unmounting it. It is therefore possible to leave processes running on initrd during
that procedure. Also note that file systems mounted under initrd continue to be accessible.

Boot command-line options

initrd adds the following new options:

1 Almesberger, Werner; “Booting Linux: The History and the Future” http://www.almesberger.net/cv/papers/ols2k-9.ps.gz

213

mailto:werner.almesberger@epfl.ch
mailto:lermen@fgan.de
http://www.almesberger.net/cv/papers/ols2k-9.ps.gz


Linux Kernel User Documentation, v4.20.0

initrd=<path> (e.g. LOADLIN)

Loads the specified file as the initial RAM disk. When using LILO, you
have to specify the RAM disk image file in /etc/lilo.conf, using the
INITRD configuration variable.

noinitrd

initrd data is preserved but it is not converted to a RAM disk and
the "normal" root file system is mounted. initrd data can be read
from /dev/initrd. Note that the data in initrd can have any structure
in this case and doesn't necessarily have to be a file system image.
This option is used mainly for debugging.

Note: /dev/initrd is read-only and it can only be used once. As soon
as the last process has closed it, all data is freed and /dev/initrd
can't be opened anymore.

root=/dev/ram0

initrd is mounted as root, and the normal boot procedure is followed,
with the RAM disk mounted as root.

Compressed cpio images

Recent kernels have support for populating a ramdisk from a compressed cpio archive. On such systems, the creation of a ramdisk image
doesn’t need to involve special block devices or loopbacks; you merely create a directory on disk with the desired initrd content, cd to
that directory, and run (as an example):

find . | cpio --quiet -H newc -o | gzip -9 -n > /boot/imagefile.img

Examining the contents of an existing image file is just as simple:

mkdir /tmp/imagefile
cd /tmp/imagefile
gzip -cd /boot/imagefile.img | cpio -imd --quiet

Installation

First, a directory for the initrd file system has to be created on the “normal” root file system, e.g.:

# mkdir /initrd

The name is not relevant. More details can be found on the pivot_root(2) man page.

If the root file system is created during the boot procedure (i.e. if you’re building an install floppy), the root file system creation procedure
should create the /initrd directory.

If initrd will not be mounted in some cases, its content is still accessible if the following device has been created:

# mknod /dev/initrd b 1 250
# chmod 400 /dev/initrd

214 Chapter 14. Using the initial RAM disk (initrd)



Linux Kernel User Documentation, v4.20.0

Second, the kernel has to be compiled with RAM disk support and with support for the initial RAM disk enabled. Also, at least all
components needed to execute programs from initrd (e.g. executable format and file system) must be compiled into the kernel.

Third, you have to create the RAM disk image. This is done by creating a file system on a block device, copying files to it as needed,
and then copying the content of the block device to the initrd file. With recent kernels, at least three types of devices are suitable for that:

• a floppy disk (works everywhere but it’s painfully slow)

• a RAM disk (fast, but allocates physical memory)

• a loopback device (the most elegant solution)

We’ll describe the loopback device method:

1. make sure loopback block devices are configured into the kernel

2. create an empty file system of the appropriate size, e.g.:

# dd if=/dev/zero of=initrd bs=300k count=1
# mke2fs -F -m0 initrd

(if space is critical, you may want to use the Minix FS instead of Ext2)

3. mount the file system, e.g.:

# mount -t ext2 -o loop initrd /mnt

4. create the console device:

# mkdir /mnt/dev
# mknod /mnt/dev/console c 5 1

5. copy all the files that are needed to properly use the initrd environment. Don’t forget the most important file, /sbin/init

:

/sbin/init permissions must include “x” (execute).

6. correct operation the initrd environment can frequently be tested even without rebooting with the command:

# chroot /mnt /sbin/init

This is of course limited to initrds that do not interfere with the general system state (e.g. by reconfiguring network interfaces,
overwriting mounted devices, trying to start already running demons, etc. Note however that it is usually possible to use pivot_root
in such a chroot’ed initrd environment.)

7. unmount the file system:

# umount /mnt

8. the initrd is now in the file “initrd”. Optionally, it can now be compressed:

# gzip -9 initrd

For experimenting with initrd, you may want to take a rescue floppy and only add a symbolic link from /sbin/init to /bin/sh.
Alternatively, you can try the experimental newlib environment 2 to create a small initrd.

Finally, you have to boot the kernel and load initrd. Almost all Linux boot loaders support initrd. Since the boot process is still compatible
with an older mechanism, the following boot command line parameters have to be given:

2 newlib package (experimental), with initrd example https://www.sourceware.org/newlib/

14.4. Installation 215

https://www.sourceware.org/newlib/


Linux Kernel User Documentation, v4.20.0

root=/dev/ram0 rw

(rw is only necessary if writing to the initrd file system.)

With LOADLIN, you simply execute:

LOADLIN <kernel> initrd=<disk_image>

e.g.:

LOADLIN C:\LINUX\BZIMAGE initrd=C:\LINUX\INITRD.GZ root=/dev/ram0 rw

With LILO, you add the option INITRD=<path> to either the global section or to the section of the respective kernel in
/etc/lilo.conf, and pass the options using APPEND, e.g.:

image = /bzImage
initrd = /boot/initrd.gz
append = "root=/dev/ram0 rw"

and run /sbin/lilo

For other boot loaders, please refer to the respective documentation.

Now you can boot and enjoy using initrd.

Changing the root device

When finished with its duties, init typically changes the root device and proceeds with starting the Linux system on the “real” root
device.

The procedure involves the following steps:

• mounting the new root file system

• turning it into the root file system

• removing all accesses to the old (initrd) root file system

• unmounting the initrd file system and de-allocating the RAM disk

Mounting the new root file system is easy: it just needs to be mounted on a directory under the current root. Example:

# mkdir /new-root
# mount -o ro /dev/hda1 /new-root

The root change is accomplished with the pivot_root system call, which is also available via the pivot_root utility (see
pivot_root(8) man page; pivot_root is distributed with util-linux version 2.10h or higher 3). pivot_root moves the cur-
rent root to a directory under the new root, and puts the new root at its place. The directory for the old root must exist before calling
pivot_root. Example:

# cd /new-root
# mkdir initrd
# pivot_root . initrd

Now, the init process may still access the old root via its executable, shared libraries, standard input/output/error, and its current root
directory. All these references are dropped by the following command:

3 util-linux: Miscellaneous utilities for Linux https://www.kernel.org/pub/linux/utils/util-linux/

216 Chapter 14. Using the initial RAM disk (initrd)

https://www.kernel.org/pub/linux/utils/util-linux/


Linux Kernel User Documentation, v4.20.0

# exec chroot . what-follows <dev/console >dev/console 2>&1

Where what-follows is a program under the new root, e.g. /sbin/init If the new root file system will be used with udev and has no
valid /dev directory, udev must be initialized before invoking chroot in order to provide /dev/console.

Note: implementation details of pivot_root may change with time. In order to ensure compatibility, the following points should be
observed:

• before calling pivot_root, the current directory of the invoking process should point to the new root directory

• use . as the first argument, and the _relative_ path of the directory for the old root as the second argument

• a chroot program must be available under the old and the new root

• chroot to the new root afterwards

• use relative paths for dev/console in the exec command

Now, the initrd can be unmounted and the memory allocated by the RAM disk can be freed:

# umount /initrd
# blockdev --flushbufs /dev/ram0

It is also possible to use initrd with an NFS-mounted root, see the pivot_root(8) man page for details.

Usage scenarios

The main motivation for implementing initrd was to allow for modular kernel configuration at system installation. The procedure would
work as follows:

1. system boots from floppy or other media with a minimal kernel (e.g. support for RAM disks, initrd, a.out, and the Ext2 FS) and
loads initrd

2. /sbin/init determines what is needed to (1) mount the “real” root FS (i.e. device type, device drivers, file system) and (2) the
distribution media (e.g. CD-ROM, network, tape, ...). This can be done by asking the user, by auto-probing, or by using a hybrid
approach.

3. /sbin/init loads the necessary kernel modules

4. /sbin/init creates and populates the root file system (this doesn’t have to be a very usable system yet)

5. /sbin/init invokes pivot_root to change the root file system and execs - via chroot - a program that continues the instal-
lation

6. the boot loader is installed

7. the boot loader is configured to load an initrd with the set of modules that was used to bring up the system (e.g. /initrd can be
modified, then unmounted, and finally, the image is written from /dev/ram0 or /dev/rd/0 to a file)

8. now the system is bootable and additional installation tasks can be performed

The key role of initrd here is to re-use the configuration data during normal system operation without requiring the use of a bloated
“generic” kernel or re-compiling or re-linking the kernel.

A second scenario is for installations where Linux runs on systems with different hardware configurations in a single administrative
domain. In such cases, it is desirable to generate only a small set of kernels (ideally only one) and to keep the system-specific part of
configuration information as small as possible. In this case, a common initrd could be generated with all the necessary modules. Then,
only /sbin/init or a file read by it would have to be different.

14.6. Usage scenarios 217



Linux Kernel User Documentation, v4.20.0

A third scenario is more convenient recovery disks, because information like the location of the root FS partition doesn’t have to be
provided at boot time, but the system loaded from initrd can invoke a user-friendly dialog and it can also perform some sanity checks (or
even some form of auto-detection).

Last not least, CD-ROM distributors may use it for better installation from CD, e.g. by using a boot floppy and bootstrapping a bigger
RAM disk via initrd from CD; or by booting via a loader like LOADLIN or directly from the CD-ROM, and loading the RAM disk from
CD without need of floppies.

Obsolete root change mechanism

The following mechanism was used before the introduction of pivot_root. Current kernels still support it, but you should _not_ rely on
its continued availability.

It works by mounting the “real” root device (i.e. the one set with rdev in the kernel image or with root=... at the boot command line) as
the root file system when linuxrc exits. The initrd file system is then unmounted, or, if it is still busy, moved to a directory /initrd, if
such a directory exists on the new root file system.

In order to use this mechanism, you do not have to specify the boot command options root, init, or rw. (If specified, they will affect the
real root file system, not the initrd environment.)

If /proc is mounted, the “real” root device can be changed from within linuxrc by writing the number of the new root FS device to the
special file /proc/sys/kernel/real-root-dev, e.g.:

# echo 0x301 >/proc/sys/kernel/real-root-dev

Note that the mechanism is incompatible with NFS and similar file systems.

This old, deprecated mechanism is commonly called change_root, while the new, supported mechanism is called pivot_root.

Mixed change_root and pivot_root mechanism

In case you did not want to use root=/dev/ram0 to trigger the pivot_root mechanism, you may create both /linuxrc and
/sbin/init in your initrd image.

/linuxrc would contain only the following:

#! /bin/sh
mount -n -t proc proc /proc
echo 0x0100 >/proc/sys/kernel/real-root-dev
umount -n /proc

Once linuxrc exited, the kernel would mount again your initrd as root, this time executing /sbin/init. Again, it would be the duty
of this init to build the right environment (maybe using the root= device passed on the cmdline) before the final execution of the
real /sbin/init.

Resources

218 Chapter 14. Using the initial RAM disk (initrd)



CHAPTER 15

Control Group v2

Date October, 2015

Author Tejun Heo <tj@kernel.org>

This is the authoritative documentation on the design, interface and conventions of cgroup v2. It describes all userland-visible aspects
of cgroup including core and specific controller behaviors. All future changes must be reflected in this document. Documentation for v1
is available under Documentation/cgroup-v1/.

Introduction

Terminology

“cgroup” stands for “control group” and is never capitalized. The singular form is used to designate the whole feature and also as a
qualifier as in “cgroup controllers”. When explicitly referring to multiple individual control groups, the plural form “cgroups” is used.

What is cgroup?

cgroup is a mechanism to organize processes hierarchically and distribute system resources along the hierarchy in a controlled and
configurable manner.

cgroup is largely composed of two parts - the core and controllers. cgroup core is primarily responsible for hierarchically organizing
processes. A cgroup controller is usually responsible for distributing a specific type of system resource along the hierarchy although
there are utility controllers which serve purposes other than resource distribution.

cgroups form a tree structure and every process in the system belongs to one and only one cgroup. All threads of a process belong to the
same cgroup. On creation, all processes are put in the cgroup that the parent process belongs to at the time. A process can be migrated
to another cgroup. Migration of a process doesn’t affect already existing descendant processes.

Following certain structural constraints, controllers may be enabled or disabled selectively on a cgroup. All controller behaviors are
hierarchical - if a controller is enabled on a cgroup, it affects all processes which belong to the cgroups consisting the inclusive sub-
hierarchy of the cgroup. When a controller is enabled on a nested cgroup, it always restricts the resource distribution further. The
restrictions set closer to the root in the hierarchy can not be overridden from further away.

219

mailto:tj@kernel.org


Linux Kernel User Documentation, v4.20.0

Basic Operations

Mounting

Unlike v1, cgroup v2 has only single hierarchy. The cgroup v2 hierarchy can be mounted with the following mount command:

# mount -t cgroup2 none $MOUNT_POINT

cgroup2 filesystem has the magic number 0x63677270 (“cgrp”). All controllers which support v2 and are not bound to a v1 hierarchy
are automatically bound to the v2 hierarchy and show up at the root. Controllers which are not in active use in the v2 hierarchy can be
bound to other hierarchies. This allows mixing v2 hierarchy with the legacy v1 multiple hierarchies in a fully backward compatible way.

A controller can be moved across hierarchies only after the controller is no longer referenced in its current hierarchy. Because per-cgroup
controller states are destroyed asynchronously and controllers may have lingering references, a controller may not show up immediately
on the v2 hierarchy after the final umount of the previous hierarchy. Similarly, a controller should be fully disabled to be moved out of
the unified hierarchy and it may take some time for the disabled controller to become available for other hierarchies; furthermore, due to
inter-controller dependencies, other controllers may need to be disabled too.

While useful for development and manual configurations, moving controllers dynamically between the v2 and other hierarchies is
strongly discouraged for production use. It is recommended to decide the hierarchies and controller associations before starting using
the controllers after system boot.

During transition to v2, system management software might still automount the v1 cgroup filesystem and so hijack all controllers during
boot, before manual intervention is possible. To make testing and experimenting easier, the kernel parameter cgroup_no_v1= allows
disabling controllers in v1 and make them always available in v2.

cgroup v2 currently supports the following mount options.

nsdelegate

Consider cgroup namespaces as delegation boundaries. This option is system wide and can only be set on mount
or modified through remount from the init namespace. The mount option is ignored on non-init namespace
mounts. Please refer to the Delegation section for details.

Organizing Processes and Threads

Processes

Initially, only the root cgroup exists to which all processes belong. A child cgroup can be created by creating a sub-directory:

# mkdir $CGROUP_NAME

A given cgroup may have multiple child cgroups forming a tree structure. Each cgroup has a read-writable interface file “cgroup.procs”.
When read, it lists the PIDs of all processes which belong to the cgroup one-per-line. The PIDs are not ordered and the same PID may
show up more than once if the process got moved to another cgroup and then back or the PID got recycled while reading.

A process can be migrated into a cgroup by writing its PID to the target cgroup’s “cgroup.procs” file. Only one process can be migrated
on a single write(2) call. If a process is composed of multiple threads, writing the PID of any thread migrates all threads of the process.

When a process forks a child process, the new process is born into the cgroup that the forking process belongs to at the time of the
operation. After exit, a process stays associated with the cgroup that it belonged to at the time of exit until it’s reaped; however, a zombie
process does not appear in “cgroup.procs” and thus can’t be moved to another cgroup.

A cgroup which doesn’t have any children or live processes can be destroyed by removing the directory. Note that a cgroup which
doesn’t have any children and is associated only with zombie processes is considered empty and can be removed:

220 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

# rmdir $CGROUP_NAME

“/proc/$PID/cgroup” lists a process’s cgroup membership. If legacy cgroup is in use in the system, this file may contain multiple lines,
one for each hierarchy. The entry for cgroup v2 is always in the format “0::$PATH”:

# cat /proc/842/cgroup
...
0::/test-cgroup/test-cgroup-nested

If the process becomes a zombie and the cgroup it was associated with is removed subsequently, ” (deleted)” is appended to the path:

# cat /proc/842/cgroup
...
0::/test-cgroup/test-cgroup-nested (deleted)

Threads

cgroup v2 supports thread granularity for a subset of controllers to support use cases requiring hierarchical resource distribution across
the threads of a group of processes. By default, all threads of a process belong to the same cgroup, which also serves as the resource
domain to host resource consumptions which are not specific to a process or thread. The thread mode allows threads to be spread across
a subtree while still maintaining the common resource domain for them.

Controllers which support thread mode are called threaded controllers. The ones which don’t are called domain controllers.

Marking a cgroup threaded makes it join the resource domain of its parent as a threaded cgroup. The parent may be another threaded
cgroup whose resource domain is further up in the hierarchy. The root of a threaded subtree, that is, the nearest ancestor which is not
threaded, is called threaded domain or thread root interchangeably and serves as the resource domain for the entire subtree.

Inside a threaded subtree, threads of a process can be put in different cgroups and are not subject to the no internal process constraint -
threaded controllers can be enabled on non-leaf cgroups whether they have threads in them or not.

As the threaded domain cgroup hosts all the domain resource consumptions of the subtree, it is considered to have internal resource
consumptions whether there are processes in it or not and can’t have populated child cgroups which aren’t threaded. Because the root
cgroup is not subject to no internal process constraint, it can serve both as a threaded domain and a parent to domain cgroups.

The current operation mode or type of the cgroup is shown in the “cgroup.type” file which indicates whether the cgroup is a normal
domain, a domain which is serving as the domain of a threaded subtree, or a threaded cgroup.

On creation, a cgroup is always a domain cgroup and can be made threaded by writing “threaded” to the “cgroup.type” file. The operation
is single direction:

# echo threaded > cgroup.type

Once threaded, the cgroup can’t be made a domain again. To enable the thread mode, the following conditions must be met.

• As the cgroup will join the parent’s resource domain. The parent must either be a valid (threaded) domain or a threaded cgroup.

• When the parent is an unthreaded domain, it must not have any domain controllers enabled or populated domain children. The
root is exempt from this requirement.

Topology-wise, a cgroup can be in an invalid state. Please consider the following topology:

A (threaded domain) - B (threaded) - C (domain, just created)

C is created as a domain but isn’t connected to a parent which can host child domains. C can’t be used until it is turned into a
threaded cgroup. “cgroup.type” file will report “domain (invalid)” in these cases. Operations which fail due to invalid topology use
EOPNOTSUPP as the errno.

15.2. Basic Operations 221



Linux Kernel User Documentation, v4.20.0

A domain cgroup is turned into a threaded domain when one of its child cgroup becomes threaded or threaded controllers are enabled
in the “cgroup.subtree_control” file while there are processes in the cgroup. A threaded domain reverts to a normal domain when the
conditions clear.

When read, “cgroup.threads” contains the list of the thread IDs of all threads in the cgroup. Except that the operations are per-thread
instead of per-process, “cgroup.threads” has the same format and behaves the same way as “cgroup.procs”. While “cgroup.threads” can
be written to in any cgroup, as it can only move threads inside the same threaded domain, its operations are confined inside each threaded
subtree.

The threaded domain cgroup serves as the resource domain for the whole subtree, and, while the threads can be scattered across the
subtree, all the processes are considered to be in the threaded domain cgroup. “cgroup.procs” in a threaded domain cgroup contains the
PIDs of all processes in the subtree and is not readable in the subtree proper. However, “cgroup.procs” can be written to from anywhere
in the subtree to migrate all threads of the matching process to the cgroup.

Only threaded controllers can be enabled in a threaded subtree. When a threaded controller is enabled inside a threaded subtree, it only
accounts for and controls resource consumptions associated with the threads in the cgroup and its descendants. All consumptions which
aren’t tied to a specific thread belong to the threaded domain cgroup.

Because a threaded subtree is exempt from no internal process constraint, a threaded controller must be able to handle competition
between threads in a non-leaf cgroup and its child cgroups. Each threaded controller defines how such competitions are handled.

[Un]populated Notification

Each non-root cgroup has a “cgroup.events” file which contains “populated” field indicating whether the cgroup’s sub-hierarchy has live
processes in it. Its value is 0 if there is no live process in the cgroup and its descendants; otherwise, 1. poll and [id]notify events are
triggered when the value changes. This can be used, for example, to start a clean-up operation after all processes of a given sub-hierarchy
have exited. The populated state updates and notifications are recursive. Consider the following sub-hierarchy where the numbers in the
parentheses represent the numbers of processes in each cgroup:

A(4) - B(0) - C(1)
\ D(0)

A, B and C’s “populated” fields would be 1 while D’s 0. After the one process in C exits, B and C’s “populated” fields would flip to “0”
and file modified events will be generated on the “cgroup.events” files of both cgroups.

Controlling Controllers

Enabling and Disabling

Each cgroup has a “cgroup.controllers” file which lists all controllers available for the cgroup to enable:

# cat cgroup.controllers
cpu io memory

No controller is enabled by default. Controllers can be enabled and disabled by writing to the “cgroup.subtree_control” file:

# echo "+cpu +memory -io" > cgroup.subtree_control

Only controllers which are listed in “cgroup.controllers” can be enabled. When multiple operations are specified as above, either they
all succeed or fail. If multiple operations on the same controller are specified, the last one is effective.

Enabling a controller in a cgroup indicates that the distribution of the target resource across its immediate children will be controlled.
Consider the following sub-hierarchy. The enabled controllers are listed in parentheses:

A(cpu,memory) - B(memory) - C()
\ D()

222 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

As A has “cpu” and “memory” enabled, A will control the distribution of CPU cycles and memory to its children, in this case, B. As B
has “memory” enabled but not “CPU”, C and D will compete freely on CPU cycles but their division of memory available to B will be
controlled.

As a controller regulates the distribution of the target resource to the cgroup’s children, enabling it creates the controller’s interface files
in the child cgroups. In the above example, enabling “cpu” on B would create the “cpu.” prefixed controller interface files in C and D.
Likewise, disabling “memory” from B would remove the “memory.” prefixed controller interface files from C and D. This means that
the controller interface files - anything which doesn’t start with “cgroup.” are owned by the parent rather than the cgroup itself.

Top-down Constraint

Resources are distributed top-down and a cgroup can further distribute a resource only if the resource has been distributed to it from
the parent. This means that all non-root “cgroup.subtree_control” files can only contain controllers which are enabled in the parent’s
“cgroup.subtree_control” file. A controller can be enabled only if the parent has the controller enabled and a controller can’t be disabled
if one or more children have it enabled.

No Internal Process Constraint

Non-root cgroups can distribute domain resources to their children only when they don’t have any processes of their own. In other words,
only domain cgroups which don’t contain any processes can have domain controllers enabled in their “cgroup.subtree_control” files.

This guarantees that, when a domain controller is looking at the part of the hierarchy which has it enabled, processes are always only on
the leaves. This rules out situations where child cgroups compete against internal processes of the parent.

The root cgroup is exempt from this restriction. Root contains processes and anonymous resource consumption which can’t be associated
with any other cgroups and requires special treatment from most controllers. How resource consumption in the root cgroup is governed
is up to each controller (for more information on this topic please refer to the Non-normative information section in the Controllers
chapter).

Note that the restriction doesn’t get in the way if there is no enabled controller in the cgroup’s “cgroup.subtree_control”. This is important
as otherwise it wouldn’t be possible to create children of a populated cgroup. To control resource distribution of a cgroup, the cgroup
must create children and transfer all its processes to the children before enabling controllers in its “cgroup.subtree_control” file.

Delegation

Model of Delegation

A cgroup can be delegated in two ways. First, to a less privileged user by granting write access of the directory and its “cgroup.procs”,
“cgroup.threads” and “cgroup.subtree_control” files to the user. Second, if the “nsdelegate” mount option is set, automatically to a
cgroup namespace on namespace creation.

Because the resource control interface files in a given directory control the distribution of the parent’s resources, the delegatee shouldn’t
be allowed to write to them. For the first method, this is achieved by not granting access to these files. For the second, the kernel rejects
writes to all files other than “cgroup.procs” and “cgroup.subtree_control” on a namespace root from inside the namespace.

The end results are equivalent for both delegation types. Once delegated, the user can build sub-hierarchy under the directory, organize
processes inside it as it sees fit and further distribute the resources it received from the parent. The limits and other settings of all resource
controllers are hierarchical and regardless of what happens in the delegated sub-hierarchy, nothing can escape the resource restrictions
imposed by the parent.

Currently, cgroup doesn’t impose any restrictions on the number of cgroups in or nesting depth of a delegated sub-hierarchy; however,
this may be limited explicitly in the future.

15.2. Basic Operations 223



Linux Kernel User Documentation, v4.20.0

Delegation Containment

A delegated sub-hierarchy is contained in the sense that processes can’t be moved into or out of the sub-hierarchy by the delegatee.

For delegations to a less privileged user, this is achieved by requiring the following conditions for a process with a non-root euid to
migrate a target process into a cgroup by writing its PID to the “cgroup.procs” file.

• The writer must have write access to the “cgroup.procs” file.

• The writer must have write access to the “cgroup.procs” file of the common ancestor of the source and destination cgroups.

The above two constraints ensure that while a delegatee may migrate processes around freely in the delegated sub-hierarchy it can’t pull
in from or push out to outside the sub-hierarchy.

For an example, let’s assume cgroups C0 and C1 have been delegated to user U0 who created C00, C01 under C0 and C10 under C1 as
follows and all processes under C0 and C1 belong to U0:

~~~~~~~~~~~~~ - C0 - C00
~ cgroup ~ \ C01
~ hierarchy ~
~~~~~~~~~~~~~ - C1 - C10

Let’s also say U0 wants to write the PID of a process which is currently in C10 into “C00/cgroup.procs”. U0 has write access to the file;
however, the common ancestor of the source cgroup C10 and the destination cgroup C00 is above the points of delegation and U0 would
not have write access to its “cgroup.procs” files and thus the write will be denied with -EACCES.

For delegations to namespaces, containment is achieved by requiring that both the source and destination cgroups are reachable from the
namespace of the process which is attempting the migration. If either is not reachable, the migration is rejected with -ENOENT.

Guidelines

Organize Once and Control

Migrating a process across cgroups is a relatively expensive operation and stateful resources such as memory are not moved together
with the process. This is an explicit design decision as there often exist inherent trade-offs between migration and various hot paths in
terms of synchronization cost.

As such, migrating processes across cgroups frequently as a means to apply different resource restrictions is discouraged. A workload
should be assigned to a cgroup according to the system’s logical and resource structure once on start-up. Dynamic adjustments to
resource distribution can be made by changing controller configuration through the interface files.

Avoid Name Collisions

Interface files for a cgroup and its children cgroups occupy the same directory and it is possible to create children cgroups which collide
with interface files.

All cgroup core interface files are prefixed with “cgroup.” and each controller’s interface files are prefixed with the controller name and
a dot. A controller’s name is composed of lower case alphabets and ‘_’s but never begins with an ‘_’ so it can be used as the prefix
character for collision avoidance. Also, interface file names won’t start or end with terms which are often used in categorizing workloads
such as job, service, slice, unit or workload.

cgroup doesn’t do anything to prevent name collisions and it’s the user’s responsibility to avoid them.

224 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

Resource Distribution Models

cgroup controllers implement several resource distribution schemes depending on the resource type and expected use cases. This section
describes major schemes in use along with their expected behaviors.

Weights

A parent’s resource is distributed by adding up the weights of all active children and giving each the fraction matching the ratio of
its weight against the sum. As only children which can make use of the resource at the moment participate in the distribution, this is
work-conserving. Due to the dynamic nature, this model is usually used for stateless resources.

All weights are in the range [1, 10000] with the default at 100. This allows symmetric multiplicative biases in both directions at fine
enough granularity while staying in the intuitive range.

As long as the weight is in range, all configuration combinations are valid and there is no reason to reject configuration changes or
process migrations.

“cpu.weight” proportionally distributes CPU cycles to active children and is an example of this type.

Limits

A child can only consume upto the configured amount of the resource. Limits can be over-committed - the sum of the limits of children
can exceed the amount of resource available to the parent.

Limits are in the range [0, max] and defaults to “max”, which is noop.

As limits can be over-committed, all configuration combinations are valid and there is no reason to reject configuration changes or
process migrations.

“io.max” limits the maximum BPS and/or IOPS that a cgroup can consume on an IO device and is an example of this type.

Protections

A cgroup is protected to be allocated upto the configured amount of the resource if the usages of all its ancestors are under their protected
levels. Protections can be hard guarantees or best effort soft boundaries. Protections can also be over-committed in which case only upto
the amount available to the parent is protected among children.

Protections are in the range [0, max] and defaults to 0, which is noop.

As protections can be over-committed, all configuration combinations are valid and there is no reason to reject configuration changes or
process migrations.

“memory.low” implements best-effort memory protection and is an example of this type.

Allocations

A cgroup is exclusively allocated a certain amount of a finite resource. Allocations can’t be over-committed - the sum of the allocations
of children can not exceed the amount of resource available to the parent.

Allocations are in the range [0, max] and defaults to 0, which is no resource.

As allocations can’t be over-committed, some configuration combinations are invalid and should be rejected. Also, if the resource is
mandatory for execution of processes, process migrations may be rejected.

“cpu.rt.max” hard-allocates realtime slices and is an example of this type.

15.3. Resource Distribution Models 225



Linux Kernel User Documentation, v4.20.0

Interface Files

Format

All interface files should be in one of the following formats whenever possible:

New-line separated values
(when only one value can be written at once)

VAL0\n
VAL1\n
...

Space separated values
(when read-only or multiple values can be written at once)

VAL0 VAL1 ...\n

Flat keyed

KEY0 VAL0\n
KEY1 VAL1\n
...

Nested keyed

KEY0 SUB_KEY0=VAL00 SUB_KEY1=VAL01...
KEY1 SUB_KEY0=VAL10 SUB_KEY1=VAL11...
...

For a writable file, the format for writing should generally match reading; however, controllers may allow omitting later fields or
implement restricted shortcuts for most common use cases.

For both flat and nested keyed files, only the values for a single key can be written at a time. For nested keyed files, the sub key pairs
may be specified in any order and not all pairs have to be specified.

Conventions

• Settings for a single feature should be contained in a single file.

• The root cgroup should be exempt from resource control and thus shouldn’t have resource control interface files. Also, informa-
tional files on the root cgroup which end up showing global information available elsewhere shouldn’t exist.

• If a controller implements weight based resource distribution, its interface file should be named “weight” and have the range [1,
10000] with 100 as the default. The values are chosen to allow enough and symmetric bias in both directions while keeping it
intuitive (the default is 100%).

• If a controller implements an absolute resource guarantee and/or limit, the interface files should be named “min” and “max”
respectively. If a controller implements best effort resource guarantee and/or limit, the interface files should be named “low” and
“high” respectively.

In the above four control files, the special token “max” should be used to represent upward infinity for both reading and writing.

• If a setting has a configurable default value and keyed specific overrides, the default entry should be keyed with “default” and
appear as the first entry in the file.

The default value can be updated by writing either “default $VAL” or “$VAL”.

226 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

When writing to update a specific override, “default” can be used as the value to indicate removal of the override. Override entries
with “default” as the value must not appear when read.

For example, a setting which is keyed by major:minor device numbers with integer values may look like the following:

# cat cgroup-example-interface-file
default 150
8:0 300

The default value can be updated by:

# echo 125 > cgroup-example-interface-file

or:

# echo "default 125" > cgroup-example-interface-file

An override can be set by:

# echo "8:16 170" > cgroup-example-interface-file

and cleared by:

# echo "8:0 default" > cgroup-example-interface-file
# cat cgroup-example-interface-file
default 125
8:16 170

• For events which are not very high frequency, an interface file “events” should be created which lists event key value pairs.
Whenever a notifiable event happens, file modified event should be generated on the file.

Core Interface Files

All cgroup core files are prefixed with “cgroup.”

cgroup.type

A read-write single value file which exists on non-root cgroups.

When read, it indicates the current type of the cgroup, which can be one of the following values.

• “domain” : A normal valid domain cgroup.

• “domain threaded” : A threaded domain cgroup which is serving as the root of a threaded subtree.

• “domain invalid” : A cgroup which is in an invalid state. It can’t be populated or have controllers enabled.
It may be allowed to become a threaded cgroup.

• “threaded” : A threaded cgroup which is a member of a threaded subtree.

A cgroup can be turned into a threaded cgroup by writing “threaded” to this file.

cgroup.procs A read-write new-line separated values file which exists on all cgroups.

When read, it lists the PIDs of all processes which belong to the cgroup one-per-line. The PIDs are not ordered and
the same PID may show up more than once if the process got moved to another cgroup and then back or the PID got
recycled while reading.

A PID can be written to migrate the process associated with the PID to the cgroup. The writer should match all of the
following conditions.

15.4. Interface Files 227



Linux Kernel User Documentation, v4.20.0

• It must have write access to the “cgroup.procs” file.

• It must have write access to the “cgroup.procs” file of the common ancestor of the source and destination cgroups.

When delegating a sub-hierarchy, write access to this file should be granted along with the containing directory.

In a threaded cgroup, reading this file fails with EOPNOTSUPP as all the processes belong to the thread root. Writing
is supported and moves every thread of the process to the cgroup.

cgroup.threads A read-write new-line separated values file which exists on all cgroups.

When read, it lists the TIDs of all threads which belong to the cgroup one-per-line. The TIDs are not ordered and
the same TID may show up more than once if the thread got moved to another cgroup and then back or the TID got
recycled while reading.

A TID can be written to migrate the thread associated with the TID to the cgroup. The writer should match all of the
following conditions.

• It must have write access to the “cgroup.threads” file.

• The cgroup that the thread is currently in must be in the same resource domain as the destination cgroup.

• It must have write access to the “cgroup.procs” file of the common ancestor of the source and destination cgroups.

When delegating a sub-hierarchy, write access to this file should be granted along with the containing directory.

cgroup.controllers A read-only space separated values file which exists on all cgroups.

It shows space separated list of all controllers available to the cgroup. The controllers are not ordered.

cgroup.subtree_control A read-write space separated values file which exists on all cgroups. Starts out empty.

When read, it shows space separated list of the controllers which are enabled to control resource distribution from the
cgroup to its children.

Space separated list of controllers prefixed with ‘+’ or ‘-‘ can be written to enable or disable controllers. A controller
name prefixed with ‘+’ enables the controller and ‘-‘ disables. If a controller appears more than once on the list, the
last one is effective. When multiple enable and disable operations are specified, either all succeed or all fail.

cgroup.events A read-only flat-keyed file which exists on non-root cgroups. The following entries are defined. Unless
specified otherwise, a value change in this file generates a file modified event.

populated 1 if the cgroup or its descendants contains any live processes; otherwise, 0.

cgroup.max.descendants A read-write single value files. The default is “max”.

Maximum allowed number of descent cgroups. If the actual number of descendants is equal or larger, an attempt to
create a new cgroup in the hierarchy will fail.

cgroup.max.depth A read-write single value files. The default is “max”.

Maximum allowed descent depth below the current cgroup. If the actual descent depth is equal or larger, an attempt to
create a new child cgroup will fail.

cgroup.stat A read-only flat-keyed file with the following entries:

nr_descendants Total number of visible descendant cgroups.

nr_dying_descendants Total number of dying descendant cgroups. A cgroup becomes dying after being
deleted by a user. The cgroup will remain in dying state for some time undefined time (which can
depend on system load) before being completely destroyed.

A process can’t enter a dying cgroup under any circumstances, a dying cgroup can’t revive.

A dying cgroup can consume system resources not exceeding limits, which were active at the moment
of cgroup deletion.

228 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

Controllers

CPU

The “cpu” controllers regulates distribution of CPU cycles. This controller implements weight and absolute bandwidth limit models for
normal scheduling policy and absolute bandwidth allocation model for realtime scheduling policy.

WARNING: cgroup2 doesn’t yet support control of realtime processes and the cpu controller can only be enabled when all RT processes
are in the root cgroup. Be aware that system management software may already have placed RT processes into nonroot cgroups during
the system boot process, and these processes may need to be moved to the root cgroup before the cpu controller can be enabled.

CPU Interface Files

All time durations are in microseconds.

cpu.stat A read-only flat-keyed file which exists on non-root cgroups. This file exists whether the controller is enabled or
not.

It always reports the following three stats:

• usage_usec

• user_usec

• system_usec

and the following three when the controller is enabled:

• nr_periods

• nr_throttled

• throttled_usec

cpu.weight A read-write single value file which exists on non-root cgroups. The default is “100”.

The weight in the range [1, 10000].

cpu.weight.nice A read-write single value file which exists on non-root cgroups. The default is “0”.

The nice value is in the range [-20, 19].

This interface file is an alternative interface for “cpu.weight” and allows reading and setting weight using the same
values used by nice(2). Because the range is smaller and granularity is coarser for the nice values, the read value is the
closest approximation of the current weight.

cpu.max A read-write two value file which exists on non-root cgroups. The default is “max 100000”.

The maximum bandwidth limit. It’s in the following format:

$MAX $PERIOD

which indicates that the group may consume upto $MAX in each $PERIOD duration. “max” for $MAX indicates no
limit. If only one number is written, $MAX is updated.

cpu.pressure A read-only nested-key file which exists on non-root cgroups.

Shows pressure stall information for CPU. See Documentation/accounting/psi.txt for details.

15.5. Controllers 229



Linux Kernel User Documentation, v4.20.0

Memory

The “memory” controller regulates distribution of memory. Memory is stateful and implements both limit and protection models. Due
to the intertwining between memory usage and reclaim pressure and the stateful nature of memory, the distribution model is relatively
complex.

While not completely water-tight, all major memory usages by a given cgroup are tracked so that the total memory consumption can be
accounted and controlled to a reasonable extent. Currently, the following types of memory usages are tracked.

• Userland memory - page cache and anonymous memory.

• Kernel data structures such as dentries and inodes.

• TCP socket buffers.

The above list may expand in the future for better coverage.

Memory Interface Files

All memory amounts are in bytes. If a value which is not aligned to PAGE_SIZE is written, the value may be rounded up to the closest
PAGE_SIZE multiple when read back.

memory.current A read-only single value file which exists on non-root cgroups.

The total amount of memory currently being used by the cgroup and its descendants.

memory.min

A read-write single value file which exists on non-root cgroups. The default is “0”.

Hard memory protection. If the memory usage of a cgroup is within its effective min boundary, the cgroup’s
memory won’t be reclaimed under any conditions. If there is no unprotected reclaimable memory available,
OOM killer is invoked.

Effective min boundary is limited by memory.min values of all ancestor cgroups. If there is memory.min over-
commitment (child cgroup or cgroups are requiring more protected memory than parent will allow), then each
child cgroup will get the part of parent’s protection proportional to its actual memory usage below memory.min.

Putting more memory than generally available under this protection is discouraged and may lead to constant
OOMs.

If a memory cgroup is not populated with processes, its memory.min is ignored.

memory.low A read-write single value file which exists on non-root cgroups. The default is “0”.

Best-effort memory protection. If the memory usage of a cgroup is within its effective low boundary, the cgroup’s
memory won’t be reclaimed unless memory can be reclaimed from unprotected cgroups.

Effective low boundary is limited by memory.low values of all ancestor cgroups. If there is memory.low overcommit-
ment (child cgroup or cgroups are requiring more protected memory than parent will allow), then each child cgroup
will get the part of parent’s protection proportional to its actual memory usage below memory.low.

Putting more memory than generally available under this protection is discouraged.

memory.high A read-write single value file which exists on non-root cgroups. The default is “max”.

Memory usage throttle limit. This is the main mechanism to control memory usage of a cgroup. If a cgroup’s usage
goes over the high boundary, the processes of the cgroup are throttled and put under heavy reclaim pressure.

Going over the high limit never invokes the OOM killer and under extreme conditions the limit may be breached.

230 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

memory.max A read-write single value file which exists on non-root cgroups. The default is “max”.

Memory usage hard limit. This is the final protection mechanism. If a cgroup’s memory usage reaches this limit and
can’t be reduced, the OOM killer is invoked in the cgroup. Under certain circumstances, the usage may go over the
limit temporarily.

This is the ultimate protection mechanism. As long as the high limit is used and monitored properly, this limit’s utility
is limited to providing the final safety net.

memory.oom.group A read-write single value file which exists on non-root cgroups. The default value is “0”.

Determines whether the cgroup should be treated as an indivisible workload by the OOM killer. If set, all tasks
belonging to the cgroup or to its descendants (if the memory cgroup is not a leaf cgroup) are killed together or not at
all. This can be used to avoid partial kills to guarantee workload integrity.

Tasks with the OOM protection (oom_score_adj set to -1000) are treated as an exception and are never killed.

If the OOM killer is invoked in a cgroup, it’s not going to kill any tasks outside of this cgroup, regardless mem-
ory.oom.group values of ancestor cgroups.

memory.events A read-only flat-keyed file which exists on non-root cgroups. The following entries are defined. Unless
specified otherwise, a value change in this file generates a file modified event.

low The number of times the cgroup is reclaimed due to high memory pressure even though its usage is
under the low boundary. This usually indicates that the low boundary is over-committed.

high The number of times processes of the cgroup are throttled and routed to perform direct memory reclaim
because the high memory boundary was exceeded. For a cgroup whose memory usage is capped by the
high limit rather than global memory pressure, this event’s occurrences are expected.

max The number of times the cgroup’s memory usage was about to go over the max boundary. If direct
reclaim fails to bring it down, the cgroup goes to OOM state.

oom The number of time the cgroup’s memory usage was reached the limit and allocation was about to fail.

Depending on context result could be invocation of OOM killer and retrying allocation or failing alloca-
tion.

Failed allocation in its turn could be returned into userspace as -ENOMEM or silently ignored in cases
like disk readahead. For now OOM in memory cgroup kills tasks iff shortage has happened inside page
fault.

This event is not raised if the OOM killer is not considered as an option, e.g. for failed high-order
allocations.

oom_kill The number of processes belonging to this cgroup killed by any kind of OOM killer.

memory.stat A read-only flat-keyed file which exists on non-root cgroups.

This breaks down the cgroup’s memory footprint into different types of memory, type-specific details, and other
information on the state and past events of the memory management system.

All memory amounts are in bytes.

The entries are ordered to be human readable, and new entries can show up in the middle. Don’t rely on items
remaining in a fixed position; use the keys to look up specific values!

anon Amount of memory used in anonymous mappings such as brk(), sbrk(), and
mmap(MAP_ANONYMOUS)

file Amount of memory used to cache filesystem data, including tmpfs and shared memory.

kernel_stack Amount of memory allocated to kernel stacks.

slab Amount of memory used for storing in-kernel data structures.

15.5. Controllers 231



Linux Kernel User Documentation, v4.20.0

sock Amount of memory used in network transmission buffers

shmem Amount of cached filesystem data that is swap-backed, such as tmpfs, shm segments, shared anony-
mous mmap()s

file_mapped Amount of cached filesystem data mapped with mmap()

file_dirty Amount of cached filesystem data that was modified but not yet written back to disk

file_writeback Amount of cached filesystem data that was modified and is currently being written back to
disk

inactive_anon, active_anon, inactive_file, active_file, unevictable Amount of memory, swap-backed and
filesystem-backed, on the internal memory management lists used by the page reclaim algorithm

slab_reclaimable Part of “slab” that might be reclaimed, such as dentries and inodes.

slab_unreclaimable Part of “slab” that cannot be reclaimed on memory pressure.

pgfault Total number of page faults incurred

pgmajfault Number of major page faults incurred

workingset_refault

Number of refaults of previously evicted pages

workingset_activate

Number of refaulted pages that were immediately activated

workingset_nodereclaim

Number of times a shadow node has been reclaimed

pgrefill

Amount of scanned pages (in an active LRU list)

pgscan

Amount of scanned pages (in an inactive LRU list)

pgsteal

Amount of reclaimed pages

pgactivate

Amount of pages moved to the active LRU list

pgdeactivate

Amount of pages moved to the inactive LRU lis

pglazyfree

Amount of pages postponed to be freed under memory pressure

pglazyfreed

Amount of reclaimed lazyfree pages

memory.swap.current A read-only single value file which exists on non-root cgroups.

The total amount of swap currently being used by the cgroup and its descendants.

232 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

memory.swap.max A read-write single value file which exists on non-root cgroups. The default is “max”.

Swap usage hard limit. If a cgroup’s swap usage reaches this limit, anonymous memory of the cgroup will not be
swapped out.

memory.swap.events A read-only flat-keyed file which exists on non-root cgroups. The following entries are defined.
Unless specified otherwise, a value change in this file generates a file modified event.

max The number of times the cgroup’s swap usage was about to go over the max boundary and swap allo-
cation failed.

fail The number of times swap allocation failed either because of running out of swap system-wide or max
limit.

When reduced under the current usage, the existing swap entries are reclaimed gradually and the swap usage may
stay higher than the limit for an extended period of time. This reduces the impact on the workload and memory
management.

memory.pressure A read-only nested-key file which exists on non-root cgroups.

Shows pressure stall information for memory. See Documentation/accounting/psi.txt for details.

Usage Guidelines

“memory.high” is the main mechanism to control memory usage. Over-committing on high limit (sum of high limits > available memory)
and letting global memory pressure to distribute memory according to usage is a viable strategy.

Because breach of the high limit doesn’t trigger the OOM killer but throttles the offending cgroup, a management agent has ample
opportunities to monitor and take appropriate actions such as granting more memory or terminating the workload.

Determining whether a cgroup has enough memory is not trivial as memory usage doesn’t indicate whether the workload can benefit
from more memory. For example, a workload which writes data received from network to a file can use all available memory but can
also operate as performant with a small amount of memory. A measure of memory pressure - how much the workload is being impacted
due to lack of memory - is necessary to determine whether a workload needs more memory; unfortunately, memory pressure monitoring
mechanism isn’t implemented yet.

Memory Ownership

A memory area is charged to the cgroup which instantiated it and stays charged to the cgroup until the area is released. Migrating a
process to a different cgroup doesn’t move the memory usages that it instantiated while in the previous cgroup to the new cgroup.

A memory area may be used by processes belonging to different cgroups. To which cgroup the area will be charged is in-deterministic;
however, over time, the memory area is likely to end up in a cgroup which has enough memory allowance to avoid high reclaim pressure.

If a cgroup sweeps a considerable amount of memory which is expected to be accessed repeatedly by other cgroups, it may make sense to
use POSIX_FADV_DONTNEED to relinquish the ownership of memory areas belonging to the affected files to ensure correct memory
ownership.

IO

The “io” controller regulates the distribution of IO resources. This controller implements both weight based and absolute bandwidth or
IOPS limit distribution; however, weight based distribution is available only if cfq-iosched is in use and neither scheme is available for
blk-mq devices.

15.5. Controllers 233



Linux Kernel User Documentation, v4.20.0

IO Interface Files

io.stat A read-only nested-keyed file which exists on non-root cgroups.

Lines are keyed by $MAJ:$MIN device numbers and not ordered. The following nested keys are defined.

rbytes Bytes read
wbytes Bytes written
rios Number of read IOs
wios Number of write IOs
dbytes Bytes discarded
dios Number of discard IOs

An example read output follows:

8:16 rbytes=1459200 wbytes=314773504 rios=192 wios=353 dbytes=0 dios=0 8:0 rbytes=90430464
wbytes=299008000 rios=8950 wios=1252 dbytes=50331648 dios=3021

io.weight A read-write flat-keyed file which exists on non-root cgroups. The default is “default 100”.

The first line is the default weight applied to devices without specific override. The rest are overrides keyed by
$MAJ:$MIN device numbers and not ordered. The weights are in the range [1, 10000] and specifies the relative
amount IO time the cgroup can use in relation to its siblings.

The default weight can be updated by writing either “default $WEIGHT” or simply “$WEIGHT”. Overrides can be
set by writing “$MAJ:$MIN $WEIGHT” and unset by writing “$MAJ:$MIN default”.

An example read output follows:

default 100
8:16 200
8:0 50

io.max A read-write nested-keyed file which exists on non-root cgroups.

BPS and IOPS based IO limit. Lines are keyed by $MAJ:$MIN device numbers and not ordered. The following nested
keys are defined.

rbps Max read bytes per second
wbps Max write bytes per second
riops Max read IO operations per second
wiops Max write IO operations per second

When writing, any number of nested key-value pairs can be specified in any order. “max” can be specified as the value
to remove a specific limit. If the same key is specified multiple times, the outcome is undefined.

BPS and IOPS are measured in each IO direction and IOs are delayed if limit is reached. Temporary bursts are allowed.

Setting read limit at 2M BPS and write at 120 IOPS for 8:16:

echo "8:16 rbps=2097152 wiops=120" > io.max

Reading returns the following:

8:16 rbps=2097152 wbps=max riops=max wiops=120

Write IOPS limit can be removed by writing the following:

echo "8:16 wiops=max" > io.max

Reading now returns the following:

234 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

8:16 rbps=2097152 wbps=max riops=max wiops=max

io.pressure A read-only nested-key file which exists on non-root cgroups.

Shows pressure stall information for IO. See Documentation/accounting/psi.txt for details.

Writeback

Page cache is dirtied through buffered writes and shared mmaps and written asynchronously to the backing filesystem by the writeback
mechanism. Writeback sits between the memory and IO domains and regulates the proportion of dirty memory by balancing dirtying
and write IOs.

The io controller, in conjunction with the memory controller, implements control of page cache writeback IOs. The memory controller
defines the memory domain that dirty memory ratio is calculated and maintained for and the io controller defines the io domain which
writes out dirty pages for the memory domain. Both system-wide and per-cgroup dirty memory states are examined and the more
restrictive of the two is enforced.

cgroup writeback requires explicit support from the underlying filesystem. Currently, cgroup writeback is implemented on ext2, ext4
and btrfs. On other filesystems, all writeback IOs are attributed to the root cgroup.

There are inherent differences in memory and writeback management which affects how cgroup ownership is tracked. Memory is tracked
per page while writeback per inode. For the purpose of writeback, an inode is assigned to a cgroup and all IO requests to write dirty
pages from the inode are attributed to that cgroup.

As cgroup ownership for memory is tracked per page, there can be pages which are associated with different cgroups than the one the
inode is associated with. These are called foreign pages. The writeback constantly keeps track of foreign pages and, if a particular
foreign cgroup becomes the majority over a certain period of time, switches the ownership of the inode to that cgroup.

While this model is enough for most use cases where a given inode is mostly dirtied by a single cgroup even when the main writing
cgroup changes over time, use cases where multiple cgroups write to a single inode simultaneously are not supported well. In such
circumstances, a significant portion of IOs are likely to be attributed incorrectly. As memory controller assigns page ownership on the
first use and doesn’t update it until the page is released, even if writeback strictly follows page ownership, multiple cgroups dirtying
overlapping areas wouldn’t work as expected. It’s recommended to avoid such usage patterns.

The sysctl knobs which affect writeback behavior are applied to cgroup writeback as follows.

vm.dirty_background_ratio, vm.dirty_ratio These ratios apply the same to cgroup writeback with the amount of avail-
able memory capped by limits imposed by the memory controller and system-wide clean memory.

vm.dirty_background_bytes, vm.dirty_bytes For cgroup writeback, this is calculated into ratio against total available
memory and applied the same way as vm.dirty[_background]_ratio.

IO Latency

This is a cgroup v2 controller for IO workload protection. You provide a group with a latency target, and if the average latency exceeds
that target the controller will throttle any peers that have a lower latency target than the protected workload.

The limits are only applied at the peer level in the hierarchy. This means that in the diagram below, only groups A, B, and C will
influence each other, and groups D and F will influence each other. Group G will influence nobody.

[root]

/ | A B C

/ |

D F G

15.5. Controllers 235



Linux Kernel User Documentation, v4.20.0

So the ideal way to configure this is to set io.latency in groups A, B, and C. Generally you do not want to set a value lower than the
latency your device supports. Experiment to find the value that works best for your workload. Start at higher than the expected latency
for your device and watch the avg_lat value in io.stat for your workload group to get an idea of the latency you see during normal
operation. Use the avg_lat value as a basis for your real setting, setting at 10-15% higher than the value in io.stat.

How IO Latency Throttling Works

io.latency is work conserving; so as long as everybody is meeting their latency target the controller doesn’t do anything. Once a group
starts missing its target it begins throttling any peer group that has a higher target than itself. This throttling takes 2 forms:

• Queue depth throttling. This is the number of outstanding IO’s a group is allowed to have. We will clamp down relatively quickly,
starting at no limit and going all the way down to 1 IO at a time.

• Artificial delay induction. There are certain types of IO that cannot be throttled without possibly adversely affecting higher priority
groups. This includes swapping and metadata IO. These types of IO are allowed to occur normally, however they are “charged”
to the originating group. If the originating group is being throttled you will see the use_delay and delay fields in io.stat increase.
The delay value is how many microseconds that are being added to any process that runs in this group. Because this number can
grow quite large if there is a lot of swapping or metadata IO occurring we limit the individual delay events to 1 second at a time.

Once the victimized group starts meeting its latency target again it will start unthrottling any peer groups that were throttled previously.
If the victimized group simply stops doing IO the global counter will unthrottle appropriately.

IO Latency Interface Files

io.latency This takes a similar format as the other controllers.

“MAJOR:MINOR target=<target time in microseconds”

io.stat If the controller is enabled you will see extra stats in io.stat in addition to the normal ones.

depth This is the current queue depth for the group.

avg_lat This is an exponential moving average with a decay rate of 1/exp bound by the sampling interval.
The decay rate interval can be calculated by multiplying the win value in io.stat by the corresponding
number of samples based on the win value.

win The sampling window size in milliseconds. This is the minimum duration of time between evaluation
events. Windows only elapse with IO activity. Idle periods extend the most recent window.

PID

The process number controller is used to allow a cgroup to stop any new tasks from being fork()’d or clone()’d after a specified limit is
reached.

The number of tasks in a cgroup can be exhausted in ways which other controllers cannot prevent, thus warranting its own controller.
For example, a fork bomb is likely to exhaust the number of tasks before hitting memory restrictions.

Note that PIDs used in this controller refer to TIDs, process IDs as used by the kernel.

PID Interface Files

pids.max A read-write single value file which exists on non-root cgroups. The default is “max”.

Hard limit of number of processes.

pids.current A read-only single value file which exists on all cgroups.

The number of processes currently in the cgroup and its descendants.

236 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

Organisational operations are not blocked by cgroup policies, so it is possible to have pids.current > pids.max. This can be done by
either setting the limit to be smaller than pids.current, or attaching enough processes to the cgroup such that pids.current is larger than
pids.max. However, it is not possible to violate a cgroup PID policy through fork() or clone(). These will return -EAGAIN if the creation
of a new process would cause a cgroup policy to be violated.

Device controller

Device controller manages access to device files. It includes both creation of new device files (using mknod), and access to the existing
device files.

Cgroup v2 device controller has no interface files and is implemented on top of cgroup BPF. To control access to device files, a user
may create bpf programs of the BPF_CGROUP_DEVICE type and attach them to cgroups. On an attempt to access a device file,
corresponding BPF programs will be executed, and depending on the return value the attempt will succeed or fail with -EPERM.

A BPF_CGROUP_DEVICE program takes a pointer to the bpf_cgroup_dev_ctx structure, which describes the device access attempt:
access type (mknod/read/write) and device (type, major and minor numbers). If the program returns 0, the attempt fails with -EPERM,
otherwise it succeeds.

An example of BPF_CGROUP_DEVICE program may be found in the kernel source tree in the tools/testing/selftests/bpf/dev_cgroup.c
file.

RDMA

The “rdma” controller regulates the distribution and accounting of of RDMA resources.

RDMA Interface Files

rdma.max A readwrite nested-keyed file that exists for all the cgroups except root that describes current configured re-
source limit for a RDMA/IB device.

Lines are keyed by device name and are not ordered. Each line contains space separated resource name and its
configured limit that can be distributed.

The following nested keys are defined.

hca_handle Maximum number of HCA Handles
hca_object Maximum number of HCA Objects

An example for mlx4 and ocrdma device follows:

mlx4_0 hca_handle=2 hca_object=2000
ocrdma1 hca_handle=3 hca_object=max

rdma.current A read-only file that describes current resource usage. It exists for all the cgroup except root.

An example for mlx4 and ocrdma device follows:

mlx4_0 hca_handle=1 hca_object=20
ocrdma1 hca_handle=1 hca_object=23

Misc

15.5. Controllers 237



Linux Kernel User Documentation, v4.20.0

perf_event

perf_event controller, if not mounted on a legacy hierarchy, is automatically enabled on the v2 hierarchy so that perf events can always
be filtered by cgroup v2 path. The controller can still be moved to a legacy hierarchy after v2 hierarchy is populated.

Non-normative information

This section contains information that isn’t considered to be a part of the stable kernel API and so is subject to change.

CPU controller root cgroup process behaviour

When distributing CPU cycles in the root cgroup each thread in this cgroup is treated as if it was hosted in a separate child cgroup of the
root cgroup. This child cgroup weight is dependent on its thread nice level.

For details of this mapping see sched_prio_to_weight array in kernel/sched/core.c file (values from this array should be scaled appropri-
ately so the neutral - nice 0 - value is 100 instead of 1024).

IO controller root cgroup process behaviour

Root cgroup processes are hosted in an implicit leaf child node. When distributing IO resources this implicit child node is taken into
account as if it was a normal child cgroup of the root cgroup with a weight value of 200.

Namespace

Basics

cgroup namespace provides a mechanism to virtualize the view of the “/proc/$PID/cgroup” file and cgroup mounts. The
CLONE_NEWCGROUP clone flag can be used with clone(2) and unshare(2) to create a new cgroup namespace. The process run-
ning inside the cgroup namespace will have its “/proc/$PID/cgroup” output restricted to cgroupns root. The cgroupns root is the cgroup
of the process at the time of creation of the cgroup namespace.

Without cgroup namespace, the “/proc/$PID/cgroup” file shows the complete path of the cgroup of a process. In a container setup
where a set of cgroups and namespaces are intended to isolate processes the “/proc/$PID/cgroup” file may leak potential system level
information to the isolated processes. For Example:

# cat /proc/self/cgroup
0::/batchjobs/container_id1

The path ‘/batchjobs/container_id1’ can be considered as system-data and undesirable to expose to the isolated processes. cgroup
namespace can be used to restrict visibility of this path. For example, before creating a cgroup namespace, one would see:

# ls -l /proc/self/ns/cgroup
lrwxrwxrwx 1 root root 0 2014-07-15 10:37 /proc/self/ns/cgroup -> cgroup:[4026531835]
# cat /proc/self/cgroup
0::/batchjobs/container_id1

After unsharing a new namespace, the view changes:

# ls -l /proc/self/ns/cgroup
lrwxrwxrwx 1 root root 0 2014-07-15 10:35 /proc/self/ns/cgroup -> cgroup:[4026532183]
# cat /proc/self/cgroup
0::/

238 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

When some thread from a multi-threaded process unshares its cgroup namespace, the new cgroupns gets applied to the entire process
(all the threads). This is natural for the v2 hierarchy; however, for the legacy hierarchies, this may be unexpected.

A cgroup namespace is alive as long as there are processes inside or mounts pinning it. When the last usage goes away, the cgroup
namespace is destroyed. The cgroupns root and the actual cgroups remain.

The Root and Views

The ‘cgroupns root’ for a cgroup namespace is the cgroup in which the process calling unshare(2) is running. For example, if a process
in /batchjobs/container_id1 cgroup calls unshare, cgroup /batchjobs/container_id1 becomes the cgroupns root. For the init_cgroup_ns,
this is the real root (‘/’) cgroup.

The cgroupns root cgroup does not change even if the namespace creator process later moves to a different cgroup:

# ~/unshare -c # unshare cgroupns in some cgroup
# cat /proc/self/cgroup
0::/
# mkdir sub_cgrp_1
# echo 0 > sub_cgrp_1/cgroup.procs
# cat /proc/self/cgroup
0::/sub_cgrp_1

Each process gets its namespace-specific view of “/proc/$PID/cgroup”

Processes running inside the cgroup namespace will be able to see cgroup paths (in /proc/self/cgroup) only inside their root cgroup.
From within an unshared cgroupns:

# sleep 100000 &
[1] 7353
# echo 7353 > sub_cgrp_1/cgroup.procs
# cat /proc/7353/cgroup
0::/sub_cgrp_1

From the initial cgroup namespace, the real cgroup path will be visible:

$ cat /proc/7353/cgroup
0::/batchjobs/container_id1/sub_cgrp_1

From a sibling cgroup namespace (that is, a namespace rooted at a different cgroup), the cgroup path relative to its own cgroup namespace
root will be shown. For instance, if PID 7353’s cgroup namespace root is at ‘/batchjobs/container_id2’, then it will see:

# cat /proc/7353/cgroup
0::/../container_id2/sub_cgrp_1

Note that the relative path always starts with ‘/’ to indicate that its relative to the cgroup namespace root of the caller.

Migration and setns(2)

Processes inside a cgroup namespace can move into and out of the namespace root if they have proper access to external cgroups.
For example, from inside a namespace with cgroupns root at /batchjobs/container_id1, and assuming that the global hierarchy is still
accessible inside cgroupns:

# cat /proc/7353/cgroup
0::/sub_cgrp_1
# echo 7353 > batchjobs/container_id2/cgroup.procs

15.6. Namespace 239



Linux Kernel User Documentation, v4.20.0

# cat /proc/7353/cgroup
0::/../container_id2

Note that this kind of setup is not encouraged. A task inside cgroup namespace should only be exposed to its own cgroupns hierarchy.

setns(2) to another cgroup namespace is allowed when:

1. the process has CAP_SYS_ADMIN against its current user namespace

2. the process has CAP_SYS_ADMIN against the target cgroup namespace’s userns

No implicit cgroup changes happen with attaching to another cgroup namespace. It is expected that the someone moves the attaching
process under the target cgroup namespace root.

Interaction with Other Namespaces

Namespace specific cgroup hierarchy can be mounted by a process running inside a non-init cgroup namespace:

# mount -t cgroup2 none $MOUNT_POINT

This will mount the unified cgroup hierarchy with cgroupns root as the filesystem root. The process needs CAP_SYS_ADMIN against
its user and mount namespaces.

The virtualization of /proc/self/cgroup file combined with restricting the view of cgroup hierarchy by namespace-private cgroupfs mount
provides a properly isolated cgroup view inside the container.

Information on Kernel Programming

This section contains kernel programming information in the areas where interacting with cgroup is necessary. cgroup core and con-
trollers are not covered.

Filesystem Support for Writeback

A filesystem can support cgroup writeback by updating address_space_operations->writepage[s]() to annotate bio’s using the following
two functions.

wbc_init_bio(@wbc, @bio) Should be called for each bio carrying writeback data and associates the bio with the inode’s
owner cgroup. Can be called anytime between bio allocation and submission.

wbc_account_io(@wbc, @page, @bytes) Should be called for each data segment being written out. While this function
doesn’t care exactly when it’s called during the writeback session, it’s the easiest and most natural to call it as data
segments are added to a bio.

With writeback bio’s annotated, cgroup support can be enabled per super_block by setting SB_I_CGROUPWB in ->s_iflags. This
allows for selective disabling of cgroup writeback support which is helpful when certain filesystem features, e.g. journaled data mode,
are incompatible.

wbc_init_bio() binds the specified bio to its cgroup. Depending on the configuration, the bio may be executed at a lower priority and
if the writeback session is holding shared resources, e.g. a journal entry, may lead to priority inversion. There is no one easy solution
for the problem. Filesystems can try to work around specific problem cases by skipping wbc_init_bio() or using bio_associate_blkcg()
directly.

240 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

Deprecated v1 Core Features

• Multiple hierarchies including named ones are not supported.

• All v1 mount options are not supported.

• The “tasks” file is removed and “cgroup.procs” is not sorted.

• “cgroup.clone_children” is removed.

• /proc/cgroups is meaningless for v2. Use “cgroup.controllers” file at the root instead.

Issues with v1 and Rationales for v2

Multiple Hierarchies

cgroup v1 allowed an arbitrary number of hierarchies and each hierarchy could host any number of controllers. While this seemed to
provide a high level of flexibility, it wasn’t useful in practice.

For example, as there is only one instance of each controller, utility type controllers such as freezer which can be useful in all hierarchies
could only be used in one. The issue is exacerbated by the fact that controllers couldn’t be moved to another hierarchy once hierarchies
were populated. Another issue was that all controllers bound to a hierarchy were forced to have exactly the same view of the hierarchy.
It wasn’t possible to vary the granularity depending on the specific controller.

In practice, these issues heavily limited which controllers could be put on the same hierarchy and most configurations resorted to putting
each controller on its own hierarchy. Only closely related ones, such as the cpu and cpuacct controllers, made sense to be put on the same
hierarchy. This often meant that userland ended up managing multiple similar hierarchies repeating the same steps on each hierarchy
whenever a hierarchy management operation was necessary.

Furthermore, support for multiple hierarchies came at a steep cost. It greatly complicated cgroup core implementation but more impor-
tantly the support for multiple hierarchies restricted how cgroup could be used in general and what controllers was able to do.

There was no limit on how many hierarchies there might be, which meant that a thread’s cgroup membership couldn’t be described in
finite length. The key might contain any number of entries and was unlimited in length, which made it highly awkward to manipulate and
led to addition of controllers which existed only to identify membership, which in turn exacerbated the original problem of proliferating
number of hierarchies.

Also, as a controller couldn’t have any expectation regarding the topologies of hierarchies other controllers might be on, each controller
had to assume that all other controllers were attached to completely orthogonal hierarchies. This made it impossible, or at least very
cumbersome, for controllers to cooperate with each other.

In most use cases, putting controllers on hierarchies which are completely orthogonal to each other isn’t necessary. What usually is
called for is the ability to have differing levels of granularity depending on the specific controller. In other words, hierarchy may be
collapsed from leaf towards root when viewed from specific controllers. For example, a given configuration might not care about how
memory is distributed beyond a certain level while still wanting to control how CPU cycles are distributed.

Thread Granularity

cgroup v1 allowed threads of a process to belong to different cgroups. This didn’t make sense for some controllers and those controllers
ended up implementing different ways to ignore such situations but much more importantly it blurred the line between API exposed to
individual applications and system management interface.

Generally, in-process knowledge is available only to the process itself; thus, unlike service-level organization of processes, categorizing
threads of a process requires active participation from the application which owns the target process.

15.8. Deprecated v1 Core Features 241



Linux Kernel User Documentation, v4.20.0

cgroup v1 had an ambiguously defined delegation model which got abused in combination with thread granularity. cgroups were
delegated to individual applications so that they can create and manage their own sub-hierarchies and control resource distributions
along them. This effectively raised cgroup to the status of a syscall-like API exposed to lay programs.

First of all, cgroup has a fundamentally inadequate interface to be exposed this way. For a process to access its own knobs, it has to
extract the path on the target hierarchy from /proc/self/cgroup, construct the path by appending the name of the knob to the path, open
and then read and/or write to it. This is not only extremely clunky and unusual but also inherently racy. There is no conventional
way to define transaction across the required steps and nothing can guarantee that the process would actually be operating on its own
sub-hierarchy.

cgroup controllers implemented a number of knobs which would never be accepted as public APIs because they were just adding control
knobs to system-management pseudo filesystem. cgroup ended up with interface knobs which were not properly abstracted or refined
and directly revealed kernel internal details. These knobs got exposed to individual applications through the ill-defined delegation
mechanism effectively abusing cgroup as a shortcut to implementing public APIs without going through the required scrutiny.

This was painful for both userland and kernel. Userland ended up with misbehaving and poorly abstracted interfaces and kernel exposing
and locked into constructs inadvertently.

Competition Between Inner Nodes and Threads

cgroup v1 allowed threads to be in any cgroups which created an interesting problem where threads belonging to a parent cgroup and its
children cgroups competed for resources. This was nasty as two different types of entities competed and there was no obvious way to
settle it. Different controllers did different things.

The cpu controller considered threads and cgroups as equivalents and mapped nice levels to cgroup weights. This worked for some cases
but fell flat when children wanted to be allocated specific ratios of CPU cycles and the number of internal threads fluctuated - the ratios
constantly changed as the number of competing entities fluctuated. There also were other issues. The mapping from nice level to weight
wasn’t obvious or universal, and there were various other knobs which simply weren’t available for threads.

The io controller implicitly created a hidden leaf node for each cgroup to host the threads. The hidden leaf had its own copies of all
the knobs with leaf_ prefixed. While this allowed equivalent control over internal threads, it was with serious drawbacks. It always
added an extra layer of nesting which wouldn’t be necessary otherwise, made the interface messy and significantly complicated the
implementation.

The memory controller didn’t have a way to control what happened between internal tasks and child cgroups and the behavior was not
clearly defined. There were attempts to add ad-hoc behaviors and knobs to tailor the behavior to specific workloads which would have
led to problems extremely difficult to resolve in the long term.

Multiple controllers struggled with internal tasks and came up with different ways to deal with it; unfortunately, all the approaches were
severely flawed and, furthermore, the widely different behaviors made cgroup as a whole highly inconsistent.

This clearly is a problem which needs to be addressed from cgroup core in a uniform way.

Other Interface Issues

cgroup v1 grew without oversight and developed a large number of idiosyncrasies and inconsistencies. One issue on the cgroup core
side was how an empty cgroup was notified - a userland helper binary was forked and executed for each event. The event delivery wasn’t
recursive or delegatable. The limitations of the mechanism also led to in-kernel event delivery filtering mechanism further complicating
the interface.

Controller interfaces were problematic too. An extreme example is controllers completely ignoring hierarchical organization and treat-
ing all cgroups as if they were all located directly under the root cgroup. Some controllers exposed a large amount of inconsistent
implementation details to userland.

There also was no consistency across controllers. When a new cgroup was created, some controllers defaulted to not imposing extra
restrictions while others disallowed any resource usage until explicitly configured. Configuration knobs for the same type of control

242 Chapter 15. Control Group v2



Linux Kernel User Documentation, v4.20.0

used widely differing naming schemes and formats. Statistics and information knobs were named arbitrarily and used different formats
and units even in the same controller.

cgroup v2 establishes common conventions where appropriate and updates controllers so that they expose minimal and consistent
interfaces.

Controller Issues and Remedies

Memory

The original lower boundary, the soft limit, is defined as a limit that is per default unset. As a result, the set of cgroups that global reclaim
prefers is opt-in, rather than opt-out. The costs for optimizing these mostly negative lookups are so high that the implementation, despite
its enormous size, does not even provide the basic desirable behavior. First off, the soft limit has no hierarchical meaning. All configured
groups are organized in a global rbtree and treated like equal peers, regardless where they are located in the hierarchy. This makes
subtree delegation impossible. Second, the soft limit reclaim pass is so aggressive that it not just introduces high allocation latencies into
the system, but also impacts system performance due to overreclaim, to the point where the feature becomes self-defeating.

The memory.low boundary on the other hand is a top-down allocated reserve. A cgroup enjoys reclaim protection when it’s within its
low, which makes delegation of subtrees possible.

The original high boundary, the hard limit, is defined as a strict limit that can not budge, even if the OOM killer has to be called. But this
generally goes against the goal of making the most out of the available memory. The memory consumption of workloads varies during
runtime, and that requires users to overcommit. But doing that with a strict upper limit requires either a fairly accurate prediction of the
working set size or adding slack to the limit. Since working set size estimation is hard and error prone, and getting it wrong results in
OOM kills, most users tend to err on the side of a looser limit and end up wasting precious resources.

The memory.high boundary on the other hand can be set much more conservatively. When hit, it throttles allocations by forcing them into
direct reclaim to work off the excess, but it never invokes the OOM killer. As a result, a high boundary that is chosen too aggressively will
not terminate the processes, but instead it will lead to gradual performance degradation. The user can monitor this and make corrections
until the minimal memory footprint that still gives acceptable performance is found.

In extreme cases, with many concurrent allocations and a complete breakdown of reclaim progress within the group, the high boundary
can be exceeded. But even then it’s mostly better to satisfy the allocation from the slack available in other groups or the rest of the system
than killing the group. Otherwise, memory.max is there to limit this type of spillover and ultimately contain buggy or even malicious
applications.

Setting the original memory.limit_in_bytes below the current usage was subject to a race condition, where concurrent charges could
cause the limit setting to fail. memory.max on the other hand will first set the limit to prevent new charges, and then reclaim and OOM
kill until the new limit is met - or the task writing to memory.max is killed.

The combined memory+swap accounting and limiting is replaced by real control over swap space.

The main argument for a combined memory+swap facility in the original cgroup design was that global or parental pressure would
always be able to swap all anonymous memory of a child group, regardless of the child’s own (possibly untrusted) configuration.
However, untrusted groups can sabotage swapping by other means - such as referencing its anonymous memory in a tight loop - and an
admin can not assume full swappability when overcommitting untrusted jobs.

For trusted jobs, on the other hand, a combined counter is not an intuitive userspace interface, and it flies in the face of the idea that
cgroup controllers should account and limit specific physical resources. Swap space is a resource like all others in the system, and that’s
why unified hierarchy allows distributing it separately.

15.9. Issues with v1 and Rationales for v2 243



Linux Kernel User Documentation, v4.20.0

244 Chapter 15. Control Group v2



CHAPTER 16

Linux Serial Console

To use a serial port as console you need to compile the support into your kernel - by default it is not compiled in. For PC style serial
ports it’s the config option next to menu option:

Character devices → Serial drivers → 8250/16550 and compatible serial support → Console on 8250/16550 and compatible serial port

You must compile serial support into the kernel and not as a module.

It is possible to specify multiple devices for console output. You can define a new kernel command line option to select which device(s)
to use for console output.

The format of this option is:

console=device,options

device: tty0 for the foreground virtual console
ttyX for any other virtual console
ttySx for a serial port
lp0 for the first parallel port
ttyUSB0 for the first USB serial device

options: depend on the driver. For the serial port this
defines the baudrate/parity/bits/flow control of
the port, in the format BBBBPNF, where BBBB is the
speed, P is parity (n/o/e), N is number of bits,
and F is flow control ('r' for RTS). Default is
9600n8. The maximum baudrate is 115200.

You can specify multiple console= options on the kernel command line. Output will appear on all of them. The last device will be used
when you open /dev/console. So, for example:

console=ttyS1,9600 console=tty0

defines that opening /dev/console will get you the current foreground virtual console, and kernel messages will appear on both the
VGA console and the 2nd serial port (ttyS1 or COM2) at 9600 baud.

Note that you can only define one console per device type (serial, video).

If no console device is specified, the first device found capable of acting as a system console will be used. At this time, the system first
looks for a VGA card and then for a serial port. So if you don’t have a VGA card in your system the first serial port will automatically
become the console.

You will need to create a new device to use /dev/console. The official /dev/console is now character device 5,1.

(You can also use a network device as a console. See Documentation/networking/netconsole.txt for information on that.)

Here’s an example that will use /dev/ttyS1 (COM2) as the console. Replace the sample values as needed.

245



Linux Kernel User Documentation, v4.20.0

1. Create /dev/console (real console) and /dev/tty0 (master virtual console):

cd /dev
rm -f console tty0
mknod -m 622 console c 5 1
mknod -m 622 tty0 c 4 0

2. LILO can also take input from a serial device. This is a very useful option. To tell LILO to use the serial port: In lilo.conf (global
section):

serial = 1,9600n8 (ttyS1, 9600 bd, no parity, 8 bits)

3. Adjust to kernel flags for the new kernel, again in lilo.conf (kernel section):

append = "console=ttyS1,9600"

4. Make sure a getty runs on the serial port so that you can login to it once the system is done booting. This is done by adding a line
like this to /etc/inittab (exact syntax depends on your getty):

S1:23:respawn:/sbin/getty -L ttyS1 9600 vt100

5. Init and /etc/ioctl.save

Sysvinit remembers its stty settings in a file in /etc, called /etc/ioctl.save. REMOVE THIS FILE before using the serial
console for the first time, because otherwise init will probably set the baudrate to 38400 (baudrate of the virtual console).

6. /dev/console and X Programs that want to do something with the virtual console usually open /dev/console. If you
have created the new /dev/console device, and your console is NOT the virtual console some programs will fail. Those are
programs that want to access the VT interface, and use /dev/console instead of /dev/tty0. Some of those programs
are:

Xfree86, svgalib, gpm, SVGATextMode

It should be fixed in modern versions of these programs though.

Note that if you boot without a console= option (or with console=/dev/tty0), /dev/console is the same as
/dev/tty0. In that case everything will still work.

7. Thanks

Thanks to Geert Uytterhoeven <geert@linux-m68k.org> for porting the patches from 2.1.4x to 2.1.6x for taking care of the
integration of these patches into m68k, ppc and alpha.

Miquel van Smoorenburg <miquels@cistron.nl>, 11-Jun-2000

246 Chapter 16. Linux Serial Console

mailto:geert@linux-m68k.org
mailto:miquels@cistron.nl


CHAPTER 17

Linux Braille Console

To get early boot messages on a braille device (before userspace screen readers can start), you first need to compile the support for
the usual serial console (see Documentation/admin-guide/serial-console.rst ), and for braille device (in Device Drivers → Accessibility
support → Console on braille device).

Then you need to specify a console=brl, option on the kernel command line, the format is:

console=brl,serial_options...

where serial_options... are the same as described in Documentation/admin-guide/serial-console.rst .

So for instance you can use console=brl,ttyS0 if the braille device is connected to the first serial port, and
console=brl,ttyS0,115200 to override the baud rate to 115200, etc.

By default, the braille device will just show the last kernel message (console mode). To review previous messages, press the Insert key
to switch to the VT review mode. In review mode, the arrow keys permit to browse in the VT content, PAGE-UP/PAGE-DOWN keys go
at the top/bottom of the screen, and the HOME key goes back to the cursor, hence providing very basic screen reviewing facility.

Sound feedback can be obtained by adding the braille_console.sound=1 kernel parameter.

For simplicity, only one braille console can be enabled, other uses of console=brl,... will be discarded. Also note that it does not
interfere with the console selection mechanism described in Documentation/admin-guide/serial-console.rst .

For now, only the VisioBraille device is supported.

Samuel Thibault <samuel.thibault@ens-lyon.org>

247

mailto:samuel.thibault@ens-lyon.org


Linux Kernel User Documentation, v4.20.0

248 Chapter 17. Linux Braille Console



CHAPTER 18

Parport

The parport code provides parallel-port support under Linux. This includes the ability to share one port between multiple device
drivers.

You can pass parameters to the parport code to override its automatic detection of your hardware. This is particularly useful if you
want to use IRQs, since in general these can’t be autoprobed successfully. By default IRQs are not used even if they can be probed. This
is because there are a lot of people using the same IRQ for their parallel port and a sound card or network card.

The parport code is split into two parts: generic (which deals with port-sharing) and architecture-dependent (which deals with actually
using the port).

Parport as modules

If you load the parport‘ code as a module, say:

# insmod parport

to load the generic parport code. You then must load the architecture-dependent code with (for example):

# insmod parport_pc io=0x3bc,0x378,0x278 irq=none,7,auto

to tell the parport code that you want three PC-style ports, one at 0x3bc with no IRQ, one at 0x378 using IRQ 7, and one at 0x278
with an auto-detected IRQ. Currently, PC-style (parport_pc), Sun bpp, Amiga, Atari, and MFC3 hardware is supported.

PCI parallel I/O card support comes from parport_pc. Base I/O addresses should not be specified for supported PCI cards since they
are automatically detected.

modprobe

If you use modprobe , you will find it useful to add lines as below to a configuration file in /etc/modprobe.d/ directory:

alias parport_lowlevel parport_pc
options parport_pc io=0x378,0x278 irq=7,auto

modprobe will load parport_pc (with the options io=0x378,0x278 irq=7,auto) whenever a parallel port device driver (such
as lp) is loaded.

Note that these are example lines only! You shouldn’t in general need to specify any options to parport_pc in order to be able to use
a parallel port.

249



Linux Kernel User Documentation, v4.20.0

Parport probe [optional]

In 2.2 kernels there was a module called parport_probe, which was used for collecting IEEE 1284 device ID information. This has
now been enhanced and now lives with the IEEE 1284 support. When a parallel port is detected, the devices that are connected to it are
analysed, and information is logged like this:

parport0: Printer, BJC-210 (Canon)

The probe information is available from files in /proc/sys/dev/parport/.

Parport linked into the kernel statically

If you compile the parport code into the kernel, then you can use kernel boot parameters to get the same effect. Add something like
the following to your LILO command line:

parport=0x3bc parport=0x378,7 parport=0x278,auto,nofifo

You can have many parport=... statements, one for each port you want to add. Adding parport=0 to the kernel command-line
will disable parport support entirely. Adding parport=auto to the kernel command-line will make parport use any IRQ lines or
DMA channels that it auto-detects.

Files in /proc

If you have configured the /proc filesystem into your kernel, you will see a new directory entry: /proc/sys/dev/parport. In
there will be a directory entry for each parallel port for which parport is configured. In each of those directories are a collection of files
describing that parallel port.

The /proc/sys/dev/parport directory tree looks like:

parport
|-- default
| |-- spintime
| `-- timeslice
|-- parport0
| |-- autoprobe
| |-- autoprobe0
| |-- autoprobe1
| |-- autoprobe2
| |-- autoprobe3
| |-- devices
| | |-- active
| | `-- lp
| | `-- timeslice
| |-- base-addr
| |-- irq
| |-- dma
| |-- modes
| `-- spintime
`-- parport1
|-- autoprobe
|-- autoprobe0
|-- autoprobe1
|-- autoprobe2
|-- autoprobe3

250 Chapter 18. Parport



Linux Kernel User Documentation, v4.20.0

|-- devices
| |-- active
| `-- ppa
| `-- timeslice
|-- base-addr
|-- irq
|-- dma
|-- modes
`-- spintime

File Contents
devices/active A list of the device drivers using that port. A “+” will appear by the name of the device currently

using the port (it might not appear against any). The string “none” means that there are no device
drivers using that port.

base-addr Parallel port’s base address, or addresses if the port has more than one in which case they are
separated with tabs. These values might not have any sensible meaning for some ports.

irq Parallel port’s IRQ, or -1 if none is being used.
dma Parallel port’s DMA channel, or -1 if none is being used.
modes Parallel port’s hardware modes, comma-separated, meaning:

• PCSPP PC-style SPP registers are available.
• TRISTATE Port is bidirectional.
• COMPAT Hardware acceleration for printers is available and will be used.
• EPP Hardware acceleration for EPP protocol is available and will be used.
• ECP Hardware acceleration for ECP protocol is available and will be used.
• DMA DMA is available and will be used.

Note that the current implementation will only take advantage of COMPAT and ECP modes if it
has an IRQ line to use.

autoprobe Any IEEE-1284 device ID information that has been acquired from the (non-IEEE 1284.3) de-
vice.

autoprobe[0-3] IEEE 1284 device ID information retrieved from daisy-chain devices that conform to IEEE
1284.3.

spintime The number of microseconds to busy-loop while waiting for the peripheral to respond. You
might find that adjusting this improves performance, depending on your peripherals. This is a
port-wide setting, i.e. it applies to all devices on a particular port.

timeslice The number of milliseconds that a device driver is allowed to keep a port claimed for. This is
advisory, and driver can ignore it if it must.

default/* The defaults for spintime and timeslice. When a new port is registered, it picks up the default
spintime. When a new device is registered, it picks up the default timeslice.

Device drivers

Once the parport code is initialised, you can attach device drivers to specific ports. Normally this happens automatically; if the lp driver
is loaded it will create one lp device for each port found. You can override this, though, by using parameters either when you load the lp
driver:

# insmod lp parport=0,2

or on the LILO command line:

lp=parport0 lp=parport2

Both the above examples would inform lp that you want /dev/lp0 to be the first parallel port, and /dev/lp1 to be the third parallel
port, with no lp device associated with the second port (parport1). Note that this is different to the way older kernels worked; there used

18.4. Device drivers 251



Linux Kernel User Documentation, v4.20.0

to be a static association between the I/O port address and the device name, so /dev/lp0 was always the port at 0x3bc. This is no
longer the case - if you only have one port, it will default to being /dev/lp0, regardless of base address.

Also:

• If you selected the IEEE 1284 support at compile time, you can say lp=auto on the kernel command line, and lp will create
devices only for those ports that seem to have printers attached.

• If you give PLIP the timid parameter, either with plip=timid on the command line, or with insmod plip timid=1
when using modules, it will avoid any ports that seem to be in use by other devices.

• IRQ autoprobing works only for a few port types at the moment.

Reporting printer problems with parport

If you are having problems printing, please go through these steps to try to narrow down where the problem area is.

When reporting problems with parport, really you need to give all of the messages that parport_pc spits out when it initialises. There
are several code paths:

• polling

• interrupt-driven, protocol in software

• interrupt-driven, protocol in hardware using PIO

• interrupt-driven, protocol in hardware using DMA

The kernel messages that parport_pc logs give an indication of which code path is being used. (They could be a lot better actually..)

For normal printer protocol, having IEEE 1284 modes enabled or not should not make a difference.

To turn off the ‘protocol in hardware’ code paths, disable CONFIG_PARPORT_PC_FIFO. Note that when they are enabled they are not
necessarily used; it depends on whether the hardware is available, enabled by the BIOS, and detected by the driver.

So, to start with, disable CONFIG_PARPORT_PC_FIFO, and load parport_pc with irq=none. See if printing works then. It
really should, because this is the simplest code path.

If that works fine, try with io=0x378 irq=7 (adjust for your hardware), to make it use interrupt-driven in-software protocol.

If that works fine, then one of the hardware modes isn’t working right. Enable CONFIG_FIFO (no, it isn’t a module option, and yes, it
should be), set the port to ECP mode in the BIOS and note the DMA channel, and try with:

io=0x378 irq=7 dma=none (for PIO)
io=0x378 irq=7 dma=3 (for DMA)

philb@gnu.org tim@cyberelk.net

252 Chapter 18. Parport

mailto:philb@gnu.org
mailto:tim@cyberelk.net


CHAPTER 19

RAID arrays

Boot time assembly of RAID arrays

Tools that manage md devices can be found at http://www.kernel.org/pub/linux/utils/raid/

You can boot with your md device with the following kernel command lines:

for old raid arrays without persistent superblocks:

md=<md device no.>,<raid level>,<chunk size factor>,<fault level>,dev0,dev1,...,devn

for raid arrays with persistent superblocks:

md=<md device no.>,dev0,dev1,...,devn

or, to assemble a partitionable array:

md=d<md device no.>,dev0,dev1,...,devn

md device no.

The number of the md device

md device no. device
0 md0
1 md1
2 md2
3 md3
4 md4

raid level

level of the RAID array

raid level level
-1 linear mode
0 striped mode

other modes are only supported with persistent super blocks

253

http://www.kernel.org/pub/linux/utils/raid/


Linux Kernel User Documentation, v4.20.0

chunk size factor

(raid-0 and raid-1 only)

Set the chunk size as 4k << n.

fault level

Totally ignored

dev0 to devn

e.g. /dev/hda1, /dev/hdc1, /dev/sda1, /dev/sdb1

A possible loadlin line (Harald Hoyer <HarryH@Royal.Net>) looks like this:

e:\loadlin\loadlin e:\zimage root=/dev/md0 md=0,0,4,0,/dev/hdb2,/dev/hdc3 ro

Boot time autodetection of RAID arrays

When md is compiled into the kernel (not as module), partitions of type 0xfd are scanned and automatically assembled into RAID arrays.
This autodetection may be suppressed with the kernel parameter raid=noautodetect. As of kernel 2.6.9, only drives with a type 0
superblock can be autodetected and run at boot time.

The kernel parameter raid=partitionable (or raid=part) means that all auto-detected arrays are assembled as partitionable.

Boot time assembly of degraded/dirty arrays

If a raid5 or raid6 array is both dirty and degraded, it could have undetectable data corruption. This is because the fact that it is dirty
means that the parity cannot be trusted, and the fact that it is degraded means that some datablocks are missing and cannot reliably be
reconstructed (due to no parity).

For this reason, md will normally refuse to start such an array. This requires the sysadmin to take action to explicitly start the array
despite possible corruption. This is normally done with:

mdadm --assemble --force ....

This option is not really available if the array has the root filesystem on it. In order to support this booting from such an array, md
supports a module parameter start_dirty_degraded which, when set to 1, bypassed the checks and will allows dirty degraded
arrays to be started.

So, to boot with a root filesystem of a dirty degraded raid 5 or 6, use:

md-mod.start_dirty_degraded=1

Superblock formats

The md driver can support a variety of different superblock formats. Currently, it supports superblock formats 0.90.0 and the md-1
format introduced in the 2.5 development series.

254 Chapter 19. RAID arrays

mailto:HarryH@Royal.Net


Linux Kernel User Documentation, v4.20.0

The kernel will autodetect which format superblock is being used.

Superblock format 0 is treated differently to others for legacy reasons - it is the original superblock format.

General Rules - apply for all superblock formats

An array is created by writing appropriate superblocks to all devices.

It is assembled by associating each of these devices with an particular md virtual device. Once it is completely assembled, it can be
accessed.

An array should be created by a user-space tool. This will write superblocks to all devices. It will usually mark the array as unclean,
or with some devices missing so that the kernel md driver can create appropriate redundancy (copying in raid 1, parity calculation in raid
4/5).

When an array is assembled, it is first initialized with the SET_ARRAY_INFO ioctl. This contains, in particular, a major and minor
version number. The major version number selects which superblock format is to be used. The minor number might be used to tune
handling of the format, such as suggesting where on each device to look for the superblock.

Then each device is added using the ADD_NEW_DISK ioctl. This provides, in particular, a major and minor number identifying the
device to add.

The array is started with the RUN_ARRAY ioctl.

Once started, new devices can be added. They should have an appropriate superblock written to them, and then be passed in with
ADD_NEW_DISK.

Devices that have failed or are not yet active can be detached from an array using HOT_REMOVE_DISK.

Specific Rules that apply to format-0 super block arrays, and arrays with no
superblock (non-persistent)

An array can be created by describing the array (level, chunksize etc) in a SET_ARRAY_INFO ioctl. This must have
major_version==0 and raid_disks != 0.

Then uninitialized devices can be added with ADD_NEW_DISK. The structure passed to ADD_NEW_DISK must specify the state of
the device and its role in the array.

Once started with RUN_ARRAY, uninitialized spares can be added with HOT_ADD_DISK.

MD devices in sysfs

md devices appear in sysfs (/sys) as regular block devices, e.g.:

/sys/block/md0

Each md device will contain a subdirectory called md which contains further md-specific information about the device.

All md devices contain:

level a text file indicating the raid level. e.g. raid0, raid1, raid5, linear, multipath, faulty. If no raid level has been set
yet (array is still being assembled), the value will reflect whatever has been written to it, which may be a name like the
above, or may be a number such as 0, 5, etc.

19.5. General Rules - apply for all superblock formats 255



Linux Kernel User Documentation, v4.20.0

raid_disks a text file with a simple number indicating the number of devices in a fully functional array. If this is not yet
known, the file will be empty. If an array is being resized this will contain the new number of devices. Some raid levels
allow this value to be set while the array is active. This will reconfigure the array. Otherwise it can only be set while
assembling an array. A change to this attribute will not be permitted if it would reduce the size of the array. To reduce
the number of drives in an e.g. raid5, the array size must first be reduced by setting the array_size attribute.

chunk_size This is the size in bytes for chunks and is only relevant to raid levels that involve striping (0,4,5,6,10). The
address space of the array is conceptually divided into chunks and consecutive chunks are striped onto neighbouring
devices. The size should be at least PAGE_SIZE (4k) and should be a power of 2. This can only be set while assembling
an array

layout The layout for the array for the particular level. This is simply a number that is interpretted differently by different
levels. It can be written while assembling an array.

array_size This can be used to artificially constrain the available space in the array to be less than is actually available on
the combined devices. Writing a number (in Kilobytes) which is less than the available size will set the size. Any
reconfiguration of the array (e.g. adding devices) will not cause the size to change. Writing the word default will
cause the effective size of the array to be whatever size is actually available based on level, chunk_size and
component_size.

This can be used to reduce the size of the array before reducing the number of devices in a raid4/5/6, or to support
external metadata formats which mandate such clipping.

reshape_position This is either none or a sector number within the devices of the array where reshape is up to. If this
is set, the three attributes mentioned above (raid_disks, chunk_size, layout) can potentially have 2 values, an old and a
new value. If these values differ, reading the attribute returns:

new (old)

and writing will effect the new value, leaving the old unchanged.

component_size For arrays with data redundancy (i.e. not raid0, linear, faulty, multipath), all components must be the
same size - or at least there must a size that they all provide space for. This is a key part or the geometry of the array. It
is measured in sectors and can be read from here. Writing to this value may resize the array if the personality supports
it (raid1, raid5, raid6), and if the component drives are large enough.

metadata_version This indicates the format that is being used to record metadata about the array. It can be 0.90 (traditional
format), 1.0, 1.1, 1.2 (newer format in varying locations) or none indicating that the kernel isn’t managing metadata
at all. Alternately it can be external: followed by a string which is set by user-space. This indicates that metadata
is managed by a user-space program. Any device failure or other event that requires a metadata update will cause array
activity to be suspended until the event is acknowledged.

resync_start The point at which resync should start. If no resync is needed, this will be a very large number (or none
since 2.6.30-rc1). At array creation it will default to 0, though starting the array as clean will set it much larger.

new_dev This file can be written but not read. The value written should be a block device number as major:minor. e.g. 8:0
This will cause that device to be attached to the array, if it is available. It will then appear at md/dev-XXX (depending
on the name of the device) and further configuration is then possible.

safe_mode_delay When an md array has seen no write requests for a certain period of time, it will be marked as clean.
When another write request arrives, the array is marked as dirty before the write commences. This is known as
safe_mode. The certain period is controlled by this file which stores the period as a number of seconds. The
default is 200msec (0.200). Writing a value of 0 disables safemode.

array_state This file contains a single word which describes the current state of the array. In many cases, the state can be
set by writing the word for the desired state, however some states cannot be explicitly set, and some transitions are not
allowed.

Select/poll works on this file. All changes except between Active_idle and active (which can be frequent and are not
very interesting) are notified. active->active_idle is reported if the metadata is externally managed.

256 Chapter 19. RAID arrays



Linux Kernel User Documentation, v4.20.0

clear No devices, no size, no level

Writing is equivalent to STOP_ARRAY ioctl

inactive May have some settings, but array is not active all IO results in error

When written, doesn’t tear down array, but just stops it

suspended (not supported yet) All IO requests will block. The array can be reconfigured.

Writing this, if accepted, will block until array is quiessent

readonly no resync can happen. no superblocks get written.

Write requests fail

read-auto like readonly, but behaves like clean on a write request.

clean no pending writes, but otherwise active.

When written to inactive array, starts without resync

If a write request arrives then if metadata is known, mark dirty and switch to active. if not known, block and
switch to write-pending

If written to an active array that has pending writes, then fails.

active fully active: IO and resync can be happening. When written to inactive array, starts with resync

write-pending clean, but writes are blocked waiting for active to be written.

active-idle like active, but no writes have been seen for a while (safe_mode_delay).

bitmap/location This indicates where the write-intent bitmap for the array is stored.

It can be one of none, file or [+-]N. file may later be extended to file:/file/name [+-]N means that
many sectors from the start of the metadata.

This is replicated on all devices. For arrays with externally managed metadata, the offset is from the beginning of the
device.

bitmap/chunksize The size, in bytes, of the chunk which will be represented by a single bit. For RAID456, it is a portion
of an individual device. For RAID10, it is a portion of the array. For RAID1, it is both (they come to the same thing).

bitmap/time_base The time, in seconds, between looking for bits in the bitmap to be cleared. In the current implementa-
tion, a bit will be cleared between 2 and 3 times time_base after all the covered blocks are known to be in-sync.

bitmap/backlog When write-mostly devices are active in a RAID1, write requests to those devices proceed in the back-
ground - the filesystem (or other user of the device) does not have to wait for them. backlog sets a limit on the
number of concurrent background writes. If there are more than this, new writes will by synchronous.

bitmap/metadata This can be either internal or external.

internal is the default and means the metadata for the bitmap is stored in the first 256 bytes of the allocated space
and is managed by the md module.

external means that bitmap metadata is managed externally to the kernel (i.e. by some userspace program)

bitmap/can_clear This is either true or false. If true, then bits in the bitmap will be cleared when the corresponding
blocks are thought to be in-sync. If false, bits will never be cleared. This is automatically set to false if a write
happens on a degraded array, or if the array becomes degraded during a write. When metadata is managed externally,
it should be set to true once the array becomes non-degraded, and this fact has been recorded in the metadata.

consistency_policy This indicates how the array maintains consistency in case of unexpected shutdown. It can be:

none Array has no redundancy information, e.g. raid0, linear.

resync Full resync is performed and all redundancy is regenerated when the array is started after unclean shutdown.

19.7. MD devices in sysfs 257



Linux Kernel User Documentation, v4.20.0

bitmap Resync assisted by a write-intent bitmap.

journal For raid4/5/6, journal device is used to log transactions and replay after unclean shutdown.

ppl For raid5 only, Partial Parity Log is used to close the write hole and eliminate resync.

The accepted values when writing to this file are ppl and resync, used to enable and disable PPL.

As component devices are added to an md array, they appear in the md directory as new directories named:

dev-XXX

where XXX is a name that the kernel knows for the device, e.g. hdb1. Each directory contains:

block a symlink to the block device in /sys/block, e.g.:

/sys/block/md0/md/dev-hdb1/block -> ../../../../block/hdb/hdb1

super A file containing an image of the superblock read from, or written to, that device.

state A file recording the current state of the device in the array which can be a comma separated list of:

faulty device has been kicked from active use due to a detected fault, or it has unacknowledged bad blocks

in_sync device is a fully in-sync member of the array

writemostly device will only be subject to read requests if there are no other options.

This applies only to raid1 arrays.

blocked device has failed, and the failure hasn’t been acknowledged yet by the metadata handler.

Writes that would write to this device if it were not faulty are blocked.

spare device is working, but not a full member.

This includes spares that are in the process of being recovered to

write_error device has ever seen a write error.

want_replacement device is (mostly) working but probably should be replaced, either due to errors or due
to user request.

replacement device is a replacement for another active device with same raid_disk.

This list may grow in future.

This can be written to.

Writing faulty simulates a failure on the device.

Writing remove removes the device from the array.

Writing writemostly sets the writemostly flag.

Writing -writemostly clears the writemostly flag.

Writing blocked sets the blocked flag.

Writing -blocked clears the blocked flags and allows writes to complete and possibly simulates an error.

Writing in_sync sets the in_sync flag.

Writing write_error sets writeerrorseen flag.

Writing -write_error clears writeerrorseen flag.

Writing want_replacement is allowed at any time except to a replacement device or a spare. It sets the flag.

258 Chapter 19. RAID arrays



Linux Kernel User Documentation, v4.20.0

Writing -want_replacement is allowed at any time. It clears the flag.

Writing replacement or -replacement is only allowed before starting the array. It sets or clears the flag.

This file responds to select/poll. Any change to faulty or blocked causes an event.

errors An approximate count of read errors that have been detected on this device but have not caused the device to be
evicted from the array (either because they were corrected or because they happened while the array was read-only).
When using version-1 metadata, this value persists across restarts of the array.

This value can be written while assembling an array thus providing an ongoing count for arrays with metadata managed
by userspace.

slot This gives the role that the device has in the array. It will either be none if the device is not active in the array (i.e.
is a spare or has failed) or an integer less than the raid_disks number for the array indicating which position it
currently fills. This can only be set while assembling an array. A device for which this is set is assumed to be working.

offset This gives the location in the device (in sectors from the start) where data from the array will be stored. Any part of
the device before this offset is not touched, unless it is used for storing metadata (Formats 1.1 and 1.2).

size The amount of the device, after the offset, that can be used for storage of data. This will normally be the same as the
component_size. This can be written while assembling an array. If a value less than the current component_size is
written, it will be rejected.

recovery_start When the device is not in_sync, this records the number of sectors from the start of the device which are
known to be correct. This is normally zero, but during a recovery operation it will steadily increase, and if the recovery
is interrupted, restoring this value can cause recovery to avoid repeating the earlier blocks. With v1.x metadata, this
value is saved and restored automatically.

This can be set whenever the device is not an active member of the array, either before the array is activated, or before
the slot is set.

Setting this to none is equivalent to setting in_sync. Setting to any other value also clears the in_sync flag.

bad_blocks This gives the list of all known bad blocks in the form of start address and length (in sectors respectively). If
output is too big to fit in a page, it will be truncated. Writing sector length to this file adds new acknowledged
(i.e. recorded to disk safely) bad blocks.

unacknowledged_bad_blocks This gives the list of known-but-not-yet-saved-to-disk bad blocks in the same form of
bad_blocks. If output is too big to fit in a page, it will be truncated. Writing to this file adds bad blocks with-
out acknowledging them. This is largely for testing.

ppl_sector, ppl_size Location and size (in sectors) of the space used for Partial Parity Log on this device.

An active md device will also contain an entry for each active device in the array. These are named:

rdNN

where NN is the position in the array, starting from 0. So for a 3 drive array there will be rd0, rd1, rd2. These are symbolic links to the
appropriate dev-XXX entry. Thus, for example:

cat /sys/block/md*/md/rd*/state

will show in_sync on every line.

Active md devices for levels that support data redundancy (1,4,5,6,10) also have

sync_action a text file that can be used to monitor and control the rebuild process. It contains one word which can be one
of:

resync redundancy is being recalculated after unclean shutdown or creation

recover a hot spare is being built to replace a failed/missing device

19.7. MD devices in sysfs 259



Linux Kernel User Documentation, v4.20.0

idle nothing is happening

check A full check of redundancy was requested and is happening. This reads all blocks and checks
them. A repair may also happen for some raid levels.

repair A full check and repair is happening. This is similar to resync, but was requested by the
user, and the write-intent bitmap is NOT used to optimise the process.

This file is writable, and each of the strings that could be read are meaningful for writing.

idle will stop an active resync/recovery etc. There is no guarantee that another resync/recovery
may not be automatically started again, though some event will be needed to trigger this.

resync or recovery can be used to restart the corresponding operation if it was stopped with
idle.

check and repair will start the appropriate process providing the current state is idle.

This file responds to select/poll. Any important change in the value triggers a poll event. Sometimes the
value will briefly be recover if a recovery seems to be needed, but cannot be achieved. In that case, the
transition to recover isn’t notified, but the transition away is.

degraded This contains a count of the number of devices by which the arrays is degraded. So an optimal array will show
0. A single failed/missing drive will show 1, etc.

This file responds to select/poll, any increase or decrease in the count of missing devices will trigger an event.

mismatch_count When performing check and repair, and possibly when performing resync, md will count the
number of errors that are found. The count in mismatch_cnt is the number of sectors that were re-written, or (for
check) would have been re-written. As most raid levels work in units of pages rather than sectors, this may be larger
than the number of actual errors by a factor of the number of sectors in a page.

bitmap_set_bits If the array has a write-intent bitmap, then writing to this attribute can set bits in the bitmap, indicating that
a resync would need to check the corresponding blocks. Either individual numbers or start-end pairs can be written.
Multiple numbers can be separated by a space.

Note that the numbers are bit numbers, not block numbers. They should be scaled by the bitmap_chunksize.

sync_speed_min, sync_speed_max This are similar to /proc/sys/dev/raid/speed_limit_{min,max} how-
ever they only apply to the particular array.

If no value has been written to these, or if the word system is written, then the system-wide value is used. If a value,
in kibibytes-per-second is written, then it is used.

When the files are read, they show the currently active value followed by (local) or (system) depending on
whether it is a locally set or system-wide value.

sync_completed This shows the number of sectors that have been completed of whatever the current sync_action is, fol-
lowed by the number of sectors in total that could need to be processed. The two numbers are separated by a / thus
effectively showing one value, a fraction of the process that is complete.

A select on this attribute will return when resync completes, when it reaches the current sync_max (below) and
possibly at other times.

sync_speed This shows the current actual speed, in K/sec, of the current sync_action. It is averaged over the last 30 seconds.

suspend_lo, suspend_hi The two values, given as numbers of sectors, indicate a range within the array where IO will be
blocked. This is currently only supported for raid4/5/6.

sync_min, sync_max The two values, given as numbers of sectors, indicate a range within the array where
check/repair will operate. Must be a multiple of chunk_size. When it reaches sync_max it will pause, rather
than complete. You can use select or poll on sync_completed to wait for that number to reach sync_max.
Then you can either increase sync_max, or can write idle to sync_action.

260 Chapter 19. RAID arrays



Linux Kernel User Documentation, v4.20.0

The value of max for sync_max effectively disables the limit. When a resync is active, the value can only ever be
increased, never decreased. The value of 0 is the minimum for sync_min.

Each active md device may also have attributes specific to the personality module that manages it. These are specific to the implemen-
tation of the module and could change substantially if the implementation changes.

These currently include:

stripe_cache_size (currently raid5 only) number of entries in the stripe cache. This is writable, but there are upper and
lower limits (32768, 17). Default is 256.

strip_cache_active (currently raid5 only) number of active entries in the stripe cache

preread_bypass_threshold (currently raid5 only) number of times a stripe requiring preread will be bypassed by a stripe
that does not require preread. For fairness defaults to 1. Setting this to 0 disables bypass accounting and requires
preread stripes to wait until all full-width stripe- writes are complete. Valid values are 0 to stripe_cache_size.

journal_mode (currently raid5 only) The cache mode for raid5. raid5 could include an extra disk for caching. The mode
can be “write-throuth” and “write-back”. The default is “write-through”.

19.7. MD devices in sysfs 261



Linux Kernel User Documentation, v4.20.0

262 Chapter 19. RAID arrays



CHAPTER 20

Kernel module signing facility

Overview

The kernel module signing facility cryptographically signs modules during installation and then checks the signature upon loading the
module. This allows increased kernel security by disallowing the loading of unsigned modules or modules signed with an invalid key.
Module signing increases security by making it harder to load a malicious module into the kernel. The module signature checking is
done by the kernel so that it is not necessary to have trusted userspace bits.

This facility uses X.509 ITU-T standard certificates to encode the public keys involved. The signatures are not themselves encoded in
any industrial standard type. The facility currently only supports the RSA public key encryption standard (though it is pluggable and
permits others to be used). The possible hash algorithms that can be used are SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 (the
algorithm is selected by data in the signature).

Configuring module signing

The module signing facility is enabled by going to the Enable Loadable Module Support section of the kernel configuration and turning
on:

CONFIG_MODULE_SIG "Module signature verification"

This has a number of options available:

1. Require modules to be validly signed (CONFIG_MODULE_SIG_FORCE)

This specifies how the kernel should deal with a module that has a signature for which the key is not known or a module that is
unsigned.

If this is off (ie. “permissive”), then modules for which the key is not available and modules that are unsigned are permitted, but
the kernel will be marked as being tainted, and the concerned modules will be marked as tainted, shown with the character ‘E’.

If this is on (ie. “restrictive”), only modules that have a valid signature that can be verified by a public key in the kernel’s possession
will be loaded. All other modules will generate an error.

Irrespective of the setting here, if the module has a signature block that cannot be parsed, it will be rejected out of hand.

2. Automatically sign all modules (CONFIG_MODULE_SIG_ALL)

If this is on then modules will be automatically signed during the modules_install phase of a build. If this is off, then the modules
must be signed manually using:

scripts/sign-file

263



Linux Kernel User Documentation, v4.20.0

3. Which hash algorithm should modules be signed with?

This presents a choice of which hash algorithm the installation phase will sign the modules with:

CONFIG_MODULE_SIG_SHA1 Sign modules with SHA-1
CONFIG_MODULE_SIG_SHA224 Sign modules with SHA-224
CONFIG_MODULE_SIG_SHA256 Sign modules with SHA-256
CONFIG_MODULE_SIG_SHA384 Sign modules with SHA-384
CONFIG_MODULE_SIG_SHA512 Sign modules with SHA-512

The algorithm selected here will also be built into the kernel (rather than being a module) so that modules signed with that
algorithm can have their signatures checked without causing a dependency loop.

4. File name or PKCS#11 URI of module signing key (CONFIG_MODULE_SIG_KEY)

Setting this option to something other than its default of certs/signing_key.pem will disable the autogeneration of signing
keys and allow the kernel modules to be signed with a key of your choosing. The string provided should identify a file containing
both a private key and its corresponding X.509 certificate in PEM form, or — on systems where the OpenSSL ENGINE_pkcs11
is functional — a PKCS#11 URI as defined by RFC7512. In the latter case, the PKCS#11 URI should reference both a certificate
and a private key.

If the PEM file containing the private key is encrypted, or if the PKCS#11 token requries a PIN, this can be provided at build time
by means of the KBUILD_SIGN_PIN variable.

5. Additional X.509 keys for default system keyring (CONFIG_SYSTEM_TRUSTED_KEYS)

This option can be set to the filename of a PEM-encoded file containing additional certificates which will be included in the system
keyring by default.

Note that enabling module signing adds a dependency on the OpenSSL devel packages to the kernel build processes for the tool that
does the signing.

Generating signing keys

Cryptographic keypairs are required to generate and check signatures. A private key is used to generate a signature and the corresponding
public key is used to check it. The private key is only needed during the build, after which it can be deleted or stored securely. The
public key gets built into the kernel so that it can be used to check the signatures as the modules are loaded.

Under normal conditions, when CONFIG_MODULE_SIG_KEY is unchanged from its default, the kernel build will automatically gen-
erate a new keypair using openssl if one does not exist in the file:

certs/signing_key.pem

during the building of vmlinux (the public part of the key needs to be built into vmlinux) using parameters in the:

certs/x509.genkey

file (which is also generated if it does not already exist).

It is strongly recommended that you provide your own x509.genkey file.

Most notably, in the x509.genkey file, the req_distinguished_name section should be altered from the default:

[ req_distinguished_name ]
#O = Unspecified company
CN = Build time autogenerated kernel key
#emailAddress = unspecified.user@unspecified.company

The generated RSA key size can also be set with:

264 Chapter 20. Kernel module signing facility



Linux Kernel User Documentation, v4.20.0

[ req ]
default_bits = 4096

It is also possible to manually generate the key private/public files using the x509.genkey key generation configuration file in the root
node of the Linux kernel sources tree and the openssl command. The following is an example to generate the public/private key files:

openssl req -new -nodes -utf8 -sha256 -days 36500 -batch -x509 \
-config x509.genkey -outform PEM -out kernel_key.pem \
-keyout kernel_key.pem

The full pathname for the resulting kernel_key.pem file can then be specified in the CONFIG_MODULE_SIG_KEY option, and the
certificate and key therein will be used instead of an autogenerated keypair.

Public keys in the kernel

The kernel contains a ring of public keys that can be viewed by root. They’re in a keyring called ”.builtin_trusted_keys” that can be seen
by:

[root@deneb ~]# cat /proc/keys
...
223c7853 I------ 1 perm 1f030000 0 0 keyring .builtin_trusted_keys: 1
302d2d52 I------ 1 perm 1f010000 0 0 asymmetri Fedora kernel signing key:
→˓d69a84e6bce3d216b979e9505b3e3ef9a7118079: X509.RSA a7118079 []
...

Beyond the public key generated specifically for module signing, additional trusted certificates can be provided in a PEM-encoded file
referenced by the CONFIG_SYSTEM_TRUSTED_KEYS configuration option.

Further, the architecture code may take public keys from a hardware store and add those in also (e.g. from the UEFI key database).

Finally, it is possible to add additional public keys by doing:

keyctl padd asymmetric "" [.builtin_trusted_keys-ID] <[key-file]

e.g.:

keyctl padd asymmetric "" 0x223c7853 <my_public_key.x509

Note, however, that the kernel will only permit keys to be added to .builtin_trusted_keys if the new key’s X.509 wrapper is
validly signed by a key that is already resident in the .builtin_trusted_keys at the time the key was added.

Manually signing modules

To manually sign a module, use the scripts/sign-file tool available in the Linux kernel source tree. The script requires 4 arguments:

1. The hash algorithm (e.g., sha256)

2. The private key filename or PKCS#11 URI

3. The public key filename

4. The kernel module to be signed

The following is an example to sign a kernel module:

20.4. Public keys in the kernel 265



Linux Kernel User Documentation, v4.20.0

scripts/sign-file sha512 kernel-signkey.priv \
kernel-signkey.x509 module.ko

The hash algorithm used does not have to match the one configured, but if it doesn’t, you should make sure that hash algorithm is either
built into the kernel or can be loaded without requiring itself.

If the private key requires a passphrase or PIN, it can be provided in the $KBUILD_SIGN_PIN environment variable.

Signed modules and stripping

A signed module has a digital signature simply appended at the end. The string ~Module signature appended~. at the end of
the module’s file confirms that a signature is present but it does not confirm that the signature is valid!

Signed modules are BRITTLE as the signature is outside of the defined ELF container. Thus they MAY NOT be stripped once the
signature is computed and attached. Note the entire module is the signed payload, including any and all debug information present at the
time of signing.

Loading signed modules

Modules are loaded with insmod, modprobe, init_module() or finit_module(), exactly as for unsigned modules as no pro-
cessing is done in userspace. The signature checking is all done within the kernel.

Non-valid signatures and unsigned modules

If CONFIG_MODULE_SIG_FORCE is enabled or module.sig_enforce=1 is supplied on the kernel command line, the kernel will only
load validly signed modules for which it has a public key. Otherwise, it will also load modules that are unsigned. Any module for which
the kernel has a key, but which proves to have a signature mismatch will not be permitted to load.

Any module that has an unparseable signature will be rejected.

Administering/protecting the private key

Since the private key is used to sign modules, viruses and malware could use the private key to sign modules and compromise the
operating system. The private key must be either destroyed or moved to a secure location and not kept in the root node of the kernel
source tree.

If you use the same private key to sign modules for multiple kernel configurations, you must ensure that the module version information
is sufficient to prevent loading a module into a different kernel. Either set CONFIG_MODVERSIONS=y or ensure that each configuration
has a different kernel release string by changing EXTRAVERSION or CONFIG_LOCALVERSION.

266 Chapter 20. Kernel module signing facility



CHAPTER 21

Linux Magic System Request Key Hacks

Documentation for sysrq.c

What is the magic SysRq key?

It is a ‘magical’ key combo you can hit which the kernel will respond to regardless of whatever else it is doing, unless it is completely
locked up.

How do I enable the magic SysRq key?

You need to say “yes” to ‘Magic SysRq key (CONFIG_MAGIC_SYSRQ)’ when configuring the kernel. When running a kernel with
SysRq compiled in, /proc/sys/kernel/sysrq controls the functions allowed to be invoked via the SysRq key. The default value in this file
is set by the CONFIG_MAGIC_SYSRQ_DEFAULT_ENABLE config symbol, which itself defaults to 1. Here is the list of possible
values in /proc/sys/kernel/sysrq:

• 0 - disable sysrq completely

• 1 - enable all functions of sysrq

• >1 - bitmask of allowed sysrq functions (see below for detailed function description):

2 = 0x2 - enable control of console logging level
4 = 0x4 - enable control of keyboard (SAK, unraw)
8 = 0x8 - enable debugging dumps of processes etc.

16 = 0x10 - enable sync command
32 = 0x20 - enable remount read-only
64 = 0x40 - enable signalling of processes (term, kill, oom-kill)
128 = 0x80 - allow reboot/poweroff
256 = 0x100 - allow nicing of all RT tasks

You can set the value in the file by the following command:

echo "number" >/proc/sys/kernel/sysrq

The number may be written here either as decimal or as hexadecimal with the 0x prefix. CON-
FIG_MAGIC_SYSRQ_DEFAULT_ENABLE must always be written in hexadecimal.

Note that the value of /proc/sys/kernel/sysrq influences only the invocation via a keyboard. Invocation of any operation via
/proc/sysrq-trigger is always allowed (by a user with admin privileges).

267



Linux Kernel User Documentation, v4.20.0

How do I use the magic SysRq key?

On x86 - You press the key combo ALT-SysRq-<command key>.

:

Some keyboards may not have a key labeled ‘SysRq’. The ‘SysRq’ key is also known as the ‘Print Screen’ key. Also some keyboards
cannot handle so many keys being pressed at the same time, so you might have better luck with press Alt, press SysRq, release
SysRq, press <command key>, release everything.

On SPARC - You press ALT-STOP-<command key>, I believe.

On the serial console (PC style standard serial ports only) You send a BREAK, then within 5 seconds a command key. Sending
BREAK twice is interpreted as a normal BREAK.

On PowerPC Press ALT -Print Screen (or F13) - <command key>, Print Screen (or F13) - <command key> may
suffice.

On other If you know of the key combos for other architectures, please let me know so I can add them to this section.

On all write a character to /proc/sysrq-trigger. e.g.:

echo t > /proc/sysrq-trigger

268 Chapter 21. Linux Magic System Request Key Hacks



Linux Kernel User Documentation, v4.20.0

What are the ‘command’ keys?

Com-
mand

Function

b Will immediately reboot the system without syncing or unmounting your disks.
c Will perform a system crash by a NULL pointer dereference. A crashdump will be taken if configured.
d Shows all locks that are held.
e Send a SIGTERM to all processes, except for init.
f Will call the oom killer to kill a memory hog process, but do not panic if nothing can be killed.
g Used by kgdb (kernel debugger)
h Will display help (actually any other key than those listed here will display help. but h is easy to remember :-)
i Send a SIGKILL to all processes, except for init.
j Forcibly “Just thaw it” - filesystems frozen by the FIFREEZE ioctl.
k Secure Access Key (SAK) Kills all programs on the current virtual console. NOTE: See important comments below in

SAK section.
l Shows a stack backtrace for all active CPUs.
m Will dump current memory info to your console.
n Used to make RT tasks nice-able
o Will shut your system off (if configured and supported).
p Will dump the current registers and flags to your console.
q Will dump per CPU lists of all armed hrtimers (but NOT regular timer_list timers) and detailed information about all

clockevent devices.
r Turns off keyboard raw mode and sets it to XLATE.
s Will attempt to sync all mounted filesystems.
t Will dump a list of current tasks and their information to your console.
u Will attempt to remount all mounted filesystems read-only.
v Forcefully restores framebuffer console
v Causes ETM buffer dump [ARM-specific]
w Dumps tasks that are in uninterruptable (blocked) state.
x Used by xmon interface on ppc/powerpc platforms. Show global PMU Registers on sparc64. Dump all TLB entries on

MIPS.
y Show global CPU Registers [SPARC-64 specific]
z Dump the ftrace buffer
0-9 Sets the console log level, controlling which kernel messages will be printed to your console. (0, for example would

make it so that only emergency messages like PANICs or OOPSes would make it to your console.)

Okay, so what can I use them for?

Well, unraw(r) is very handy when your X server or a svgalib program crashes.

sak(k) (Secure Access Key) is useful when you want to be sure there is no trojan program running at console which could grab your
password when you would try to login. It will kill all programs on given console, thus letting you make sure that the login prompt you
see is actually the one from init, not some trojan program.

:

In its true form it is not a true SAK like the one in a c2 compliant system, and it should not be mistaken as such.

It seems others find it useful as (System Attention Key) which is useful when you want to exit a program that will not let you switch
consoles. (For example, X or a svgalib program.)

21.4. What are the ‘command’ keys? 269



Linux Kernel User Documentation, v4.20.0

reboot(b) is good when you’re unable to shut down. But you should also sync(s) and umount(u) first.

crash(c) can be used to manually trigger a crashdump when the system is hung. Note that this just triggers a crash if there is no dump
mechanism available.

sync(s) is great when your system is locked up, it allows you to sync your disks and will certainly lessen the chance of data loss and
fscking. Note that the sync hasn’t taken place until you see the “OK” and “Done” appear on the screen. (If the kernel is really in strife,
you may not ever get the OK or Done message...)

umount(u) is basically useful in the same ways as sync(s). I generally sync(s), umount(u), then reboot(b) when my
system locks. It’s saved me many a fsck. Again, the unmount (remount read-only) hasn’t taken place until you see the “OK” and “Done”
message appear on the screen.

The loglevels 0-9 are useful when your console is being flooded with kernel messages you do not want to see. Selecting 0 will prevent
all but the most urgent kernel messages from reaching your console. (They will still be logged if syslogd/klogd are alive, though.)

term(e) and kill(i) are useful if you have some sort of runaway process you are unable to kill any other way, especially if it’s
spawning other processes.

“just thaw it(j)” is useful if your system becomes unresponsive due to a frozen (probably root) filesystem via the FIFREEZE ioctl.

Sometimes SysRq seems to get ‘stuck’ after using it, what can I do?

That happens to me, also. I’ve found that tapping shift, alt, and control on both sides of the keyboard, and hitting an invalid sysrq
sequence again will fix the problem. (i.e., something like alt-sysrq-z). Switching to another virtual console (ALT+Fn) and then
back again should also help.

I hit SysRq, but nothing seems to happen, what’s wrong?

There are some keyboards that produce a different keycode for SysRq than the pre-defined value of 99 (see KEY_SYSRQ in
include/uapi/linux/input-event-codes.h), or which don’t have a SysRq key at all. In these cases, run showkey -s
to find an appropriate scancode sequence, and use setkeycodes <sequence> 99 to map this sequence to the usual SysRq code
(e.g., setkeycodes e05b 99). It’s probably best to put this command in a boot script. Oh, and by the way, you exit showkey by
not typing anything for ten seconds.

I want to add SysRQ key events to a module, how does it work?

In order to register a basic function with the table, you must first include the header include/linux/sysrq.h, this will define
everything else you need. Next, you must create a sysrq_key_op struct, and populate it with A) the key handler function you will
use, B) a help_msg string, that will print when SysRQ prints help, and C) an action_msg string, that will print right before your handler
is called. Your handler must conform to the prototype in ‘sysrq.h’.

After the sysrq_key_op is created, you can call the kernel function register_sysrq_key(int key,struct
sysrq_key_op *op_p); this will register the operation pointed to by op_p at table key ‘key’, if that slot in the table is blank.
At module unload time, you must call the function unregister_sysrq_key(int key,struct sysrq_key_op *op_p),
which will remove the key op pointed to by ‘op_p’ from the key ‘key’, if and only if it is currently registered in that slot. This is in case
the slot has been overwritten since you registered it.

The Magic SysRQ system works by registering key operations against a key op lookup table, which is defined in ‘drivers/tty/sysrq.c’.
This key table has a number of operations registered into it at compile time, but is mutable, and 2 functions are exported for interface to
it:

270 Chapter 21. Linux Magic System Request Key Hacks



Linux Kernel User Documentation, v4.20.0

register_sysrq_key and unregister_sysrq_key.

Of course, never ever leave an invalid pointer in the table. I.e., when your module that called register_sysrq_key() exits, it must call
unregister_sysrq_key() to clean up the sysrq key table entry that it used. Null pointers in the table are always safe. :)

If for some reason you feel the need to call the handle_sysrq function from within a function called by handle_sysrq, you must be aware
that you are in a lock (you are also in an interrupt handler, which means don’t sleep!), so you must call __handle_sysrq_nolock
instead.

When I hit a SysRq key combination only the header appears on the console?

Sysrq output is subject to the same console loglevel control as all other console output. This means that if the kernel was booted ‘quiet’
as is common on distro kernels the output may not appear on the actual console, even though it will appear in the dmesg buffer, and
be accessible via the dmesg command and to the consumers of /proc/kmsg. As a specific exception the header line from the sysrq
command is passed to all console consumers as if the current loglevel was maximum. If only the header is emitted it is almost certain
that the kernel loglevel is too low. Should you require the output on the console channel then you will need to temporarily up the console
loglevel using alt-sysrq-8 or:

echo 8 > /proc/sysrq-trigger

Remember to return the loglevel to normal after triggering the sysrq command you are interested in.

I have more questions, who can I ask?

Just ask them on the linux-kernel mailing list: linux-kernel@vger.kernel.org

Credits

Written by Mydraal <vulpyne@vulpyne.net> Updated by Adam Sulmicki <adam@cfar.umd.edu> Updated by Jeremy M. Dolan
<jmd@turbogeek.org> 2001/01/28 10:15:59 Added to by Crutcher Dunnavant <crutcher+kernel@datastacks.com>

21.9. When I hit a SysRq key combination only the header appears on the console? 271

mailto:linux-kernel@vger.kernel.org
mailto:vulpyne@vulpyne.net
mailto:adam@cfar.umd.edu
mailto:jmd@turbogeek.org
mailto:crutcher+kernel@datastacks.com


Linux Kernel User Documentation, v4.20.0

272 Chapter 21. Linux Magic System Request Key Hacks



CHAPTER 22

Unicode support

Last update: 2005-01-17, version 1.4

This file is maintained by H. Peter Anvin <unicode@lanana.org> as part of the Linux Assigned Names And Numbers Authority
(LANANA) project. The current version can be found at:

http://www.lanana.org/docs/unicode/admin-guide/unicode.rst

Introduction

The Linux kernel code has been rewritten to use Unicode to map characters to fonts. By downloading a single Unicode-to-font table,
both the eight-bit character sets and UTF-8 mode are changed to use the font as indicated.

This changes the semantics of the eight-bit character tables subtly. The four character tables are now:

Map symbol Map name Escape code (G0)
LAT1_MAP Latin-1 (ISO 8859-1) ESC ( B
GRAF_MAP DEC VT100 pseudographics ESC ( 0
IBMPC_MAP IBM code page 437 ESC ( U
USER_MAP User defined ESC ( K

In particular, ESC ( U is no longer “straight to font”, since the font might be completely different than the IBM character set. This
permits for example the use of block graphics even with a Latin-1 font loaded.

Note that although these codes are similar to ISO 2022, neither the codes nor their uses match ISO 2022; Linux has two 8-bit codes (G0
and G1), whereas ISO 2022 has four 7-bit codes (G0-G3).

In accordance with the Unicode standard/ISO 10646 the range U+F000 to U+F8FF has been reserved for OS-wide allocation (the
Unicode Standard refers to this as a “Corporate Zone”, since this is inaccurate for Linux we call it the “Linux Zone”). U+F000 was
picked as the starting point since it lets the direct-mapping area start on a large power of two (in case 1024- or 2048-character fonts ever
become necessary). This leaves U+E000 to U+EFFF as End User Zone.

[v1.2]: The Unicodes range from U+F000 and up to U+F7FF have been hard-coded to map directly to the loaded font, bypassing the
translation table. The user-defined map now defaults to U+F000 to U+F0FF, emulating the previous behaviour. In practice, this range
might be shorter; for example, vgacon can only handle 256-character (U+F000..U+F0FF) or 512-character (U+F000..U+F1FF) fonts.

Actual characters assigned in the Linux Zone

In addition, the following characters not present in Unicode 1.1.4 have been defined; these are used by the DEC VT graphics map. [v1.2]
THIS USE IS OBSOLETE AND SHOULD NO LONGER BE USED; PLEASE SEE BELOW.

273

mailto:unicode@lanana.org
http://www.lanana.org/docs/unicode/admin-guide/unicode.rst


Linux Kernel User Documentation, v4.20.0

U+F800 DEC VT GRAPHICS HORIZONTAL LINE SCAN 1
U+F801 DEC VT GRAPHICS HORIZONTAL LINE SCAN 3
U+F803 DEC VT GRAPHICS HORIZONTAL LINE SCAN 7
U+F804 DEC VT GRAPHICS HORIZONTAL LINE SCAN 9

The DEC VT220 uses a 6x10 character matrix, and these characters form a smooth progression in the DEC VT graphics character set. I
have omitted the scan 5 line, since it is also used as a block-graphics character, and hence has been coded as U+2500 FORMS LIGHT
HORIZONTAL.

[v1.3]: These characters have been officially added to Unicode 3.2.0; they are added at U+23BA, U+23BB, U+23BC, U+23BD. Linux
now uses the new values.

[v1.2]: The following characters have been added to represent common keyboard symbols that are unlikely to ever be added to Unicode
proper since they are horribly vendor-specific. This, of course, is an excellent example of horrible design.

U+F810 KEYBOARD SYMBOL FLYING FLAG
U+F811 KEYBOARD SYMBOL PULLDOWN MENU
U+F812 KEYBOARD SYMBOL OPEN APPLE
U+F813 KEYBOARD SYMBOL SOLID APPLE

Klingon language support

In 1996, Linux was the first operating system in the world to add support for the artificial language Klingon, created by Marc Okrand
for the “Star Trek” television series. This encoding was later adopted by the ConScript Unicode Registry and proposed (but ultimately
rejected) for inclusion in Unicode Plane 1. Thus, it remains as a Linux/CSUR private assignment in the Linux Zone.

This encoding has been endorsed by the Klingon Language Institute. For more information, contact them at:

http://www.kli.org/

Since the characters in the beginning of the Linux CZ have been more of the dingbats/symbols/forms type and this is a language, I have
located it at the end, on a 16-cell boundary in keeping with standard Unicode practice.

:

This range is now officially managed by the ConScript Unicode Registry. The normative reference is at:
http://www.evertype.com/standards/csur/klingon.html

Klingon has an alphabet of 26 characters, a positional numeric writing system with 10 digits, and is written left-to-right, top-to-bottom.

Several glyph forms for the Klingon alphabet have been proposed. However, since the set of symbols appear to be consistent throughout,
with only the actual shapes being different, in keeping with standard Unicode practice these differences are considered font variants.

U+F8D0 KLINGON LETTER A
U+F8D1 KLINGON LETTER B
U+F8D2 KLINGON LETTER CH
U+F8D3 KLINGON LETTER D
U+F8D4 KLINGON LETTER E
U+F8D5 KLINGON LETTER GH
U+F8D6 KLINGON LETTER H
U+F8D7 KLINGON LETTER I
U+F8D8 KLINGON LETTER J
U+F8D9 KLINGON LETTER L
U+F8DA KLINGON LETTER M

274 Chapter 22. Unicode support

http://www.kli.org/
http://www.evertype.com/standards/csur/klingon.html


Linux Kernel User Documentation, v4.20.0

22.1 –
U+F8DB KLINGON LETTER N
U+F8DC KLINGON LETTER NG
U+F8DD KLINGON LETTER O
U+F8DE KLINGON LETTER P
U+F8DF KLINGON LETTER Q - Written <q> in standard Okrand Latin transliteration
U+F8E0 KLINGON LETTER QH - Written <Q> in standard Okrand Latin transliteration
U+F8E1 KLINGON LETTER R
U+F8E2 KLINGON LETTER S
U+F8E3 KLINGON LETTER T
U+F8E4 KLINGON LETTER TLH
U+F8E5 KLINGON LETTER U
U+F8E6 KLINGON LETTER V
U+F8E7 KLINGON LETTER W
U+F8E8 KLINGON LETTER Y
U+F8E9 KLINGON LETTER GLOTTAL STOP
U+F8F0 KLINGON DIGIT ZERO
U+F8F1 KLINGON DIGIT ONE
U+F8F2 KLINGON DIGIT TWO
U+F8F3 KLINGON DIGIT THREE
U+F8F4 KLINGON DIGIT FOUR
U+F8F5 KLINGON DIGIT FIVE
U+F8F6 KLINGON DIGIT SIX
U+F8F7 KLINGON DIGIT SEVEN
U+F8F8 KLINGON DIGIT EIGHT
U+F8F9 KLINGON DIGIT NINE
U+F8FD KLINGON COMMA
U+F8FE KLINGON FULL STOP
U+F8FF KLINGON SYMBOL FOR EMPIRE

Other Fictional and Artificial Scripts

Since the assignment of the Klingon Linux Unicode block, a registry of fictional and artificial scripts has been established by John
Cowan <jcowan@reutershealth.com> and Michael Everson <everson@evertype.com>. The ConScript Unicode Registry is accessible
at:

http://www.evertype.com/standards/csur/

The ranges used fall at the low end of the End User Zone and can hence not be normatively assigned, but it is recommended that people
who wish to encode fictional scripts use these codes, in the interest of interoperability. For Klingon, CSUR has adopted the Linux
encoding. The CSUR people are driving adding Tengwar and Cirth into Unicode Plane 1; the addition of Klingon to Unicode Plane 1
has been rejected and so the above encoding remains official.

22.4. Other Fictional and Artificial Scripts 275

mailto:jcowan@reutershealth.com
mailto:everson@evertype.com
http://www.evertype.com/standards/csur/


Linux Kernel User Documentation, v4.20.0

276 Chapter 22. Unicode support



CHAPTER 23

Software cursor for VGA

by Pavel Machek <pavel@atrey.karlin.mff.cuni.cz> and Martin Mares <mj@atrey.karlin.mff.cuni.cz>

Linux now has some ability to manipulate cursor appearance. Normally, you can set the size of hardware cursor. You can now play a
few new tricks: you can make your cursor look like a non-blinking red block, make it inverse background of the character it’s over or to
highlight that character and still choose whether the original hardware cursor should remain visible or not. There may be other things I
have never thought of.

The cursor appearance is controlled by a <ESC>[?1;2;3c escape sequence where 1, 2 and 3 are parameters described below. If you
omit any of them, they will default to zeroes.

first Parameter specifies cursor size:

0=default
1=invisible
2=underline,
...
8=full block
+ 16 if you want the software cursor to be applied
+ 32 if you want to always change the background color
+ 64 if you dislike having the background the same as the

foreground.

Highlights are ignored for the last two flags.

second parameter selects character attribute bits you want to change (by simply XORing them with the value of this parameter). On
standard VGA, the high four bits specify background and the low four the foreground. In both groups, low three bits set color (as
in normal color codes used by the console) and the most significant one turns on highlight (or sometimes blinking – it depends on
the configuration of your VGA).

third parameter consists of character attribute bits you want to set.

Bit setting takes place before bit toggling, so you can simply clear a bit by including it in both the set mask and the toggle mask.

Examples

To get normal blinking underline, use:

echo -e '\033[?2c'

To get blinking block, use:

277

mailto:pavel@atrey.karlin.mff.cuni.cz
mailto:mj@atrey.karlin.mff.cuni.cz


Linux Kernel User Documentation, v4.20.0

echo -e '\033[?6c'

To get red non-blinking block, use:

echo -e '\033[?17;0;64c'

278 Chapter 23. Software cursor for VGA



CHAPTER 24

Kernel Support for miscellaneous (your favourite) Binary Formats v1.1

This Kernel feature allows you to invoke almost (for restrictions see below) every program by simply typing its name in the shell. This
includes for example compiled Java(TM), Python or Emacs programs.

To achieve this you must tell binfmt_misc which interpreter has to be invoked with which binary. Binfmt_misc recognises the binary-
type by matching some bytes at the beginning of the file with a magic byte sequence (masking out specified bits) you have supplied.
Binfmt_misc can also recognise a filename extension aka .com or .exe.

First you must mount binfmt_misc:

mount binfmt_misc -t binfmt_misc /proc/sys/fs/binfmt_misc

To actually register a new binary type, you have to set up a string looking like :name:type:offset:magic:mask:interpreter:flags
(where you can choose the : upon your needs) and echo it to /proc/sys/fs/binfmt_misc/register.

Here is what the fields mean:

• name is an identifier string. A new /proc file will be created with this name below /proc/sys/fs/binfmt_misc;
cannot contain slashes / for obvious reasons.

• type is the type of recognition. Give M for magic and E for extension.

• offset is the offset of the magic/mask in the file, counted in bytes. This defaults to 0 if you omit it (i.e. you write
:name:type::magic...). Ignored when using filename extension matching.

• magic is the byte sequence binfmt_misc is matching for. The magic string may contain hex-encoded characters like \x0a or
\xA4. Note that you must escape any NUL bytes; parsing halts at the first one. In a shell environment you might have to
write \\x0a to prevent the shell from eating your \. If you chose filename extension matching, this is the extension to be
recognised (without the ., the \x0a specials are not allowed). Extension matching is case sensitive, and slashes / are not
allowed!

• mask is an (optional, defaults to all 0xff) mask. You can mask out some bits from matching by supplying a string like magic and
as long as magic. The mask is anded with the byte sequence of the file. Note that you must escape any NUL bytes; parsing
halts at the first one. Ignored when using filename extension matching.

• interpreter is the program that should be invoked with the binary as first argument (specify the full path)

• flags is an optional field that controls several aspects of the invocation of the interpreter. It is a string of capital letters, each
controls a certain aspect. The following flags are supported:

P - preserve-argv[0] Legacy behavior of binfmt_misc is to overwrite the original argv[0] with the full path to
the binary. When this flag is included, binfmt_misc will add an argument to the argument vector for this
purpose, thus preserving the original argv[0]. e.g. If your interp is set to /bin/foo and you run
blah (which is in /usr/local/bin), then the kernel will execute /bin/foo with argv[] set to
["/bin/foo","/usr/local/bin/blah","blah"]. The interp has to be aware of this so it can exe-
cute /usr/local/bin/blah with argv[] set to ["blah"].

279



Linux Kernel User Documentation, v4.20.0

O - open-binary Legacy behavior of binfmt_misc is to pass the full path of the binary to the interpreter as an
argument. When this flag is included, binfmt_misc will open the file for reading and pass its descriptor as an
argument, instead of the full path, thus allowing the interpreter to execute non-readable binaries. This feature
should be used with care - the interpreter has to be trusted not to emit the contents of the non-readable binary.

C - credentials Currently, the behavior of binfmt_misc is to calculate the credentials and security token of the new
process according to the interpreter. When this flag is included, these attributes are calculated according to the
binary. It also implies the O flag. This feature should be used with care as the interpreter will run with root
permissions when a setuid binary owned by root is run with binfmt_misc.

F - fix binary The usual behaviour of binfmt_misc is to spawn the binary lazily when the misc format file is
invoked. However, this doesn‘‘t work very well in the face of mount namespaces and changeroots, so the F
mode opens the binary as soon as the emulation is installed and uses the opened image to spawn the emulator,
meaning it is always available once installed, regardless of how the environment changes.

There are some restrictions:

• the whole register string may not exceed 1920 characters

• the magic must reside in the first 128 bytes of the file, i.e. offset+size(magic) has to be less than 128

• the interpreter string may not exceed 127 characters

To use binfmt_misc you have to mount it first. You can mount it with mount -t binfmt_misc none
/proc/sys/fs/binfmt_misc command, or you can add a line none /proc/sys/fs/binfmt_misc binfmt_misc
defaults 0 0 to your /etc/fstab so it auto mounts on boot.

You may want to add the binary formats in one of your /etc/rc scripts during boot-up. Read the manual of your init program to figure
out how to do this right.

Think about the order of adding entries! Later added entries are matched first!

A few examples (assumed you are in /proc/sys/fs/binfmt_misc):

• enable support for em86 (like binfmt_em86, for Alpha AXP only):

echo ':i386:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x03:
→˓\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' >
→˓register
echo ':i486:M::\x7fELF\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x06:
→˓\xff\xff\xff\xff\xff\xfe\xfe\xff\xff\xff\xff\xff\xff\xff\xff\xff\xfb\xff\xff:/bin/em86:' >
→˓register

• enable support for packed DOS applications (pre-configured dosemu hdimages):

echo ':DEXE:M::\x0eDEX::/usr/bin/dosexec:' > register

• enable support for Windows executables using wine:

echo ':DOSWin:M::MZ::/usr/local/bin/wine:' > register

For java support see Documentation/admin-guide/java.rst

You can enable/disable binfmt_misc or one binary type by echoing 0 (to disable) or 1 (to enable) to
/proc/sys/fs/binfmt_misc/status or /proc/.../the_name. Catting the file tells you the current status of
binfmt_misc/the_entry.

You can remove one entry or all entries by echoing -1 to /proc/.../the_name or /proc/sys/fs/binfmt_misc/status.

280 Chapter 24. Kernel Support for miscellaneous (your favourite) Binary Formats v1.1



Linux Kernel User Documentation, v4.20.0

Hints

If you want to pass special arguments to your interpreter, you can write a wrapper script for it. See Documentation/admin-guide/java.rst
for an example.

Your interpreter should NOT look in the PATH for the filename; the kernel passes it the full filename (or the file descriptor) to use. Using
$PATH can cause unexpected behaviour and can be a security hazard.

Richard Günther <rguenth@tat.physik.uni-tuebingen.de>

24.1. Hints 281

mailto:rguenth@tat.physik.uni-tuebingen.de


Linux Kernel User Documentation, v4.20.0

282 Chapter 24. Kernel Support for miscellaneous (your favourite) Binary Formats v1.1



CHAPTER 25

Mono(tm) Binary Kernel Support for Linux

To configure Linux to automatically execute Mono-based .NET binaries (in the form of .exe files) without the need to use the mono CLR
wrapper, you can use the BINFMT_MISC kernel support.

This will allow you to execute Mono-based .NET binaries just like any other program after you have done the following:

1. You MUST FIRST install the Mono CLR support, either by downloading a binary package, a source tarball or by installing from
Git. Binary packages for several distributions can be found at:

http://www.mono-project.com/download/

Instructions for compiling Mono can be found at:

http://www.mono-project.com/docs/compiling-mono/linux/

Once the Mono CLR support has been installed, just check that /usr/bin/mono (which could be located elsewhere, for example
/usr/local/bin/mono) is working.

2. You have to compile BINFMT_MISC either as a module or into the kernel (CONFIG_BINFMT_MISC) and set it up properly.
If you choose to compile it as a module, you will have to insert it manually with modprobe/insmod, as kmod cannot be easily
supported with binfmt_misc. Read the file binfmt_misc.txt in this directory to know more about the configuration process.

3. Add the following entries to /etc/rc.local or similar script to be run at system startup:

# Insert BINFMT_MISC module into the kernel
if [ ! -e /proc/sys/fs/binfmt_misc/register ]; then

/sbin/modprobe binfmt_misc
# Some distributions, like Fedora Core, perform
# the following command automatically when the
# binfmt_misc module is loaded into the kernel
# or during normal boot up (systemd-based systems).
# Thus, it is possible that the following line
# is not needed at all.
mount -t binfmt_misc none /proc/sys/fs/binfmt_misc

fi

# Register support for .NET CLR binaries
if [ -e /proc/sys/fs/binfmt_misc/register ]; then

# Replace /usr/bin/mono with the correct pathname to
# the Mono CLR runtime (usually /usr/local/bin/mono
# when compiling from sources or CVS).
echo ':CLR:M::MZ::/usr/bin/mono:' > /proc/sys/fs/binfmt_misc/register

else
echo "No binfmt_misc support"
exit 1

fi

283

http://www.mono-project.com/download/
http://www.mono-project.com/docs/compiling-mono/linux/


Linux Kernel User Documentation, v4.20.0

4. Check that .exe binaries can be ran without the need of a wrapper script, simply by launching the .exe file directly from a
command prompt, for example:

/usr/bin/xsd.exe

:

If this fails with a permission denied error, check that the .exe file has execute permissions.

284 Chapter 25. Mono(tm) Binary Kernel Support for Linux



CHAPTER 26

Java(tm) Binary Kernel Support for Linux v1.03

Linux beats them ALL! While all other OS’s are TALKING about direct support of Java Binaries in the OS, Linux is doing it!

You can execute Java applications and Java Applets just like any other program after you have done the following:

1. You MUST FIRST install the Java Developers Kit for Linux. The Java on Linux HOWTO gives the details on getting and installing
this. This HOWTO can be found at:

ftp://sunsite.unc.edu/pub/Linux/docs/HOWTO/Java-HOWTO

You should also set up a reasonable CLASSPATH environment variable to use Java applications that make use of any nonstandard
classes (not included in the same directory as the application itself).

2. You have to compile BINFMT_MISC either as a module or into the kernel (CONFIG_BINFMT_MISC) and set it up properly.
If you choose to compile it as a module, you will have to insert it manually with modprobe/insmod, as kmod cannot easily be
supported with binfmt_misc. Read the file ‘binfmt_misc.txt’ in this directory to know more about the configuration process.

3. Add the following configuration items to binfmt_misc (you should really have read binfmt_misc.txt now): support for Java
applications:

':Java:M::\xca\xfe\xba\xbe::/usr/local/bin/javawrapper:'

support for executable Jar files:

':ExecutableJAR:E::jar::/usr/local/bin/jarwrapper:'

support for Java Applets:

':Applet:E::html::/usr/bin/appletviewer:'

or the following, if you want to be more selective:

':Applet:M::<!--applet::/usr/bin/appletviewer:'

Of course you have to fix the path names. The path/file names given in this document match the Debian 2.1 system. (i.e. jdk
installed in /usr, custom wrappers from this document in /usr/local)

Note, that for the more selective applet support you have to modify existing html-files to contain <!--applet--> in the first
line (< has to be the first character!) to let this work!

For the compiled Java programs you need a wrapper script like the following (this is because Java is broken in case of the filename
handling), again fix the path names, both in the script and in the above given configuration string.

You, too, need the little program after the script. Compile like:

285

ftp://sunsite.unc.edu/pub/Linux/docs/HOWTO/Java-HOWTO


Linux Kernel User Documentation, v4.20.0

gcc -O2 -o javaclassname javaclassname.c

and stick it to /usr/local/bin.

Both the javawrapper shellscript and the javaclassname program were supplied by Colin J. Watson <cjw44@cam.ac.uk>.

Javawrapper shell script:

#!/bin/bash
# /usr/local/bin/javawrapper - the wrapper for binfmt_misc/java

if [ -z "$1" ]; then
exec 1>&2
echo Usage: $0 class-file
exit 1

fi

CLASS=$1
FQCLASS=`/usr/local/bin/javaclassname $1`
FQCLASSN=`echo $FQCLASS | sed -e 's/^.*\.\([^.]*\)$/\1/'`
FQCLASSP=`echo $FQCLASS | sed -e 's-\.-/-g' -e 's-^[^/]*$--' -e 's-/[^/]*$--'`

# for example:
# CLASS=Test.class
# FQCLASS=foo.bar.Test
# FQCLASSN=Test
# FQCLASSP=foo/bar

unset CLASSBASE

declare -i LINKLEVEL=0

while :; do
if [ "`basename $CLASS .class`" == "$FQCLASSN" ]; then

# See if this directory works straight off
cd -L `dirname $CLASS`
CLASSDIR=$PWD
cd $OLDPWD
if echo $CLASSDIR | grep -q "$FQCLASSP$"; then

CLASSBASE=`echo $CLASSDIR | sed -e "s.$FQCLASSP$.."`
break;

fi
# Try dereferencing the directory name
cd -P `dirname $CLASS`
CLASSDIR=$PWD
cd $OLDPWD
if echo $CLASSDIR | grep -q "$FQCLASSP$"; then

CLASSBASE=`echo $CLASSDIR | sed -e "s.$FQCLASSP$.."`
break;

fi
# If no other possible filename exists
if [ ! -L $CLASS ]; then

exec 1>&2
echo $0:
echo " $CLASS should be in a" \

"directory tree called $FQCLASSP"
exit 1

fi
fi

286 Chapter 26. Java(tm) Binary Kernel Support for Linux v1.03

mailto:cjw44@cam.ac.uk


Linux Kernel User Documentation, v4.20.0

if [ ! -L $CLASS ]; then break; fi
# Go down one more level of symbolic links
let LINKLEVEL+=1
if [ $LINKLEVEL -gt 5 ]; then

exec 1>&2
echo $0:
echo " Too many symbolic links encountered"
exit 1

fi
CLASS=`ls --color=no -l $CLASS | sed -e 's/^.* \([^ ]*\)$/\1/'`

done

if [ -z "$CLASSBASE" ]; then
if [ -z "$FQCLASSP" ]; then

GOODNAME=$FQCLASSN.class
else

GOODNAME=$FQCLASSP/$FQCLASSN.class
fi
exec 1>&2
echo $0:
echo " $FQCLASS should be in a file called $GOODNAME"
exit 1

fi

if ! echo $CLASSPATH | grep -q "^\(.*:\)*$CLASSBASE\(:.*\)*"; then
# class is not in CLASSPATH, so prepend dir of class to CLASSPATH
if [ -z "${CLASSPATH}" ] ; then

export CLASSPATH=$CLASSBASE
else

export CLASSPATH=$CLASSBASE:$CLASSPATH
fi

fi

shift
/usr/bin/java $FQCLASS "$@"

javaclassname.c:

/* javaclassname.c

*
* Extracts the class name from a Java class file; intended for use in a Java

* wrapper of the type supported by the binfmt_misc option in the Linux kernel.

*
* Copyright (C) 1999 Colin J. Watson <cjw44@cam.ac.uk>.

*
* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

287



Linux Kernel User Documentation, v4.20.0

*/

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/types.h>

/* From Sun's Java VM Specification, as tag entries in the constant pool. */

#define CP_UTF8 1
#define CP_INTEGER 3
#define CP_FLOAT 4
#define CP_LONG 5
#define CP_DOUBLE 6
#define CP_CLASS 7
#define CP_STRING 8
#define CP_FIELDREF 9
#define CP_METHODREF 10
#define CP_INTERFACEMETHODREF 11
#define CP_NAMEANDTYPE 12
#define CP_METHODHANDLE 15
#define CP_METHODTYPE 16
#define CP_INVOKEDYNAMIC 18

/* Define some commonly used error messages */

#define seek_error() error("%s: Cannot seek\n", program)
#define corrupt_error() error("%s: Class file corrupt\n", program)
#define eof_error() error("%s: Unexpected end of file\n", program)
#define utf8_error() error("%s: Only ASCII 1-255 supported\n", program);

char *program;

long *pool;

u_int8_t read_8(FILE *classfile);
u_int16_t read_16(FILE *classfile);
void skip_constant(FILE *classfile, u_int16_t *cur);
void error(const char *format, ...);
int main(int argc, char **argv);

/* Reads in an unsigned 8-bit integer. */
u_int8_t read_8(FILE *classfile)
{

int b = fgetc(classfile);
if(b == EOF)

eof_error();
return (u_int8_t)b;

}

/* Reads in an unsigned 16-bit integer. */
u_int16_t read_16(FILE *classfile)
{

int b1, b2;
b1 = fgetc(classfile);
if(b1 == EOF)

eof_error();
b2 = fgetc(classfile);

288 Chapter 26. Java(tm) Binary Kernel Support for Linux v1.03



Linux Kernel User Documentation, v4.20.0

if(b2 == EOF)
eof_error();

return (u_int16_t)((b1 << 8) | b2);
}

/* Reads in a value from the constant pool. */
void skip_constant(FILE *classfile, u_int16_t *cur)
{

u_int16_t len;
int seekerr = 1;
pool[*cur] = ftell(classfile);
switch(read_8(classfile))
{
case CP_UTF8:

len = read_16(classfile);
seekerr = fseek(classfile, len, SEEK_CUR);
break;

case CP_CLASS:
case CP_STRING:
case CP_METHODTYPE:

seekerr = fseek(classfile, 2, SEEK_CUR);
break;

case CP_METHODHANDLE:
seekerr = fseek(classfile, 3, SEEK_CUR);
break;

case CP_INTEGER:
case CP_FLOAT:
case CP_FIELDREF:
case CP_METHODREF:
case CP_INTERFACEMETHODREF:
case CP_NAMEANDTYPE:
case CP_INVOKEDYNAMIC:

seekerr = fseek(classfile, 4, SEEK_CUR);
break;

case CP_LONG:
case CP_DOUBLE:

seekerr = fseek(classfile, 8, SEEK_CUR);
++(*cur);
break;

default:
corrupt_error();

}
if(seekerr)

seek_error();
}

void error(const char *format, ...)
{

va_list ap;
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
exit(1);

}

int main(int argc, char **argv)
{

FILE *classfile;

289



Linux Kernel User Documentation, v4.20.0

u_int16_t cp_count, i, this_class, classinfo_ptr;
u_int8_t length;

program = argv[0];

if(!argv[1])
error("%s: Missing input file\n", program);

classfile = fopen(argv[1], "rb");
if(!classfile)

error("%s: Error opening %s\n", program, argv[1]);

if(fseek(classfile, 8, SEEK_SET)) /* skip magic and version numbers */
seek_error();

cp_count = read_16(classfile);
pool = calloc(cp_count, sizeof(long));
if(!pool)

error("%s: Out of memory for constant pool\n", program);

for(i = 1; i < cp_count; ++i)
skip_constant(classfile, &i);

if(fseek(classfile, 2, SEEK_CUR)) /* skip access flags */
seek_error();

this_class = read_16(classfile);
if(this_class < 1 || this_class >= cp_count)

corrupt_error();
if(!pool[this_class] || pool[this_class] == -1)

corrupt_error();
if(fseek(classfile, pool[this_class] + 1, SEEK_SET))

seek_error();

classinfo_ptr = read_16(classfile);
if(classinfo_ptr < 1 || classinfo_ptr >= cp_count)

corrupt_error();
if(!pool[classinfo_ptr] || pool[classinfo_ptr] == -1)

corrupt_error();
if(fseek(classfile, pool[classinfo_ptr] + 1, SEEK_SET))

seek_error();

length = read_16(classfile);
for(i = 0; i < length; ++i)
{

u_int8_t x = read_8(classfile);
if((x & 0x80) || !x)
{

if((x & 0xE0) == 0xC0)
{

u_int8_t y = read_8(classfile);
if((y & 0xC0) == 0x80)
{

int c = ((x & 0x1f) << 6) + (y & 0x3f);
if(c) putchar(c);
else utf8_error();

}
else utf8_error();

}
else utf8_error();

}

290 Chapter 26. Java(tm) Binary Kernel Support for Linux v1.03



Linux Kernel User Documentation, v4.20.0

else if(x == '/') putchar('.');
else putchar(x);

}
putchar('\n');
free(pool);
fclose(classfile);
return 0;

}

jarwrapper:

#!/bin/bash
# /usr/local/java/bin/jarwrapper - the wrapper for binfmt_misc/jar

java -jar $1

Now simply chmod +x the .class, .jar and/or .html files you want to execute.

To add a Java program to your path best put a symbolic link to the main .class file into /usr/bin (or another place you like) omitting the
.class extension. The directory containing the original .class file will be added to your CLASSPATH during execution.

To test your new setup, enter in the following simple Java app, and name it “HelloWorld.java”:

class HelloWorld {
public static void main(String args[]) {

System.out.println("Hello World!");
}

}

Now compile the application with:

javac HelloWorld.java

Set the executable permissions of the binary file, with:

chmod 755 HelloWorld.class

And then execute it:

./HelloWorld.class

To execute Java Jar files, simple chmod the *.jar files to include the execution bit, then just do:

./Application.jar

To execute Java Applets, simple chmod the *.html files to include the execution bit, then just do:

./Applet.html

originally by Brian A. Lantz, brian@lantz.com heavily edited for binfmt_misc by Richard Günther new scripts by Colin J. Watson
<cjw44@cam.ac.uk> added executable Jar file support by Kurt Huwig <kurt@iku-netz.de>

291

mailto:brian@lantz.com
mailto:cjw44@cam.ac.uk
mailto:kurt@iku-netz.de


Linux Kernel User Documentation, v4.20.0

292 Chapter 26. Java(tm) Binary Kernel Support for Linux v1.03



CHAPTER 27

Reliability, Availability and Serviceability

RAS concepts

Reliability, Availability and Serviceability (RAS) is a concept used on servers meant to measure their robustness.

Reliability is the probability that a system will produce correct outputs.

• Generally measured as Mean Time Between Failures (MTBF)

• Enhanced by features that help to avoid, detect and repair hardware faults

Availability is the probability that a system is operational at a given time

• Generally measured as a percentage of downtime per a period of time

• Often uses mechanisms to detect and correct hardware faults in runtime;

Serviceability (or maintainability) is the simplicity and speed with which a system can be repaired or maintained

• Generally measured on Mean Time Between Repair (MTBR)

Improving RAS

In order to reduce systems downtime, a system should be capable of detecting hardware errors, and, when possible correcting them in
runtime. It should also provide mechanisms to detect hardware degradation, in order to warn the system administrator to take the action
of replacing a component before it causes data loss or system downtime.

Among the monitoring measures, the most usual ones include:

• CPU – detect errors at instruction execution and at L1/L2/L3 caches;

• Memory – add error correction logic (ECC) to detect and correct errors;

• I/O – add CRC checksums for transferred data;

• Storage – RAID, journal file systems, checksums, Self-Monitoring, Analysis and Reporting Technology (SMART).

By monitoring the number of occurrences of error detections, it is possible to identify if the probability of hardware errors is increasing,
and, on such case, do a preventive maintenance to replace a degraded component while those errors are correctable.

Types of errors

Most mechanisms used on modern systems use use technologies like Hamming Codes that allow error correction when the number
of errors on a bit packet is below a threshold. If the number of errors is above, those mechanisms can indicate with a high degree of
confidence that an error happened, but they can’t correct.

293



Linux Kernel User Documentation, v4.20.0

Also, sometimes an error occur on a component that it is not used. For example, a part of the memory that it is not currently allocated.

That defines some categories of errors:

• Correctable Error (CE) - the error detection mechanism detected and corrected the error. Such errors are usually not fatal,
although some Kernel mechanisms allow the system administrator to consider them as fatal.

• Uncorrected Error (UE) - the amount of errors happened above the error correction threshold, and the system was unable to
auto-correct.

• Fatal Error - when an UE error happens on a critical component of the system (for example, a piece of the Kernel got corrupted
by an UE), the only reliable way to avoid data corruption is to hang or reboot the machine.

• Non-fatal Error - when an UE error happens on an unused component, like a CPU in power down state or an unused memory
bank, the system may still run, eventually replacing the affected hardware by a hot spare, if available.

Also, when an error happens on a userspace process, it is also possible to kill such process and let userspace restart it.

The mechanism for handling non-fatal errors is usually complex and may require the help of some userspace application, in order to
apply the policy desired by the system administrator.

Identifying a bad hardware component

Just detecting a hardware flaw is usually not enough, as the system needs to pinpoint to the minimal replaceable unit (MRU) that should
be exchanged to make the hardware reliable again.

So, it requires not only error logging facilities, but also mechanisms that will translate the error message to the silkscreen or component
label for the MRU.

Typically, it is very complex for memory, as modern CPUs interlace memory from different memory modules, in order to provide a
better performance. The DMI BIOS usually have a list of memory module labels, with can be obtained using the dmidecode tool. For
example, on a desktop machine, it shows:

Memory Device
Total Width: 64 bits
Data Width: 64 bits
Size: 16384 MB
Form Factor: SODIMM
Set: None
Locator: ChannelA-DIMM0
Bank Locator: BANK 0
Type: DDR4
Type Detail: Synchronous
Speed: 2133 MHz
Rank: 2
Configured Clock Speed: 2133 MHz

On the above example, a DDR4 SO-DIMM memory module is located at the system’s memory labeled as “BANK 0”, as given by the
bank locator field. Please notice that, on such system, the total width is equal to the data width. It means that such memory module
doesn’t have error detection/correction mechanisms.

Unfortunately, not all systems use the same field to specify the memory bank. On this example, from an older server, dmidecode
shows:

Memory Device
Array Handle: 0x1000
Error Information Handle: Not Provided
Total Width: 72 bits
Data Width: 64 bits
Size: 8192 MB

294 Chapter 27. Reliability, Availability and Serviceability



Linux Kernel User Documentation, v4.20.0

Form Factor: DIMM
Set: 1
Locator: DIMM_A1
Bank Locator: Not Specified
Type: DDR3
Type Detail: Synchronous Registered (Buffered)
Speed: 1600 MHz
Rank: 2
Configured Clock Speed: 1600 MHz

There, the DDR3 RDIMM memory module is located at the system’s memory labeled as “DIMM_A1”, as given by the locator field.
Please notice that this memory module has 64 bits of data width and 72 bits of total width. So, it has 8 extra bits to be used by error
detection and correction mechanisms. Such kind of memory is called Error-correcting code memory (ECC memory).

To make things even worse, it is not uncommon that systems with different labels on their system’s board to use exactly the same BIOS,
meaning that the labels provided by the BIOS won’t match the real ones.

ECC memory

As mentioned on the previous section, ECC memory has extra bits to be used for error correction. So, on 64 bit systems, a memory
module has 64 bits of data width, and 74 bits of total width. So, there are 8 bits extra bits to be used for the error detection and correction
mechanisms. Those extra bits are called syndrome12.

So, when the cpu requests the memory controller to write a word with data width, the memory controller calculates the syndrome in real
time, using Hamming code, or some other error correction code, like SECDED+, producing a code with total width size. Such code is
then written on the memory modules.

At read, the total width bits code is converted back, using the same ECC code used on write, producing a word with data width and a
syndrome. The word with data width is sent to the CPU, even when errors happen.

The memory controller also looks at the syndrome in order to check if there was an error, and if the ECC code was able to fix such error.
If the error was corrected, a Corrected Error (CE) happened. If not, an Uncorrected Error (UE) happened.

The information about the CE/UE errors is stored on some special registers at the memory controller and can be accessed by reading
such registers, either by BIOS, by some special CPUs or by Linux EDAC driver. On x86 64 bit CPUs, such errors can also be retrieved
via the Machine Check Architecture (MCA)3.

EDAC - Error Detection And Correction

:

“bluesmoke” was the name for this device driver subsystem when it was “out-of-tree” and maintained at http://bluesmoke.
sourceforge.net. That site is mostly archaic now and can be used only for historical purposes.
When the subsystem was pushed upstream for the first time, on Kernel 2.6.16, for the first time, it was renamed to EDAC.

1 Please notice that several memory controllers allow operation on a mode called “Lock-Step”, where it groups two memory modules together, doing 128-bit
reads/writes. That gives 16 bits for error correction, with significantly improves the error correction mechanism, at the expense that, when an error happens, there’s
no way to know what memory module is to blame. So, it has to blame both memory modules.

2 Some memory controllers also allow using memory in mirror mode. On such mode, the same data is written to two memory modules. At read, the system checks
both memory modules, in order to check if both provide identical data. On such configuration, when an error happens, there’s no way to know what memory module is to
blame. So, it has to blame both memory modules (or 4 memory modules, if the system is also on Lock-step mode).

3 For more details about the Machine Check Architecture (MCA), please read Documentation/x86/x86_64/machinecheck at the Kernel tree.

27.2. EDAC - Error Detection And Correction 295

http://bluesmoke.sourceforge.net
http://bluesmoke.sourceforge.net


Linux Kernel User Documentation, v4.20.0

Purpose

The edac kernel module’s goal is to detect and report hardware errors that occur within the computer system running under linux.

Memory

Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the primary errors being harvested. These types of errors are
harvested by the edac_mc device.

Detecting CE events, then harvesting those events and reporting them, can but must not necessarily be a predictor of future UE events.
With CE events only, the system can and will continue to operate as no data has been damaged yet.

However, preventive maintenance and proactive part replacement of memory modules exhibiting CEs can reduce the likelihood of the
dreaded UE events and system panics.

Other hardware elements

A new feature for EDAC, the edac_device class of device, was added in the 2.6.23 version of the kernel.

This new device type allows for non-memory type of ECC hardware detectors to have their states harvested and presented to userspace
via the sysfs interface.

Some architectures have ECC detectors for L1, L2 and L3 caches, along with DMA engines, fabric switches, main data path switches,
interconnections, and various other hardware data paths. If the hardware reports it, then a edac_device device probably can be constructed
to harvest and present that to userspace.

PCI bus scanning

In addition, PCI devices are scanned for PCI Bus Parity and SERR Errors in order to determine if errors are occurring during data
transfers.

The presence of PCI Parity errors must be examined with a grain of salt. There are several add-in adapters that do not follow the PCI
specification with regards to Parity generation and reporting. The specification says the vendor should tie the parity status bits to 0 if
they do not intend to generate parity. Some vendors do not do this, and thus the parity bit can “float” giving false positives.

There is a PCI device attribute located in sysfs that is checked by the EDAC PCI scanning code. If that attribute is set, PCI parity/error
scanning is skipped for that device. The attribute is:

broken_parity_status

and is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for PCI devices.

Versioning

EDAC is composed of a “core” module (edac_core.ko) and several Memory Controller (MC) driver modules. On a given system,
the CORE is loaded and one MC driver will be loaded. Both the CORE and the MC driver (or edac_device driver) have individual
versions that reflect current release level of their respective modules.

Thus, to “report” on what version a system is running, one must report both the CORE’s and the MC driver’s versions.

296 Chapter 27. Reliability, Availability and Serviceability



Linux Kernel User Documentation, v4.20.0

Loading

If edac was statically linked with the kernel then no loading is necessary. If edac was built as modules then simply modprobe the
edac pieces that you need. You should be able to modprobe hardware-specific modules and have the dependencies load the necessary
core modules.

Example:

$ modprobe amd76x_edac

loads both the amd76x_edac.ko memory controller module and the edac_mc.ko core module.

Sysfs interface

EDAC presents a sysfs interface for control and reporting purposes. It lives in the /sys/devices/system/edac directory.

Within this directory there currently reside 2 components:

mc memory controller(s) system
pci PCI control and status system

Memory Controller (mc) Model

Each mc device controls a set of memory modules 4. These modules are laid out in a Chip-Select Row (csrowX) and Channel table
(chX). There can be multiple csrows and multiple channels.

Memory controllers allow for several csrows, with 8 csrows being a typical value. Yet, the actual number of csrows depends on the
layout of a given motherboard, memory controller and memory module characteristics.

Dual channels allow for dual data length (e. g. 128 bits, on 64 bit systems) data transfers to/from the CPU from/to memory. Some newer
chipsets allow for more than 2 channels, like Fully Buffered DIMMs (FB-DIMMs) memory controllers. The following example will
assume 2 channels:

CS Rows Channels
ch0 ch1

csrow0 DIMM_A0 DIMM_B0
csrow1
csrow2 DIMM_A1 DIMM_B1
csrow3

In the above example, there are 4 physical slots on the motherboard for memory DIMMs:

DIMM_A0 DIMM_B0
DIMM_A1 DIMM_B1

Labels for these slots are usually silk-screened on the motherboard. Slots labeled A are channel 0 in this example. Slots labeled B are
channel 1. Notice that there are two csrows possible on a physical DIMM. These csrows are allocated their csrow assignment based on
the slot into which the memory DIMM is placed. Thus, when 1 DIMM is placed in each Channel, the csrows cross both DIMMs.

Memory DIMMs come single or dual “ranked”. A rank is a populated csrow. Thus, 2 single ranked DIMMs, placed in slots DIMM_A0
and DIMM_B0 above will have just one csrow (csrow0). csrow1 will be empty. On the other hand, when 2 dual ranked DIMMs are
similarly placed, then both csrow0 and csrow1 will be populated. The pattern repeats itself for csrow2 and csrow3.

4 Nowadays, the term DIMM (Dual In-line Memory Module) is widely used to refer to a memory module, although there are other memory packaging alternatives,
like SO-DIMM, SIMM, etc. Along this document, and inside the EDAC system, the term “dimm” is used for all memory modules, even when they use a different kind of
packaging.

27.2. EDAC - Error Detection And Correction 297



Linux Kernel User Documentation, v4.20.0

The representation of the above is reflected in the directory tree in EDAC’s sysfs interface. Starting in directory
/sys/devices/system/edac/mc, each memory controller will be represented by its own mcX directory, where X is the index of
the MC:

..../edac/mc/
|
|->mc0
|->mc1
|->mc2
....

Under each mcX directory each csrowX is again represented by a csrowX, where X is the csrow index:

.../mc/mc0/
|
|->csrow0
|->csrow2
|->csrow3
....

Notice that there is no csrow1, which indicates that csrow0 is composed of a single ranked DIMMs. This should also apply in both
Channels, in order to have dual-channel mode be operational. Since both csrow2 and csrow3 are populated, this indicates a dual ranked
set of DIMMs for channels 0 and 1.

Within each of the mcX and csrowX directories are several EDAC control and attribute files.

mcX directories

In mcX directories are EDAC control and attribute files for this X instance of the memory controllers.

For a description of the sysfs API, please see:

Documentation/ABI/testing/sysfs-devices-edac

dimmX or rankX directories

The recommended way to use the EDAC subsystem is to look at the information provided by the dimmX or rankX directories 5.

A typical EDAC system has the following structure under /sys/devices/system/edac/6:

/sys/devices/system/edac/
- mc
| - mc0
| | - ce_count
| | - ce_noinfo_count
| | - dimm0
| | | - dimm_ce_count
| | | - dimm_dev_type
| | | - dimm_edac_mode
| | | - dimm_label
| | | - dimm_location
| | | - dimm_mem_type

5 On some systems, the memory controller doesn’t have any logic to identify the memory module. On such systems, the directory is called rankX and works on
a similar way as the csrowX directories. On modern Intel memory controllers, the memory controller identifies the memory modules directly. On such systems, the
directory is called dimmX.

6 There are also some power directories and subsystem symlinks inside the sysfs mapping that are automatically created by the sysfs subsystem. Currently, they
serve no purpose.

298 Chapter 27. Reliability, Availability and Serviceability



Linux Kernel User Documentation, v4.20.0

| | | - dimm_ue_count
| | | - size
| | | - uevent
| | - max_location
| | - mc_name
| | - reset_counters
| | - seconds_since_reset
| | - size_mb
| | - ue_count
| | - ue_noinfo_count
| | - uevent
| - mc1
| | - ce_count
| | - ce_noinfo_count
| | - dimm0
| | | - dimm_ce_count
| | | - dimm_dev_type
| | | - dimm_edac_mode
| | | - dimm_label
| | | - dimm_location
| | | - dimm_mem_type
| | | - dimm_ue_count
| | | - size
| | | - uevent
| | - max_location
| | - mc_name
| | - reset_counters
| | - seconds_since_reset
| | - size_mb
| | - ue_count
| | - ue_noinfo_count
| | - uevent
| - uevent
- uevent

In the dimmX directories are EDAC control and attribute files for this X memory module:

• size - Total memory managed by this csrow attribute file

This attribute file displays, in count of megabytes, the memory that this csrow contains.

• dimm_ue_count - Uncorrectable Errors count attribute file

This attribute file displays the total count of uncorrectable errors that have occurred on this DIMM. If panic_on_ue is
set this counter will not have a chance to increment, since EDAC will panic the system.

• dimm_ce_count - Correctable Errors count attribute file

This attribute file displays the total count of correctable errors that have occurred on this DIMM. This count is very
important to examine. CEs provide early indications that a DIMM is beginning to fail. This count field should be
monitored for non-zero values and report such information to the system administrator.

• dimm_dev_type - Device type attribute file

This attribute file will display what type of DRAM device is being utilized on this DIMM. Examples:

– x1

– x2

– x4

27.2. EDAC - Error Detection And Correction 299



Linux Kernel User Documentation, v4.20.0

– x8

• dimm_edac_mode - EDAC Mode of operation attribute file

This attribute file will display what type of Error detection and correction is being utilized.

• dimm_label - memory module label control file

This control file allows this DIMM to have a label assigned to it. With this label in the module, when errors occur the
output can provide the DIMM label in the system log. This becomes vital for panic events to isolate the cause of the
UE event.

DIMM Labels must be assigned after booting, with information that correctly identifies the physical slot with its silk
screen label. This information is currently very motherboard specific and determination of this information must occur
in userland at this time.

• dimm_location - location of the memory module

The location can have up to 3 levels, and describe how the memory controller identifies the location of a memory
module. Depending on the type of memory and memory controller, it can be:

– csrow and channel - used when the memory controller doesn’t identify a single DIMM - e. g. in rankX dir;

– branch, channel, slot - typically used on FB-DIMM memory controllers;

– channel, slot - used on Nehalem and newer Intel drivers.

• dimm_mem_type - Memory Type attribute file

This attribute file will display what type of memory is currently on this csrow. Normally, either buffered or unbuffered
memory. Examples:

– Registered-DDR

– Unbuffered-DDR

csrowX directories

When CONFIG_EDAC_LEGACY_SYSFS is enabled, sysfs will contain the csrowX directories. As this API doesn’t work properly
for Rambus, FB-DIMMs and modern Intel Memory Controllers, this is being deprecated in favor of dimmX directories.

In the csrowX directories are EDAC control and attribute files for this X instance of csrow:

• ue_count - Total Uncorrectable Errors count attribute file

This attribute file displays the total count of uncorrectable errors that have occurred on this csrow. If panic_on_ue is
set this counter will not have a chance to increment, since EDAC will panic the system.

• ce_count - Total Correctable Errors count attribute file

This attribute file displays the total count of correctable errors that have occurred on this csrow. This count is very
important to examine. CEs provide early indications that a DIMM is beginning to fail. This count field should be
monitored for non-zero values and report such information to the system administrator.

• size_mb - Total memory managed by this csrow attribute file

This attribute file displays, in count of megabytes, the memory that this csrow contains.

• mem_type - Memory Type attribute file

This attribute file will display what type of memory is currently on this csrow. Normally, either buffered or unbuffered
memory. Examples:

– Registered-DDR

– Unbuffered-DDR

300 Chapter 27. Reliability, Availability and Serviceability



Linux Kernel User Documentation, v4.20.0

• edac_mode - EDAC Mode of operation attribute file

This attribute file will display what type of Error detection and correction is being utilized.

• dev_type - Device type attribute file

This attribute file will display what type of DRAM device is being utilized on this DIMM. Examples:

– x1

– x2

– x4

– x8

• ch0_ce_count - Channel 0 CE Count attribute file

This attribute file will display the count of CEs on this DIMM located in channel 0.

• ch0_ue_count - Channel 0 UE Count attribute file

This attribute file will display the count of UEs on this DIMM located in channel 0.

• ch0_dimm_label - Channel 0 DIMM Label control file

This control file allows this DIMM to have a label assigned to it. With this label in the module, when errors occur the
output can provide the DIMM label in the system log. This becomes vital for panic events to isolate the cause of the
UE event.

DIMM Labels must be assigned after booting, with information that correctly identifies the physical slot with its silk
screen label. This information is currently very motherboard specific and determination of this information must occur
in userland at this time.

• ch1_ce_count - Channel 1 CE Count attribute file

This attribute file will display the count of CEs on this DIMM located in channel 1.

• ch1_ue_count - Channel 1 UE Count attribute file

This attribute file will display the count of UEs on this DIMM located in channel 0.

• ch1_dimm_label - Channel 1 DIMM Label control file

This control file allows this DIMM to have a label assigned to it. With this label in the module, when errors occur the
output can provide the DIMM label in the system log. This becomes vital for panic events to isolate the cause of the
UE event.

DIMM Labels must be assigned after booting, with information that correctly identifies the physical slot with its silk
screen label. This information is currently very motherboard specific and determination of this information must occur
in userland at this time.

System Logging

If logging for UEs and CEs is enabled, then system logs will contain information indicating that errors have been detected:

EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0, channel 1 "DIMM_B1": amd76x_
→˓edac
EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0, channel 1 "DIMM_B1": amd76x_
→˓edac

The structure of the message is:

27.2. EDAC - Error Detection And Correction 301



Linux Kernel User Documentation, v4.20.0

Content Example
The memory controller MC0
Error type CE
Memory page 0x283
Offset in the page 0xce0
The byte granularity or resolution of the error grain 8
The error syndrome 0xb741
Memory row row 0
Memory channel channel 1
DIMM label, if set prior DIMM B1
And then an optional, driver-specific message that may have additional information.

Both UEs and CEs with no info will lack all but memory controller, error type, a notice of “no info” and then an optional, driver-specific
error message.

PCI Bus Parity Detection

On Header Type 00 devices, the primary status is looked at for any parity error regardless of whether parity is enabled on the device or
not. (The spec indicates parity is generated in some cases). On Header Type 01 bridges, the secondary status register is also looked at to
see if parity occurred on the bus on the other side of the bridge.

Sysfs configuration

Under /sys/devices/system/edac/pci are control and attribute files as follows:

• check_pci_parity - Enable/Disable PCI Parity checking control file

This control file enables or disables the PCI Bus Parity scanning operation. Writing a 1 to this file enables the scanning.
Writing a 0 to this file disables the scanning.

Enable:

echo "1" >/sys/devices/system/edac/pci/check_pci_parity

Disable:

echo "0" >/sys/devices/system/edac/pci/check_pci_parity

• pci_parity_count - Parity Count

This attribute file will display the number of parity errors that have been detected.

Module parameters

• edac_mc_panic_on_ue - Panic on UE control file

An uncorrectable error will cause a machine panic. This is usually desirable. It is a bad idea to continue when an
uncorrectable error occurs - it is indeterminate what was uncorrected and the operating system context might be so
mangled that continuing will lead to further corruption. If the kernel has MCE configured, then EDAC will never
notice the UE.

LOAD TIME:

module/kernel parameter: edac_mc_panic_on_ue=[0|1]

302 Chapter 27. Reliability, Availability and Serviceability



Linux Kernel User Documentation, v4.20.0

RUN TIME:

echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue

• edac_mc_log_ue - Log UE control file

Generate kernel messages describing uncorrectable errors. These errors are reported through the system message log
system. UE statistics will be accumulated even when UE logging is disabled.

LOAD TIME:

module/kernel parameter: edac_mc_log_ue=[0|1]

RUN TIME:

echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue

• edac_mc_log_ce - Log CE control file

Generate kernel messages describing correctable errors. These errors are reported through the system message log
system. CE statistics will be accumulated even when CE logging is disabled.

LOAD TIME:

module/kernel parameter: edac_mc_log_ce=[0|1]

RUN TIME:

echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce

• edac_mc_poll_msec - Polling period control file

The time period, in milliseconds, for polling for error information. Too small a value wastes resources. Too large
a value might delay necessary handling of errors and might loose valuable information for locating the error. 1000
milliseconds (once each second) is the current default. Systems which require all the bandwidth they can get, may
increase this.

LOAD TIME:

module/kernel parameter: edac_mc_poll_msec=[0|1]

RUN TIME:

echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec

• panic_on_pci_parity - Panic on PCI PARITY Error

This control file enables or disables panicking when a parity error has been detected.

module/kernel parameter:

edac_panic_on_pci_pe=[0|1]

Enable:

echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe

Disable:

echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe

27.2. EDAC - Error Detection And Correction 303



Linux Kernel User Documentation, v4.20.0

EDAC device type

In the header file, edac_pci.h, there is a series of edac_device structures and APIs for the EDAC_DEVICE.

User space access to an edac_device is through the sysfs interface.

At the location /sys/devices/system/edac (sysfs) new edac_device devices will appear.

There is a three level tree beneath the above edac directory. For example, the test_device_edac device (found at the http:
//bluesmoke.sourceforget.net website) installs itself as:

/sys/devices/system/edac/test-instance

in this directory are various controls, a symlink and one or more instance directories.

The standard default controls are:

log_ce boolean to log CE events
log_ue boolean to log UE events
panic_on_ue boolean to panic the system if an UE is encountered (default off, can be set true via startup script)
poll_msec time period between POLL cycles for events

The test_device_edac device adds at least one of its own custom control:

test_bitswhich in the current test driver does nothing but show how it is installed. A ported driver can add one or more
such controls and/or attributes for specific uses. One out-of-tree driver uses controls here to allow for ERROR
INJECTION operations to hardware injection registers

The symlink points to the ‘struct dev’ that is registered for this edac_device.

Instances

One or more instance directories are present. For the test_device_edac case:

test-instance0

In this directory there are two default counter attributes, which are totals of counter in deeper subdirectories.

ce_count total of CE events of subdirectories
ue_count total of UE events of subdirectories

Blocks

At the lowest directory level is the block directory. There can be 0, 1 or more blocks specified in each instance:

test-block0

In this directory the default attributes are:

ce_count which is counter of CE events for this block of hardware being monitored
ue_count which is counter of UE events for this block of hardware being monitored

The test_device_edac device adds 4 attributes and 1 control:

test-block-bits-0 for every POLL cycle this counter is incremented
test-block-bits-1 every 10 cycles, this counter is bumped once, and test-block-bits-0 is set to 0
test-block-bits-2 every 100 cycles, this counter is bumped once, and test-block-bits-1 is set to 0
test-block-bits-3 every 1000 cycles, this counter is bumped once, and test-block-bits-2 is set to 0

reset-counters writing ANY thing to this control will reset all the above counters.

304 Chapter 27. Reliability, Availability and Serviceability

http://bluesmoke.sourceforget.net
http://bluesmoke.sourceforget.net


Linux Kernel User Documentation, v4.20.0

Use of the test_device_edac driver should enable any others to create their own unique drivers for their hardware systems.

The test_device_edac sample driver is located at the http://bluesmoke.sourceforge.net project site for EDAC.

Usage of EDAC APIs on Nehalem and newer Intel CPUs

On older Intel architectures, the memory controller was part of the North Bridge chipset. Nehalem, Sandy Bridge, Ivy Bridge, Haswell,
Sky Lake and newer Intel architectures integrated an enhanced version of the memory controller (MC) inside the CPUs.

This chapter will cover the differences of the enhanced memory controllers found on newer Intel CPUs, such as i7core_edac,
sb_edac and sbx_edac drivers.

:

The Xeon E7 processor families use a separate chip for the memory controller, called Intel Scalable Memory Buffer. This section
doesn’t apply for such families.

1. There is one Memory Controller per Quick Patch Interconnect (QPI). At the driver, the term “socket” means one QPI. This is
associated with a physical CPU socket.

Each MC have 3 physical read channels, 3 physical write channels and 3 logic channels. The driver currently sees it as just 3
channels. Each channel can have up to 3 DIMMs.

The minimum known unity is DIMMs. There are no information about csrows. As EDAC API maps the minimum unity is csrows,
the driver sequentially maps channel/DIMM into different csrows.

For example, supposing the following layout:

Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400

Ch1 phy rd1, wr1 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400

Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400

The driver will map it as:

csrow0: channel 0, dimm0
csrow1: channel 0, dimm1
csrow2: channel 1, dimm0
csrow3: channel 2, dimm0

exports one DIMM per csrow.

Each QPI is exported as a different memory controller.

2. The MC has the ability to inject errors to test drivers. The drivers implement this functionality via some error injection nodes:

For injecting a memory error, there are some sysfs nodes, under /sys/devices/system/edac/mc/mc?/:

• inject_addrmatch/*: Controls the error injection mask register. It is possible to specify several characteristics of the
address to match an error code:

dimm = the affected dimm. Numbers are relative to a channel;
rank = the memory rank;
channel = the channel that will generate an error;
bank = the affected bank;

27.2. EDAC - Error Detection And Correction 305

http://bluesmoke.sourceforge.net


Linux Kernel User Documentation, v4.20.0

page = the page address;
column (or col) = the address column.

each of the above values can be set to “any” to match any valid value.

At driver init, all values are set to any.

For example, to generate an error at rank 1 of dimm 2, for any channel, any bank, any page, any column:

echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank

To return to the default behaviour of matching any, you can do::

echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank

• inject_eccmask: specifies what bits will have troubles,

• inject_section: specifies what ECC cache section will get the error:

3 for both
2 for the highest
1 for the lowest

• inject_type: specifies the type of error, being a combination of the following bits:

bit 0 - repeat
bit 1 - ecc
bit 2 - parity

• inject_enable: starts the error generation when something different than 0 is written.

All inject vars can be read. root permission is needed for write.

Datasheet states that the error will only be generated after a write on an address that matches inject_addrmatch. It seems, however,
that reading will also produce an error.

For example, the following code will generate an error for any write access at socket 0, on any DIMM/address on channel 2:

echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable
dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null

For socket 1, it is needed to replace “mc0” by “mc1” at the above commands.

The generated error message will look like:

EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980,
→˓socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482
→˓(read error: read ECC error))

3. Corrected Error memory register counters

Those newer MCs have some registers to count memory errors. The driver uses those registers to report Corrected Errors on
devices with Registered DIMMs.

306 Chapter 27. Reliability, Availability and Serviceability



Linux Kernel User Documentation, v4.20.0

However, those counters don’t work with Unregistered DIMM. As the chipset offers some counters that also work with UDIMMs
(but with a worse level of granularity than the default ones), the driver exposes those registers for UDIMM memories.

They can be read by looking at the contents of all_channel_counts/:

$ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
0
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
0
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm2
0

What happens here is that errors on different csrows, but at the same dimm number will increment the same counter. So, in this
memory mapping:

csrow0: channel 0, dimm0
csrow1: channel 0, dimm1
csrow2: channel 1, dimm0
csrow3: channel 2, dimm0

The hardware will increment udimm0 for an error at the first dimm at either csrow0, csrow2 or csrow3;

The hardware will increment udimm1 for an error at the second dimm at either csrow0, csrow2 or csrow3;

The hardware will increment udimm2 for an error at the third dimm at either csrow0, csrow2 or csrow3;

4. Standard error counters

The standard error counters are generated when an mcelog error is received by the driver. Since, with UDIMM, this is counted by
software, it is possible that some errors could be lost. With RDIMM’s, they display the contents of the registers

Reference documents used on amd64_edac

amd64_edac module is based on the following documents (available from http://support.amd.com/en-us/search/tech-docs):

1. Title BIOS and Kernel Developer’s Guide for AMD Athlon 64 and AMD Opteron Processors

AMD publication # 26094

Revision 3.26

Link http://support.amd.com/TechDocs/26094.PDF

2. Title BIOS and Kernel Developer’s Guide for AMD NPT Family 0Fh Processors

AMD publication # 32559

Revision 3.00

Issue Date May 2006

Link http://support.amd.com/TechDocs/32559.pdf

3. Title BIOS and Kernel Developer’s Guide (BKDG) For AMD Family 10h Processors

AMD publication # 31116

Revision 3.00

Issue Date September 07, 2007

Link http://support.amd.com/TechDocs/31116.pdf

27.2. EDAC - Error Detection And Correction 307

http://support.amd.com/en-us/search/tech-docs
http://support.amd.com/TechDocs/26094.PDF
http://support.amd.com/TechDocs/32559.pdf
http://support.amd.com/TechDocs/31116.pdf


Linux Kernel User Documentation, v4.20.0

4. Title BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 30h-3Fh Processors

AMD publication # 49125

Revision 3.06

Issue Date 2/12/2015 (latest release)

Link http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf

5. Title BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 60h-6Fh Processors

AMD publication # 50742

Revision 3.01

Issue Date 7/23/2015 (latest release)

Link http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf

6. Title BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 16h Models 00h-0Fh Processors

AMD publication # 48751

Revision 3.03

Issue Date 2/23/2015 (latest release)

Link http://support.amd.com/TechDocs/48751_16h_bkdg.pdf

Credits

• Written by Doug Thompson <dougthompson@xmission.com>

– 7 Dec 2005

– 17 Jul 2007 Updated

• © Mauro Carvalho Chehab

– 05 Aug 2009 Nehalem interface

– 26 Oct 2016 Converted to ReST and cleanups at the Nehalem section

• EDAC authors/maintainers:

– Doug Thompson, Dave Jiang, Dave Peterson et al,

– Mauro Carvalho Chehab

– Borislav Petkov

– original author: Thayne Harbaugh

308 Chapter 27. Reliability, Availability and Serviceability

http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf
http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf
http://support.amd.com/TechDocs/48751_16h_bkdg.pdf
mailto:dougthompson@xmission.com


CHAPTER 28

A block layer cache (bcache)

Say you’ve got a big slow raid 6, and an ssd or three. Wouldn’t it be nice if you could use them as cache... Hence bcache.

Wiki and git repositories are at:

• http://bcache.evilpiepirate.org

• http://evilpiepirate.org/git/linux-bcache.git

• http://evilpiepirate.org/git/bcache-tools.git

It’s designed around the performance characteristics of SSDs - it only allocates in erase block sized buckets, and it uses a hybrid btree/log
to track cached extents (which can be anywhere from a single sector to the bucket size). It’s designed to avoid random writes at all costs;
it fills up an erase block sequentially, then issues a discard before reusing it.

Both writethrough and writeback caching are supported. Writeback defaults to off, but can be switched on and off arbitrarily at runtime.
Bcache goes to great lengths to protect your data - it reliably handles unclean shutdown. (It doesn’t even have a notion of a clean
shutdown; bcache simply doesn’t return writes as completed until they’re on stable storage).

Writeback caching can use most of the cache for buffering writes - writing dirty data to the backing device is always done sequentially,
scanning from the start to the end of the index.

Since random IO is what SSDs excel at, there generally won’t be much benefit to caching large sequential IO. Bcache detects sequential
IO and skips it; it also keeps a rolling average of the IO sizes per task, and as long as the average is above the cutoff it will skip all IO
from that task - instead of caching the first 512k after every seek. Backups and large file copies should thus entirely bypass the cache.

In the event of a data IO error on the flash it will try to recover by reading from disk or invalidating cache entries. For unrecoverable
errors (meta data or dirty data), caching is automatically disabled; if dirty data was present in the cache it first disables writeback caching
and waits for all dirty data to be flushed.

Getting started: You’ll need make-bcache from the bcache-tools repository. Both the cache device and backing device must be formatted
before use:

make-bcache -B /dev/sdb
make-bcache -C /dev/sdc

make-bcache has the ability to format multiple devices at the same time - if you format your backing devices and cache device at the
same time, you won’t have to manually attach:

make-bcache -B /dev/sda /dev/sdb -C /dev/sdc

bcache-tools now ships udev rules, and bcache devices are known to the kernel immediately. Without udev, you can manually register
devices like this:

echo /dev/sdb > /sys/fs/bcache/register
echo /dev/sdc > /sys/fs/bcache/register

309

http://bcache.evilpiepirate.org
http://evilpiepirate.org/git/linux-bcache.git
http://evilpiepirate.org/git/bcache-tools.git


Linux Kernel User Documentation, v4.20.0

Registering the backing device makes the bcache device show up in /dev; you can now format it and use it as normal. But the first time
using a new bcache device, it’ll be running in passthrough mode until you attach it to a cache. If you are thinking about using bcache
later, it is recommended to setup all your slow devices as bcache backing devices without a cache, and you can choose to add a caching
device later. See ‘ATTACHING’ section below.

The devices show up as:

/dev/bcache<N>

As well as (with udev):

/dev/bcache/by-uuid/<uuid>
/dev/bcache/by-label/<label>

To get started:

mkfs.ext4 /dev/bcache0
mount /dev/bcache0 /mnt

You can control bcache devices through sysfs at /sys/block/bcache<N>/bcache . You can also control them through /sys/fs//bcache/<cset-
uuid>/ .

Cache devices are managed as sets; multiple caches per set isn’t supported yet but will allow for mirroring of metadata and dirty data in
the future. Your new cache set shows up as /sys/fs/bcache/<UUID>

Attaching

After your cache device and backing device are registered, the backing device must be attached to your cache set to enable caching.
Attaching a backing device to a cache set is done thusly, with the UUID of the cache set in /sys/fs/bcache:

echo <CSET-UUID> > /sys/block/bcache0/bcache/attach

This only has to be done once. The next time you reboot, just reregister all your bcache devices. If a backing device has data in a cache
somewhere, the /dev/bcache<N> device won’t be created until the cache shows up - particularly important if you have writeback caching
turned on.

If you’re booting up and your cache device is gone and never coming back, you can force run the backing device:

echo 1 > /sys/block/sdb/bcache/running

(You need to use /sys/block/sdb (or whatever your backing device is called), not /sys/block/bcache0, because bcache0 doesn’t exist yet.
If you’re using a partition, the bcache directory would be at /sys/block/sdb/sdb2/bcache)

The backing device will still use that cache set if it shows up in the future, but all the cached data will be invalidated. If there was dirty
data in the cache, don’t expect the filesystem to be recoverable - you will have massive filesystem corruption, though ext4’s fsck does
work miracles.

Error Handling

Bcache tries to transparently handle IO errors to/from the cache device without affecting normal operation; if it sees too many errors (the
threshold is configurable, and defaults to 0) it shuts down the cache device and switches all the backing devices to passthrough mode.

• For reads from the cache, if they error we just retry the read from the backing device.

310 Chapter 28. A block layer cache (bcache)



Linux Kernel User Documentation, v4.20.0

• For writethrough writes, if the write to the cache errors we just switch to invalidating the data at that lba in the cache (i.e. the same
thing we do for a write that bypasses the cache)

• For writeback writes, we currently pass that error back up to the filesystem/userspace. This could be improved - we could retry it
as a write that skips the cache so we don’t have to error the write.

• When we detach, we first try to flush any dirty data (if we were running in writeback mode). It currently doesn’t do anything
intelligent if it fails to read some of the dirty data, though.

Howto/cookbook

1. Starting a bcache with a missing caching device

If registering the backing device doesn’t help, it’s already there, you just need to force it to run without the cache:

host:~# echo /dev/sdb1 > /sys/fs/bcache/register
[ 119.844831] bcache: register_bcache() error opening /dev/sdb1: device already registered

Next, you try to register your caching device if it’s present. However if it’s absent, or registration fails for some reason, you can still start
your bcache without its cache, like so:

host:/sys/block/sdb/sdb1/bcache# echo 1 > running

Note that this may cause data loss if you were running in writeback mode.

2. Bcache does not find its cache:

host:/sys/block/md5/bcache# echo 0226553a-37cf-41d5-b3ce-8b1e944543a8 > attach
[ 1933.455082] bcache: bch_cached_dev_attach() Couldn't find uuid for md5 in set
[ 1933.478179] bcache: __cached_dev_store() Can't attach 0226553a-37cf-41d5-b3ce-8b1e944543a8
[ 1933.478179] : cache set not found

In this case, the caching device was simply not registered at boot or disappeared and came back, and needs to be (re-)registered:

host:/sys/block/md5/bcache# echo /dev/sdh2 > /sys/fs/bcache/register

3. Corrupt bcache crashes the kernel at device registration time:

This should never happen. If it does happen, then you have found a bug! Please report it to the bcache development list: linux-
bcache@vger.kernel.org

Be sure to provide as much information that you can including kernel dmesg output if available so that we may assist.

4. Recovering data without bcache:

If bcache is not available in the kernel, a filesystem on the backing device is still available at an 8KiB offset. So either via a loopdev of the
backing device created with –offset 8K, or any value defined by –data-offset when you originally formatted bcache with make-bcache.

For example:

losetup -o 8192 /dev/loop0 /dev/your_bcache_backing_dev

This should present your unmodified backing device data in /dev/loop0

If your cache is in writethrough mode, then you can safely discard the cache device without loosing data.

5. Wiping a cache device

28.3. Howto/cookbook 311

mailto:linux-bcache@vger.kernel.org
mailto:linux-bcache@vger.kernel.org


Linux Kernel User Documentation, v4.20.0

host:~# wipefs -a /dev/sdh2
16 bytes were erased at offset 0x1018 (bcache)
they were: c6 85 73 f6 4e 1a 45 ca 82 65 f5 7f 48 ba 6d 81

After you boot back with bcache enabled, you recreate the cache and attach it:

host:~# make-bcache -C /dev/sdh2
UUID: 7be7e175-8f4c-4f99-94b2-9c904d227045
Set UUID: 5bc072a8-ab17-446d-9744-e247949913c1
version: 0
nbuckets: 106874
block_size: 1
bucket_size: 1024
nr_in_set: 1
nr_this_dev: 0
first_bucket: 1
[ 650.511912] bcache: run_cache_set() invalidating existing data
[ 650.549228] bcache: register_cache() registered cache device sdh2

start backing device with missing cache:

host:/sys/block/md5/bcache# echo 1 > running

attach new cache:

host:/sys/block/md5/bcache# echo 5bc072a8-ab17-446d-9744-e247949913c1 > attach
[ 865.276616] bcache: bch_cached_dev_attach() Caching md5 as bcache0 on set 5bc072a8-ab17-446d-
→˓9744-e247949913c1

6. Remove or replace a caching device:

host:/sys/block/sda/sda7/bcache# echo 1 > detach
[ 695.872542] bcache: cached_dev_detach_finish() Caching disabled for sda7

host:~# wipefs -a /dev/nvme0n1p4
wipefs: error: /dev/nvme0n1p4: probing initialization failed: Device or resource busy
Ooops, it's disabled, but not unregistered, so it's still protected

We need to go and unregister it:

host:/sys/fs/bcache/b7ba27a1-2398-4649-8ae3-0959f57ba128# ls -l cache0
lrwxrwxrwx 1 root root 0 Feb 25 18:33 cache0 -> ../../../devices/pci0000:00/0000:00:1d.0/0000:70:00.
→˓0/nvme/nvme0/nvme0n1/nvme0n1p4/bcache/
host:/sys/fs/bcache/b7ba27a1-2398-4649-8ae3-0959f57ba128# echo 1 > stop
kernel: [ 917.041908] bcache: cache_set_free() Cache set b7ba27a1-2398-4649-8ae3-0959f57ba128
→˓unregistered

Now we can wipe it:

host:~# wipefs -a /dev/nvme0n1p4
/dev/nvme0n1p4: 16 bytes were erased at offset 0x00001018 (bcache): c6 85 73 f6 4e 1a 45 ca 82 65
→˓f5 7f 48 ba 6d 81

7. dm-crypt and bcache

First setup bcache unencrypted and then install dmcrypt on top of /dev/bcache<N> This will work faster than if you dmcrypt both the
backing and caching devices and then install bcache on top. [benchmarks?]

8. Stop/free a registered bcache to wipe and/or recreate it

312 Chapter 28. A block layer cache (bcache)



Linux Kernel User Documentation, v4.20.0

Suppose that you need to free up all bcache references so that you can fdisk run and re-register a changed partition table, which won’t
work if there are any active backing or caching devices left on it:

1. Is it present in /dev/bcache* ? (there are times where it won’t be)

If so, it’s easy:

host:/sys/block/bcache0/bcache# echo 1 > stop

2. But if your backing device is gone, this won’t work:

host:/sys/block/bcache0# cd bcache
bash: cd: bcache: No such file or directory

In this case, you may have to unregister the dmcrypt block device that references this bcache to free it up:

host:~# dmsetup remove oldds1
bcache: bcache_device_free() bcache0 stopped
bcache: cache_set_free() Cache set 5bc072a8-ab17-446d-9744-e247949913c1 unregistered

This causes the backing bcache to be removed from /sys/fs/bcache and then it can be reused. This would be true of any block
device stacking where bcache is a lower device.

3. In other cases, you can also look in /sys/fs/bcache/:

host:/sys/fs/bcache# ls -l */{cache?,bdev?}
lrwxrwxrwx 1 root root 0 Mar 5 09:39 0226553a-37cf-41d5-b3ce-8b1e944543a8/bdev1 -> ../../../
→˓devices/virtual/block/dm-1/bcache/
lrwxrwxrwx 1 root root 0 Mar 5 09:39 0226553a-37cf-41d5-b3ce-8b1e944543a8/cache0 -> ../../../
→˓devices/virtual/block/dm-4/bcache/
lrwxrwxrwx 1 root root 0 Mar 5 09:39 5bc072a8-ab17-446d-9744-e247949913c1/cache0 -> ../../../
→˓devices/pci0000:00/0000:00:01.0/0000:01:00.0/ata10/host9/target9:0:0/9:0:0:0/block/sdl/sdl2/
→˓bcache/

The device names will show which UUID is relevant, cd in that directory and stop the cache:

host:/sys/fs/bcache/5bc072a8-ab17-446d-9744-e247949913c1# echo 1 > stop

This will free up bcache references and let you reuse the partition for other purposes.

Troubleshooting performance

Bcache has a bunch of config options and tunables. The defaults are intended to be reasonable for typical desktop and server workloads,
but they’re not what you want for getting the best possible numbers when benchmarking.

• Backing device alignment

The default metadata size in bcache is 8k. If your backing device is RAID based, then be sure to align this by a multiple of your
stride width using make-bcache –data-offset. If you intend to expand your disk array in the future, then multiply a series of primes
by your raid stripe size to get the disk multiples that you would like.

For example: If you have a 64k stripe size, then the following offset would provide alignment for many common RAID5 data
spindle counts:

64k * 2*2*2*3*3*5*7 bytes = 161280k

That space is wasted, but for only 157.5MB you can grow your RAID 5 volume to the following data-spindle counts without
re-aligning:

28.4. Troubleshooting performance 313



Linux Kernel User Documentation, v4.20.0

3,4,5,6,7,8,9,10,12,14,15,18,20,21 ...

• Bad write performance

If write performance is not what you expected, you probably wanted to be running in writeback mode, which isn’t the default (not
due to a lack of maturity, but simply because in writeback mode you’ll lose data if something happens to your SSD):

# echo writeback > /sys/block/bcache0/bcache/cache_mode

• Bad performance, or traffic not going to the SSD that you’d expect

By default, bcache doesn’t cache everything. It tries to skip sequential IO - because you really want to be caching the random IO,
and if you copy a 10 gigabyte file you probably don’t want that pushing 10 gigabytes of randomly accessed data out of your cache.

But if you want to benchmark reads from cache, and you start out with fio writing an 8 gigabyte test file - so you want to disable
that:

# echo 0 > /sys/block/bcache0/bcache/sequential_cutoff

To set it back to the default (4 mb), do:

# echo 4M > /sys/block/bcache0/bcache/sequential_cutoff

• Traffic’s still going to the spindle/still getting cache misses

In the real world, SSDs don’t always keep up with disks - particularly with slower SSDs, many disks being cached by one SSD,
or mostly sequential IO. So you want to avoid being bottlenecked by the SSD and having it slow everything down.

To avoid that bcache tracks latency to the cache device, and gradually throttles traffic if the latency exceeds a threshold (it does
this by cranking down the sequential bypass).

You can disable this if you need to by setting the thresholds to 0:

# echo 0 > /sys/fs/bcache/<cache set>/congested_read_threshold_us
# echo 0 > /sys/fs/bcache/<cache set>/congested_write_threshold_us

The default is 2000 us (2 milliseconds) for reads, and 20000 for writes.

• Still getting cache misses, of the same data

One last issue that sometimes trips people up is actually an old bug, due to the way cache coherency is handled for cache misses.
If a btree node is full, a cache miss won’t be able to insert a key for the new data and the data won’t be written to the cache.

In practice this isn’t an issue because as soon as a write comes along it’ll cause the btree node to be split, and you need almost
no write traffic for this to not show up enough to be noticeable (especially since bcache’s btree nodes are huge and index large
regions of the device). But when you’re benchmarking, if you’re trying to warm the cache by reading a bunch of data and there’s
no other traffic - that can be a problem.

Solution: warm the cache by doing writes, or use the testing branch (there’s a fix for the issue there).

Sysfs - backing device

Available at /sys/block/<bdev>/bcache, /sys/block/bcache*/bcache and (if attached) /sys/fs/bcache/<cset-uuid>/bdev*

attach Echo the UUID of a cache set to this file to enable caching.

cache_mode Can be one of either writethrough, writeback, writearound or none.

clear_stats Writing to this file resets the running total stats (not the day/hour/5 minute decaying versions).

314 Chapter 28. A block layer cache (bcache)



Linux Kernel User Documentation, v4.20.0

detach Write to this file to detach from a cache set. If there is dirty data in the cache, it will be flushed first.

dirty_data Amount of dirty data for this backing device in the cache. Continuously updated unlike the cache set’s version, but may be
slightly off.

label Name of underlying device.

readahead Size of readahead that should be performed. Defaults to 0. If set to e.g. 1M, it will round cache miss reads up to that size,
but without overlapping existing cache entries.

running 1 if bcache is running (i.e. whether the /dev/bcache device exists, whether it’s in passthrough mode or caching).

sequential_cutoff A sequential IO will bypass the cache once it passes this threshold; the most recent 128 IOs are tracked so sequential
IO can be detected even when it isn’t all done at once.

sequential_merge If non zero, bcache keeps a list of the last 128 requests submitted to compare against all new requests to determine
which new requests are sequential continuations of previous requests for the purpose of determining sequential cutoff. This is
necessary if the sequential cutoff value is greater than the maximum acceptable sequential size for any single request.

state The backing device can be in one of four different states:

no cache: Has never been attached to a cache set.

clean: Part of a cache set, and there is no cached dirty data.

dirty: Part of a cache set, and there is cached dirty data.

inconsistent: The backing device was forcibly run by the user when there was dirty data cached but the cache set was unavailable;
whatever data was on the backing device has likely been corrupted.

stop Write to this file to shut down the bcache device and close the backing device.

writeback_delay When dirty data is written to the cache and it previously did not contain any, waits some number of seconds before
initiating writeback. Defaults to 30.

writeback_percent If nonzero, bcache tries to keep around this percentage of the cache dirty by throttling background writeback and
using a PD controller to smoothly adjust the rate.

writeback_rate Rate in sectors per second - if writeback_percent is nonzero, background writeback is throttled to this rate. Continu-
ously adjusted by bcache but may also be set by the user.

writeback_running If off, writeback of dirty data will not take place at all. Dirty data will still be added to the cache until it is mostly
full; only meant for benchmarking. Defaults to on.

Sysfs - backing device stats

There are directories with these numbers for a running total, as well as versions that decay over the past day, hour and 5 minutes; they’re
also aggregated in the cache set directory as well.

bypassed Amount of IO (both reads and writes) that has bypassed the cache

cache_hits, cache_misses, cache_hit_ratio Hits and misses are counted per individual IO as bcache sees them; a partial hit is counted
as a miss.

cache_bypass_hits, cache_bypass_misses Hits and misses for IO that is intended to skip the cache are still counted, but broken out
here.

cache_miss_collisions Counts instances where data was going to be inserted into the cache from a cache miss, but raced with a write
and data was already present (usually 0 since the synchronization for cache misses was rewritten)

cache_readaheads Count of times readahead occurred.

28.5. Sysfs - backing device 315



Linux Kernel User Documentation, v4.20.0

Sysfs - cache set

Available at /sys/fs/bcache/<cset-uuid>

average_key_size Average data per key in the btree.

bdev<0..n> Symlink to each of the attached backing devices.

block_size Block size of the cache devices.

btree_cache_size Amount of memory currently used by the btree cache

bucket_size Size of buckets

cache<0..n> Symlink to each of the cache devices comprising this cache set.

cache_available_percent Percentage of cache device which doesn’t contain dirty data, and could potentially be used for writeback.
This doesn’t mean this space isn’t used for clean cached data; the unused statistic (in priority_stats) is typically much lower.

clear_stats Clears the statistics associated with this cache

dirty_data Amount of dirty data is in the cache (updated when garbage collection runs).

flash_vol_create Echoing a size to this file (in human readable units, k/M/G) creates a thinly provisioned volume backed by the cache
set.

io_error_halflife, io_error_limit These determines how many errors we accept before disabling the cache. Each error is decayed by
the half life (in # ios). If the decaying count reaches io_error_limit dirty data is written out and the cache is disabled.

journal_delay_ms Journal writes will delay for up to this many milliseconds, unless a cache flush happens sooner. Defaults to 100.

root_usage_percent Percentage of the root btree node in use. If this gets too high the node will split, increasing the tree depth.

stop Write to this file to shut down the cache set - waits until all attached backing devices have been shut down.

tree_depth Depth of the btree (A single node btree has depth 0).

unregister Detaches all backing devices and closes the cache devices; if dirty data is present it will disable writeback caching and wait
for it to be flushed.

Sysfs - cache set internal

This directory also exposes timings for a number of internal operations, with separate files for average duration, average frequency, last
occurrence and max duration: garbage collection, btree read, btree node sorts and btree splits.

active_journal_entries Number of journal entries that are newer than the index.

btree_nodes Total nodes in the btree.

btree_used_percent Average fraction of btree in use.

bset_tree_stats Statistics about the auxiliary search trees

btree_cache_max_chain Longest chain in the btree node cache’s hash table

cache_read_races Counts instances where while data was being read from the cache, the bucket was reused and invalidated - i.e. where
the pointer was stale after the read completed. When this occurs the data is reread from the backing device.

trigger_gc Writing to this file forces garbage collection to run.

316 Chapter 28. A block layer cache (bcache)



Linux Kernel User Documentation, v4.20.0

Sysfs - Cache device

Available at /sys/block/<cdev>/bcache

block_size Minimum granularity of writes - should match hardware sector size.

btree_written Sum of all btree writes, in (kilo/mega/giga) bytes

bucket_size Size of buckets

cache_replacement_policy One of either lru, fifo or random.

discard Boolean; if on a discard/TRIM will be issued to each bucket before it is reused. Defaults to off, since SATA TRIM is an
unqueued command (and thus slow).

freelist_percent Size of the freelist as a percentage of nbuckets. Can be written to to increase the number of buckets kept on the freelist,
which lets you artificially reduce the size of the cache at runtime. Mostly for testing purposes (i.e. testing how different size
caches affect your hit rate), but since buckets are discarded when they move on to the freelist will also make the SSD’s garbage
collection easier by effectively giving it more reserved space.

io_errors Number of errors that have occurred, decayed by io_error_halflife.

metadata_written Sum of all non data writes (btree writes and all other metadata).

nbuckets Total buckets in this cache

priority_stats Statistics about how recently data in the cache has been accessed. This can reveal your working set size. Unused is the
percentage of the cache that doesn’t contain any data. Metadata is bcache’s metadata overhead. Average is the average priority of
cache buckets. Next is a list of quantiles with the priority threshold of each.

written Sum of all data that has been written to the cache; comparison with btree_written gives the amount of write inflation in bcache.

28.5. Sysfs - backing device 317



Linux Kernel User Documentation, v4.20.0

318 Chapter 28. A block layer cache (bcache)



CHAPTER 29

ext4 General Information

Ext4 is an advanced level of the ext3 filesystem which incorporates scalability and reliability enhancements for supporting large filesys-
tems (64 bit) in keeping with increasing disk capacities and state-of-the-art feature requirements.

Mailing list: linux-ext4@vger.kernel.org Web site: http://ext4.wiki.kernel.org

Quick usage instructions

Note: More extensive information for getting started with ext4 can be found at the ext4 wiki site at the URL: http://ext4.wiki.kernel.org/
index.php/Ext4_Howto

• The latest version of e2fsprogs can be found at:

https://www.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/

or

http://sourceforge.net/project/showfiles.php?group_id=2406

or grab the latest git repository from:

https://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git

• Create a new filesystem using the ext4 filesystem type:

# mke2fs -t ext4 /dev/hda1

Or to configure an existing ext3 filesystem to support extents:

# tune2fs -O extents /dev/hda1

If the filesystem was created with 128 byte inodes, it can be converted to use 256 byte for greater efficiency via:

# tune2fs -I 256 /dev/hda1

• Mounting:

# mount -t ext4 /dev/hda1 /wherever

• When comparing performance with other filesystems, it’s always important to try multiple workloads; very often a
subtle change in a workload parameter can completely change the ranking of which filesystems do well compared
to others. When comparing versus ext3, note that ext4 enables write barriers by default, while ext3 does not enable
write barriers by default. So it is useful to use explicitly specify whether barriers are enabled or not when via the
‘-o barriers=[0|1]’ mount option for both ext3 and ext4 filesystems for a fair comparison. When tuning ext3 for
best benchmark numbers, it is often worthwhile to try changing the data journaling mode; ‘-o data=writeback’ can
be faster for some workloads. (Note however that running mounted with data=writeback can potentially leave stale

319

mailto:linux-ext4@vger.kernel.org
http://ext4.wiki.kernel.org
http://ext4.wiki.kernel.org/index.php/Ext4_Howto
http://ext4.wiki.kernel.org/index.php/Ext4_Howto
https://www.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/
http://sourceforge.net/project/showfiles.php?group_id=2406
https://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git


Linux Kernel User Documentation, v4.20.0

data exposed in recently written files in case of an unclean shutdown, which could be a security exposure in some
situations.) Configuring the filesystem with a large journal can also be helpful for metadata-intensive workloads.

Features

Currently Available

• ability to use filesystems > 16TB (e2fsprogs support not available yet)

• extent format reduces metadata overhead (RAM, IO for access, transactions)

• extent format more robust in face of on-disk corruption due to magics,

• internal redundancy in tree

• improved file allocation (multi-block alloc)

• lift 32000 subdirectory limit imposed by i_links_count[1]

• nsec timestamps for mtime, atime, ctime, create time

• inode version field on disk (NFSv4, Lustre)

• reduced e2fsck time via uninit_bg feature

• journal checksumming for robustness, performance

• persistent file preallocation (e.g for streaming media, databases)

• ability to pack bitmaps and inode tables into larger virtual groups via the flex_bg feature

• large file support

• inode allocation using large virtual block groups via flex_bg

• delayed allocation

• large block (up to pagesize) support

• efficient new ordered mode in JBD2 and ext4 (avoid using buffer head to force the ordering)

[1] Filesystems with a block size of 1k may see a limit imposed by the directory hash tree having a maximum depth of two.

Options

When mounting an ext4 filesystem, the following option are accepted: (*) == default

ro Mount filesystem read only. Note that ext4 will replay the journal (and thus write to the partition) even when mounted
“read only”. The mount options “ro,noload” can be used to prevent writes to the filesystem.

journal_checksum Enable checksumming of the journal transactions. This will allow the recovery code in e2fsck and the
kernel to detect corruption in the kernel. It is a compatible change and will be ignored by older kernels.

journal_async_commit Commit block can be written to disk without waiting for descriptor blocks. If enabled older kernels
cannot mount the device. This will enable ‘journal_checksum’ internally.

journal_path=path, journal_dev=devnum When the external journal device’s major/minor numbers have changed, these
options allow the user to specify the new journal location. The journal device is identified through either its new
major/minor numbers encoded in devnum, or via a path to the device.

320 Chapter 29. ext4 General Information



Linux Kernel User Documentation, v4.20.0

norecovery, noload Don’t load the journal on mounting. Note that if the filesystem was not unmounted cleanly, skipping
the journal replay will lead to the filesystem containing inconsistencies that can lead to any number of problems.

data=journal All data are committed into the journal prior to being written into the main file system. Enabling this mode
will disable delayed allocation and O_DIRECT support.

data=ordered (*) All data are forced directly out to the main file system prior to its metadata being committed to the
journal.

data=writeback Data ordering is not preserved, data may be written into the main file system after its metadata has been
committed to the journal.

commit=nrsec (*) Ext4 can be told to sync all its data and metadata every ‘nrsec’ seconds. The default value is 5 seconds.
This means that if you lose your power, you will lose as much as the latest 5 seconds of work (your filesystem will
not be damaged though, thanks to the journaling). This default value (or any low value) will hurt performance, but it’s
good for data-safety. Setting it to 0 will have the same effect as leaving it at the default (5 seconds). Setting it to very
large values will improve performance.

barrier=<0|1(*)>, barrier(*), nobarrier This enables/disables the use of write barriers in the jbd code. barrier=0 disables,
barrier=1 enables. This also requires an IO stack which can support barriers, and if jbd gets an error on a barrier write,
it will disable again with a warning. Write barriers enforce proper on-disk ordering of journal commits, making volatile
disk write caches safe to use, at some performance penalty. If your disks are battery-backed in one way or another,
disabling barriers may safely improve performance. The mount options “barrier” and “nobarrier” can also be used to
enable or disable barriers, for consistency with other ext4 mount options.

inode_readahead_blks=n This tuning parameter controls the maximum number of inode table blocks that ext4’s inode
table readahead algorithm will pre-read into the buffer cache. The default value is 32 blocks.

nouser_xattr Disables Extended User Attributes. See the attr(5) manual page for more information about extended at-
tributes.

noacl This option disables POSIX Access Control List support. If ACL support is enabled in the kernel configuration
(CONFIG_EXT4_FS_POSIX_ACL), ACL is enabled by default on mount. See the acl(5) manual page for more
information about acl.

bsddf (*) Make ‘df’ act like BSD.

minixdf Make ‘df’ act like Minix.

debug Extra debugging information is sent to syslog.

abort Simulate the effects of calling ext4_abort() for debugging purposes. This is normally used while remounting a
filesystem which is already mounted.

errors=remount-ro Remount the filesystem read-only on an error.

errors=continue Keep going on a filesystem error.

errors=panic Panic and halt the machine if an error occurs. (These mount options override the errors behavior specified in
the superblock, which can be configured using tune2fs)

data_err=ignore(*) Just print an error message if an error occurs in a file data buffer in ordered mode.

data_err=abort Abort the journal if an error occurs in a file data buffer in ordered mode.

grpid | bsdgroups New objects have the group ID of their parent.

nogrpid (*) | sysvgroups New objects have the group ID of their creator.

resgid=n The group ID which may use the reserved blocks.

resuid=n The user ID which may use the reserved blocks.

sb= Use alternate superblock at this location.

29.3. Options 321



Linux Kernel User Documentation, v4.20.0

quota, noquota, grpquota, usrquota These options are ignored by the filesystem. They are used only by quota tools to
recognize volumes where quota should be turned on. See documentation in the quota-tools package for more details
(http://sourceforge.net/projects/linuxquota).

jqfmt=<quota type>, usrjquota=<file>, grpjquota=<file> These options tell filesystem details about quota so that quota
information can be properly updated during journal replay. They replace the above quota options. See documentation
in the quota-tools package for more details (http://sourceforge.net/projects/linuxquota).

stripe=n Number of filesystem blocks that mballoc will try to use for allocation size and alignment. For RAID5/6 systems
this should be the number of data disks * RAID chunk size in file system blocks.

delalloc (*) Defer block allocation until just before ext4 writes out the block(s) in question. This allows ext4 to better
allocation decisions more efficiently.

nodelalloc Disable delayed allocation. Blocks are allocated when the data is copied from userspace to the page cache,
either via the write(2) system call or when an mmap’ed page which was previously unallocated is written for the first
time.

max_batch_time=usec Maximum amount of time ext4 should wait for additional filesystem operations to be batch together
with a synchronous write operation. Since a synchronous write operation is going to force a commit and then a wait for
the I/O complete, it doesn’t cost much, and can be a huge throughput win, we wait for a small amount of time to see if
any other transactions can piggyback on the synchronous write. The algorithm used is designed to automatically tune
for the speed of the disk, by measuring the amount of time (on average) that it takes to finish committing a transaction.
Call this time the “commit time”. If the time that the transaction has been running is less than the commit time, ext4
will try sleeping for the commit time to see if other operations will join the transaction. The commit time is capped
by the max_batch_time, which defaults to 15000us (15ms). This optimization can be turned off entirely by setting
max_batch_time to 0.

min_batch_time=usec This parameter sets the commit time (as described above) to be at least min_batch_time. It de-
faults to zero microseconds. Increasing this parameter may improve the throughput of multi-threaded, synchronous
workloads on very fast disks, at the cost of increasing latency.

journal_ioprio=prio The I/O priority (from 0 to 7, where 0 is the highest priority) which should be used for I/O operations
submitted by kjournald2 during a commit operation. This defaults to 3, which is a slightly higher priority than the
default I/O priority.

auto_da_alloc(*), noauto_da_alloc Many broken applications don’t use fsync() when replacing existing files via pat-
terns such as fd = open(“foo.new”)/write(fd,..)/close(fd)/ rename(“foo.new”, “foo”), or worse yet, fd = open(“foo”,
O_TRUNC)/write(fd,..)/close(fd). If auto_da_alloc is enabled, ext4 will detect the replace-via-rename and replace-
via-truncate patterns and force that any delayed allocation blocks are allocated such that at the next journal commit,
in the default data=ordered mode, the data blocks of the new file are forced to disk before the rename() operation is
committed. This provides roughly the same level of guarantees as ext3, and avoids the “zero-length” problem that can
happen when a system crashes before the delayed allocation blocks are forced to disk.

noinit_itable Do not initialize any uninitialized inode table blocks in the background. This feature may be used by instal-
lation CD’s so that the install process can complete as quickly as possible; the inode table initialization process would
then be deferred until the next time the file system is unmounted.

init_itable=n The lazy itable init code will wait n times the number of milliseconds it took to zero out the previous block
group’s inode table. This minimizes the impact on the system performance while file system’s inode table is being
initialized.

discard, nodiscard(*) Controls whether ext4 should issue discard/TRIM commands to the underlying block device when
blocks are freed. This is useful for SSD devices and sparse/thinly-provisioned LUNs, but it is off by default until
sufficient testing has been done.

nouid32 Disables 32-bit UIDs and GIDs. This is for interoperability with older kernels which only store and expect 16-bit
values.

322 Chapter 29. ext4 General Information

http://sourceforge.net/projects/linuxquota
http://sourceforge.net/projects/linuxquota


Linux Kernel User Documentation, v4.20.0

block_validity(*), noblock_validity These options enable or disable the in-kernel facility for tracking filesystem metadata
blocks within internal data structures. This allows multi- block allocator and other routines to notice bugs or corrupted
allocation bitmaps which cause blocks to be allocated which overlap with filesystem metadata blocks.

dioread_lock, dioread_nolock Controls whether or not ext4 should use the DIO read locking. If the dioread_nolock
option is specified ext4 will allocate uninitialized extent before buffer write and convert the extent to initialized after
IO completes. This approach allows ext4 code to avoid using inode mutex, which improves scalability on high speed
storages. However this does not work with data journaling and dioread_nolock option will be ignored with kernel
warning. Note that dioread_nolock code path is only used for extent-based files. Because of the restrictions this
options comprises it is off by default (e.g. dioread_lock).

max_dir_size_kb=n This limits the size of directories so that any attempt to expand them beyond the specified limit in
kilobytes will cause an ENOSPC error. This is useful in memory constrained environments, where a very large
directory can cause severe performance problems or even provoke the Out Of Memory killer. (For example, if there is
only 512mb memory available, a 176mb directory may seriously cramp the system’s style.)

i_version Enable 64-bit inode version support. This option is off by default.

dax Use direct access (no page cache). See Documentation/filesystems/dax.txt. Note that this option is incompatible with
data=journal.

Data Mode

There are 3 different data modes:

• writeback mode

In data=writeback mode, ext4 does not journal data at all. This mode provides a similar level of journaling as that of XFS, JFS,
and ReiserFS in its default mode - metadata journaling. A crash+recovery can cause incorrect data to appear in files which were
written shortly before the crash. This mode will typically provide the best ext4 performance.

• ordered mode

In data=ordered mode, ext4 only officially journals metadata, but it logically groups metadata information related to data changes
with the data blocks into a single unit called a transaction. When it’s time to write the new metadata out to disk, the associated data
blocks are written first. In general, this mode performs slightly slower than writeback but significantly faster than journal mode.

• journal mode

data=journal mode provides full data and metadata journaling. All new data is written to the journal first, and then to its final
location. In the event of a crash, the journal can be replayed, bringing both data and metadata into a consistent state. This mode
is the slowest except when data needs to be read from and written to disk at the same time where it outperforms all others modes.
Enabling this mode will disable delayed allocation and O_DIRECT support.

/proc entries

Information about mounted ext4 file systems can be found in /proc/fs/ext4. Each mounted filesystem will have a directory in /proc/fs/ext4
based on its device name (i.e., /proc/fs/ext4/hdc or /proc/fs/ext4/dm-0). The files in each per-device directory are shown in table below.

Files in /proc/fs/ext4/<devname>

mb_groups details of multiblock allocator buddy cache of free blocks

29.4. Data Mode 323



Linux Kernel User Documentation, v4.20.0

/sys entries

Information about mounted ext4 file systems can be found in /sys/fs/ext4. Each mounted filesystem will have a directory in /sys/fs/ext4
based on its device name (i.e., /sys/fs/ext4/hdc or /sys/fs/ext4/dm-0). The files in each per-device directory are shown in table below.

Files in /sys/fs/ext4/<devname>:

(see also Documentation/ABI/testing/sysfs-fs-ext4)

delayed_allocation_blocks This file is read-only and shows the number of blocks that are dirty in the page cache, but
which do not have their location in the filesystem allocated yet.

inode_goal Tuning parameter which (if non-zero) controls the goal inode used by the inode allocator in preference to all
other allocation heuristics. This is intended for debugging use only, and should be 0 on production systems.

inode_readahead_blks Tuning parameter which controls the maximum number of inode table blocks that ext4’s inode
table readahead algorithm will pre-read into the buffer cache.

lifetime_write_kbytes This file is read-only and shows the number of kilobytes of data that have been written to this
filesystem since it was created.

max_writeback_mb_bump The maximum number of megabytes the writeback code will try to write out before move on
to another inode.

mb_group_prealloc The multiblock allocator will round up allocation requests to a multiple of this tuning parameter if the
stripe size is not set in the ext4 superblock

mb_max_to_scan The maximum number of extents the multiblock allocator will search to find the best extent.

mb_min_to_scan The minimum number of extents the multiblock allocator will search to find the best extent.

mb_order2_req Tuning parameter which controls the minimum size for requests (as a power of 2) where the buddy cache
is used.

mb_stats Controls whether the multiblock allocator should collect statistics, which are shown during the unmount. 1 means
to collect statistics, 0 means not to collect statistics.

mb_stream_req Files which have fewer blocks than this tunable parameter will have their blocks allocated out of a block
group specific preallocation pool, so that small files are packed closely together. Each large file will have its blocks
allocated out of its own unique preallocation pool.

session_write_kbytes This file is read-only and shows the number of kilobytes of data that have been written to this
filesystem since it was mounted.

reserved_clusters This is RW file and contains number of reserved clusters in the file system which will be used in the
specific situations to avoid costly zeroout, unexpected ENOSPC, or possible data loss. The default is 2% or 4096
clusters, whichever is smaller and this can be changed however it can never exceed number of clusters in the file
system. If there is not enough space for the reserved space when mounting the file mount will _not_ fail.

Ioctls

There is some Ext4 specific functionality which can be accessed by applications through the system call interfaces. The list of all Ext4
specific ioctls are shown in the table below.

Table of Ext4 specific ioctls

EXT4_IOC_GETFLAGS Get additional attributes associated with inode. The ioctl argument is an integer bitfield, with
bit values described in ext4.h. This ioctl is an alias for FS_IOC_GETFLAGS.

EXT4_IOC_SETFLAGS Set additional attributes associated with inode. The ioctl argument is an integer bitfield, with bit
values described in ext4.h. This ioctl is an alias for FS_IOC_SETFLAGS.

324 Chapter 29. ext4 General Information



Linux Kernel User Documentation, v4.20.0

EXT4_IOC_GETVERSION, EXT4_IOC_GETVERSION_OLD Get the inode i_generation number stored for each in-
ode. The i_generation number is normally changed only when new inode is created and it is particularly useful for
network filesystems. The ‘_OLD’ version of this ioctl is an alias for FS_IOC_GETVERSION.

EXT4_IOC_SETVERSION, EXT4_IOC_SETVERSION_OLD Set the inode i_generation number stored for each in-
ode. The ‘_OLD’ version of this ioctl is an alias for FS_IOC_SETVERSION.

EXT4_IOC_GROUP_EXTEND This ioctl has the same purpose as the resize mount option. It allows to resize filesystem
to the end of the last existing block group, further resize has to be done with resize2fs, either online, or offline. The
argument points to the unsigned logn number representing the filesystem new block count.

EXT4_IOC_MOVE_EXT Move the block extents from orig_fd (the one this ioctl is pointing to) to the donor_fd (the
one specified in move_extent structure passed as an argument to this ioctl). Then, exchange inode metadata between
orig_fd and donor_fd. This is especially useful for online defragmentation, because the allocator has the opportunity
to allocate moved blocks better, ideally into one contiguous extent.

EXT4_IOC_GROUP_ADD Add a new group descriptor to an existing or new group descriptor block. The new group
descriptor is described by ext4_new_group_input structure, which is passed as an argument to this ioctl. This is
especially useful in conjunction with EXT4_IOC_GROUP_EXTEND, which allows online resize of the filesystem
to the end of the last existing block group. Those two ioctls combined is used in userspace online resize tool (e.g.
resize2fs).

EXT4_IOC_MIGRATE This ioctl operates on the filesystem itself. It converts (migrates) ext3 indirect block mapped
inode to ext4 extent mapped inode by walking through indirect block mapping of the original inode and converting
contiguous block ranges into ext4 extents of the temporary inode. Then, inodes are swapped. This ioctl might help,
when migrating from ext3 to ext4 filesystem, however suggestion is to create fresh ext4 filesystem and copy data from
the backup. Note, that filesystem has to support extents for this ioctl to work.

EXT4_IOC_ALLOC_DA_BLKS Force all of the delay allocated blocks to be allocated to preserve application-expected
ext3 behaviour. Note that this will also start triggering a write of the data blocks, but this behaviour may change in the
future as it is not necessary and has been done this way only for sake of simplicity.

EXT4_IOC_RESIZE_FS Resize the filesystem to a new size. The number of blocks of resized filesystem is passed in
via 64 bit integer argument. The kernel allocates bitmaps and inode table, the userspace tool thus just passes the new
number of blocks.

EXT4_IOC_SWAP_BOOT Swap i_blocks and associated attributes (like i_blocks, i_size, i_flags, ...) from the specified
inode with inode EXT4_BOOT_LOADER_INO (#5). This is typically used to store a boot loader in a secure part of
the filesystem, where it can’t be changed by a normal user by accident. The data blocks of the previous boot loader
will be associated with the given inode.

References

kernel source: <file:fs/ext4/> <file:fs/jbd2/>

programs: http://e2fsprogs.sourceforge.net/

useful links: http://fedoraproject.org/wiki/ext3-devel http://www.bullopensource.org/ext4/ http://ext4.wiki.kernel.org/index.php/
Main_Page http://fedoraproject.org/wiki/Features/Ext4

29.8. References 325

http://e2fsprogs.sourceforge.net/
http://fedoraproject.org/wiki/ext3-devel
http://www.bullopensource.org/ext4/
http://ext4.wiki.kernel.org/index.php/Main_Page
http://ext4.wiki.kernel.org/index.php/Main_Page
http://fedoraproject.org/wiki/Features/Ext4


Linux Kernel User Documentation, v4.20.0

326 Chapter 29. ext4 General Information



CHAPTER 30

Power Management

Power Management Strategies

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

The Linux kernel supports two major high-level power management strategies.

One of them is based on using global low-power states of the whole system in which user space code cannot be executed and the overall
system activity is significantly reduced, referred to as sleep states . The kernel puts the system into one of these states when requested
by user space and the system stays in it until a special signal is received from one of designated devices, triggering a transition to the
working state in which user space code can run. Because sleep states are global and the whole system is affected by the state
changes, this strategy is referred to as the system-wide power management .

The other strategy, referred to as the working-state power management , is based on adjusting the power states of individual hardware
components of the system, as needed, in the working state. In consequence, if this strategy is in use, the working state of the system
usually does not correspond to any particular physical configuration of it, but can be treated as a metastate covering a range of different
power states of the system in which the individual components of it can be either active (in use) or inactive (idle). If they are
active, they have to be in power states allowing them to process data and to be accessed by software. In turn, if they are inactive, ideally,
they should be in low-power states in which they may not be accessible.

If all of the system components are active, the system as a whole is regarded as “runtime active” and that situation typically corresponds
to the maximum power draw (or maximum energy usage) of it. If all of them are inactive, the system as a whole is regarded as “runtime
idle” which may be very close to a sleep state from the physical system configuration and power draw perspective, but then it takes much
less time and effort to start executing user space code than for the same system in a sleep state. However, transitions from sleep states
back to the working state can only be started by a limited set of devices, so typically the system can spend much more time in a sleep
state than it can be runtime idle in one go. For this reason, systems usually use less energy in sleep states than when they are runtime
idle most of the time.

Moreover, the two power management strategies address different usage scenarios. Namely, if the user indicates that the system will
not be in use going forward, for example by closing its lid (if the system is a laptop), it probably should go into a sleep state at that
point. On the other hand, if the user simply goes away from the laptop keyboard, it probably should stay in the working state and use
the working-state power management in case it becomes idle, because the user may come back to it at any time and then may want the
system to be immediately accessible.

327



Linux Kernel User Documentation, v4.20.0

System-Wide Power Management

System Sleep States

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

Sleep states are global low-power states of the entire system in which user space code cannot be executed and the overall system activity
is significantly reduced.

Sleep States That Can Be Supported

Depending on its configuration and the capabilities of the platform it runs on, the Linux kernel can support up to four system sleep states,
including hibernation and up to three variants of system suspend. The sleep states that can be supported by the kernel are listed below.

Suspend-to-Idle

This is a generic, pure software, light-weight variant of system suspend (also referred to as S2I or S2Idle). It allows more energy to
be saved relative to runtime idle by freezing user space, suspending the timekeeping and putting all I/O devices into low-power states
(possibly lower-power than available in the working state), such that the processors can spend time in their deepest idle states while the
system is suspended.

The system is woken up from this state by in-band interrupts, so theoretically any devices that can cause interrupts to be generated in the
working state can also be set up as wakeup devices for S2Idle.

This state can be used on platforms without support for standby or suspend-to-RAM , or it can be used in addition to any of the deeper
system suspend variants to provide reduced resume latency. It is always supported if the CONFIG_SUSPEND kernel configuration
option is set.

Standby

This state, if supported, offers moderate, but real, energy savings, while providing a relatively straightforward transition back to the
working state. No operating state is lost (the system core logic retains power), so the system can go back to where it left off easily
enough.

In addition to freezing user space, suspending the timekeeping and putting all I/O devices into low-power states, which is done for
suspend-to-idle too, nonboot CPUs are taken offline and all low-level system functions are suspended during transitions into this state.
For this reason, it should allow more energy to be saved relative to suspend-to-idle , but the resume latency will generally be greater
than for that state.

The set of devices that can wake up the system from this state usually is reduced relative to suspend-to-idle and it may be necessary to
rely on the platform for setting up the wakeup functionality as appropriate.

This state is supported if the CONFIG_SUSPEND kernel configuration option is set and the support for it is registered by the platform
with the core system suspend subsystem. On ACPI-based systems this state is mapped to the S1 system state defined by ACPI.

Suspend-to-RAM

This state (also referred to as STR or S2RAM), if supported, offers significant energy savings as everything in the system is put into a
low-power state, except for memory, which should be placed into the self-refresh mode to retain its contents. All of the steps carried
out when entering standby are also carried out during transitions to S2RAM. Additional operations may take place depending on the
platform capabilities. In particular, on ACPI-based systems the kernel passes control to the platform firmware (BIOS) as the last step

328 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

during S2RAM transitions and that usually results in powering down some more low-level components that are not directly controlled
by the kernel.

The state of devices and CPUs is saved and held in memory. All devices are suspended and put into low-power states. In many cases, all
peripheral buses lose power when entering S2RAM, so devices must be able to handle the transition back to the “on” state.

On ACPI-based systems S2RAM requires some minimal boot-strapping code in the platform firmware to resume the system from it.
This may be the case on other platforms too.

The set of devices that can wake up the system from S2RAM usually is reduced relative to suspend-to-idle and standby and it may be
necessary to rely on the platform for setting up the wakeup functionality as appropriate.

S2RAM is supported if the CONFIG_SUSPEND kernel configuration option is set and the support for it is registered by the platform
with the core system suspend subsystem. On ACPI-based systems it is mapped to the S3 system state defined by ACPI.

Hibernation

This state (also referred to as Suspend-to-Disk or STD) offers the greatest energy savings and can be used even in the absence of low-
level platform support for system suspend. However, it requires some low-level code for resuming the system to be present for the
underlying CPU architecture.

Hibernation is significantly different from any of the system suspend variants. It takes three system state changes to put it into hibernation
and two system state changes to resume it.

First, when hibernation is triggered, the kernel stops all system activity and creates a snapshot image of memory to be written into
persistent storage. Next, the system goes into a state in which the snapshot image can be saved, the image is written out and finally the
system goes into the target low-power state in which power is cut from almost all of its hardware components, including memory, except
for a limited set of wakeup devices.

Once the snapshot image has been written out, the system may either enter a special low-power state (like ACPI S4), or it may simply
power down itself. Powering down means minimum power draw and it allows this mechanism to work on any system. However, entering
a special low-power state may allow additional means of system wakeup to be used (e.g. pressing a key on the keyboard or opening a
laptop lid).

After wakeup, control goes to the platform firmware that runs a boot loader which boots a fresh instance of the kernel (control may also
go directly to the boot loader, depending on the system configuration, but anyway it causes a fresh instance of the kernel to be booted).
That new instance of the kernel (referred to as the restore kernel) looks for a hibernation image in persistent storage and if one
is found, it is loaded into memory. Next, all activity in the system is stopped and the restore kernel overwrites itself with the image
contents and jumps into a special trampoline area in the original kernel stored in the image (referred to as the image kernel), which
is where the special architecture-specific low-level code is needed. Finally, the image kernel restores the system to the pre-hibernation
state and allows user space to run again.

Hibernation is supported if the CONFIG_HIBERNATION kernel configuration option is set. However, this option can only be set if
support for the given CPU architecture includes the low-level code for system resume.

Basic sysfs Interfaces for System Suspend and Hibernation

The following files located in the /sys/power/ directory can be used by user space for sleep states control.

state This file contains a list of strings representing sleep states supported by the kernel. Writing one of these strings into it causes
the kernel to start a transition of the system into the sleep state represented by that string.

In particular, the strings “disk”, “freeze” and “standby” represent the hibernation , suspend-to-idle and standby sleep states,
respectively. The string “mem” is interpreted in accordance with the contents of the mem_sleep file described below.

If the kernel does not support any system sleep states, this file is not present.

30.2. System-Wide Power Management 329



Linux Kernel User Documentation, v4.20.0

mem_sleep This file contains a list of strings representing supported system suspend variants and allows user space to select the
variant to be associated with the “mem” string in the state file described above.

The strings that may be present in this file are “s2idle”, “shallow” and “deep”. The string “s2idle” always represents suspend-to-
idle and, by convention, “shallow” and “deep” represent standby and suspend-to-RAM , respectively.

Writing one of the listed strings into this file causes the system suspend variant represented by it to be associated with the “mem”
string in the state file. The string representing the suspend variant currently associated with the “mem” string in the state file
is listed in square brackets.

If the kernel does not support system suspend, this file is not present.

disk This file contains a list of strings representing different operations that can be carried out after the hibernation image has been
saved. The possible options are as follows:

platform Put the system into a special low-power state (e.g. ACPI S4) to make additional wakeup options available and
possibly allow the platform firmware to take a simplified initialization path after wakeup.

shutdown Power off the system.

reboot Reboot the system (useful for diagnostics mostly).

suspend Hybrid system suspend. Put the system into the suspend sleep state selected through the mem_sleep file described
above. If the system is successfully woken up from that state, discard the hibernation image and continue. Otherwise, use
the image to restore the previous state of the system.

test_resume Diagnostic operation. Load the image as though the system had just woken up from hibernation and the currently
running kernel instance was a restore kernel and follow up with full system resume.

Writing one of the listed strings into this file causes the option represented by it to be selected.

The currently selected option is shown in square brackets which means that the operation represented by it will be carried out after
creating and saving the image next time hibernation is triggered by writing disk to /sys/power/state.

If the kernel does not support hibernation, this file is not present.

According to the above, there are two ways to make the system go into the suspend-to-idle state. The first one is to write “freeze”
directly to /sys/power/state. The second one is to write “s2idle” to /sys/power/mem_sleep and then to write “mem” to
/sys/power/state. Likewise, there are two ways to make the system go into the standby state (the strings to write to the control
files in that case are “standby” or “shallow” and “mem”, respectively) if that state is supported by the platform. However, there is
only one way to make the system go into the suspend-to-RAM state (write “deep” into /sys/power/mem_sleep and “mem” into
/sys/power/state).

The default suspend variant (ie. the one to be used without writing anything into /sys/power/mem_sleep) is either “deep” (on
the majority of systems supporting suspend-to-RAM ) or “s2idle”, but it can be overridden by the value of the “mem_sleep_default”
parameter in the kernel command line. On some ACPI-based systems, depending on the information in the ACPI tables, the default may
be “s2idle” even if suspend-to-RAM is supported.

Working-State Power Management

CPU Performance Scaling

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

The Concept of CPU Performance Scaling

The majority of modern processors are capable of operating in a number of different clock frequency and voltage configurations, often
referred to as Operating Performance Points or P-states (in ACPI terminology). As a rule, the higher the clock frequency and the higher

330 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

the voltage, the more instructions can be retired by the CPU over a unit of time, but also the higher the clock frequency and the higher
the voltage, the more energy is consumed over a unit of time (or the more power is drawn) by the CPU in the given P-state. Therefore
there is a natural tradeoff between the CPU capacity (the number of instructions that can be executed over a unit of time) and the power
drawn by the CPU.

In some situations it is desirable or even necessary to run the program as fast as possible and then there is no reason to use any P-states
different from the highest one (i.e. the highest-performance frequency/voltage configuration available). In some other cases, however,
it may not be necessary to execute instructions so quickly and maintaining the highest available CPU capacity for a relatively long time
without utilizing it entirely may be regarded as wasteful. It also may not be physically possible to maintain maximum CPU capacity for
too long for thermal or power supply capacity reasons or similar. To cover those cases, there are hardware interfaces allowing CPUs to
be switched between different frequency/voltage configurations or (in the ACPI terminology) to be put into different P-states.

Typically, they are used along with algorithms to estimate the required CPU capacity, so as to decide which P-states to put the CPUs
into. Of course, since the utilization of the system generally changes over time, that has to be done repeatedly on a regular basis. The
activity by which this happens is referred to as CPU performance scaling or CPU frequency scaling (because it involves adjusting the
CPU clock frequency).

CPU Performance Scaling in Linux

The Linux kernel supports CPU performance scaling by means of the CPUFreq (CPU Frequency scaling) subsystem that consists of
three layers of code: the core, scaling governors and scaling drivers.

The CPUFreq core provides the common code infrastructure and user space interfaces for all platforms that support CPU performance
scaling. It defines the basic framework in which the other components operate.

Scaling governors implement algorithms to estimate the required CPU capacity. As a rule, each governor implements one, possibly
parametrized, scaling algorithm.

Scaling drivers talk to the hardware. They provide scaling governors with information on the available P-states (or P-state ranges in
some cases) and access platform-specific hardware interfaces to change CPU P-states as requested by scaling governors.

In principle, all available scaling governors can be used with every scaling driver. That design is based on the observation that the
information used by performance scaling algorithms for P-state selection can be represented in a platform-independent form in the
majority of cases, so it should be possible to use the same performance scaling algorithm implemented in exactly the same way regardless
of which scaling driver is used. Consequently, the same set of scaling governors should be suitable for every supported platform.

However, that observation may not hold for performance scaling algorithms based on information provided by the hardware itself, for
example through feedback registers, as that information is typically specific to the hardware interface it comes from and may not be
easily represented in an abstract, platform-independent way. For this reason, CPUFreq allows scaling drivers to bypass the governor
layer and implement their own performance scaling algorithms. That is done by the intel_pstate scaling driver.

CPUFreq Policy Objects

In some cases the hardware interface for P-state control is shared by multiple CPUs. That is, for example, the same register (or set of
registers) is used to control the P-state of multiple CPUs at the same time and writing to it affects all of those CPUs simultaneously.

Sets of CPUs sharing hardware P-state control interfaces are represented by CPUFreq as struct cpufreq_policy objects. For
consistency, struct cpufreq_policy is also used when there is only one CPU in the given set.

The CPUFreq core maintains a pointer to a struct cpufreq_policy object for every CPU in the system, including CPUs that
are currently offline. If multiple CPUs share the same hardware P-state control interface, all of the pointers corresponding to them point
to the same struct cpufreq_policy object.

CPUFreq uses struct cpufreq_policy as its basic data type and the design of its user space interface is based on the policy
concept.

30.3. Working-State Power Management 331



Linux Kernel User Documentation, v4.20.0

CPU Initialization

First of all, a scaling driver has to be registered for CPUFreq to work. It is only possible to register one scaling driver at a time, so the
scaling driver is expected to be able to handle all CPUs in the system.

The scaling driver may be registered before or after CPU registration. If CPUs are registered earlier, the driver core invokes the CPUFreq
core to take a note of all of the already registered CPUs during the registration of the scaling driver. In turn, if any CPUs are registered
after the registration of the scaling driver, the CPUFreq core will be invoked to take note of them at their registration time.

In any case, the CPUFreq core is invoked to take note of any logical CPU it has not seen so far as soon as it is ready to handle that CPU.
[Note that the logical CPU may be a physical single-core processor, or a single core in a multicore processor, or a hardware thread in
a physical processor or processor core. In what follows “CPU” always means “logical CPU” unless explicitly stated otherwise and the
word “processor” is used to refer to the physical part possibly including multiple logical CPUs.]

Once invoked, the CPUFreq core checks if the policy pointer is already set for the given CPU and if so, it skips the policy object
creation. Otherwise, a new policy object is created and initialized, which involves the creation of a new policy directory in sysfs, and
the policy pointer corresponding to the given CPU is set to the new policy object’s address in memory.

Next, the scaling driver’s ->init() callback is invoked with the policy pointer of the new CPU passed to it as the argument. That
callback is expected to initialize the performance scaling hardware interface for the given CPU (or, more precisely, for the set of CPUs
sharing the hardware interface it belongs to, represented by its policy object) and, if the policy object it has been called for is new, to set
parameters of the policy, like the minimum and maximum frequencies supported by the hardware, the table of available frequencies (if
the set of supported P-states is not a continuous range), and the mask of CPUs that belong to the same policy (including both online and
offline CPUs). That mask is then used by the core to populate the policy pointers for all of the CPUs in it.

The next major initialization step for a new policy object is to attach a scaling governor to it (to begin with, that is the default scaling
governor determined by the kernel configuration, but it may be changed later via sysfs). First, a pointer to the new policy object
is passed to the governor’s ->init() callback which is expected to initialize all of the data structures necessary to handle the given
policy and, possibly, to add a governor sysfs interface to it. Next, the governor is started by invoking its ->start() callback.

That callback is expected to register per-CPU utilization update callbacks for all of the online CPUs belonging to the given policy with
the CPU scheduler. The utilization update callbacks will be invoked by the CPU scheduler on important events, like task enqueue
and dequeue, on every iteration of the scheduler tick or generally whenever the CPU utilization may change (from the scheduler’s
perspective). They are expected to carry out computations needed to determine the P-state to use for the given policy going forward and
to invoke the scaling driver to make changes to the hardware in accordance with the P-state selection. The scaling driver may be invoked
directly from scheduler context or asynchronously, via a kernel thread or workqueue, depending on the configuration and capabilities of
the scaling driver and the governor.

Similar steps are taken for policy objects that are not new, but were “inactive” previously, meaning that all of the CPUs belonging to
them were offline. The only practical difference in that case is that the CPUFreq core will attempt to use the scaling governor previously
used with the policy that became “inactive” (and is re-initialized now) instead of the default governor.

In turn, if a previously offline CPU is being brought back online, but some other CPUs sharing the policy object with it are online already,
there is no need to re-initialize the policy object at all. In that case, it only is necessary to restart the scaling governor so that it can take
the new online CPU into account. That is achieved by invoking the governor’s ->stop and ->start() callbacks, in this order, for
the entire policy.

As mentioned before, the intel_pstate scaling driver bypasses the scaling governor layer of CPUFreq and provides its own P-state
selection algorithms. Consequently, if intel_pstate is used, scaling governors are not attached to new policy objects. Instead, the
driver’s ->setpolicy() callback is invoked to register per-CPU utilization update callbacks for each policy. These callbacks are
invoked by the CPU scheduler in the same way as for scaling governors, but in the intel_pstate case they both determine the P-state to
use and change the hardware configuration accordingly in one go from scheduler context.

The policy objects created during CPU initialization and other data structures associated with them are torn down when the scaling driver
is unregistered (which happens when the kernel module containing it is unloaded, for example) or when the last CPU belonging to the
given policy in unregistered.

332 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

Policy Interface in sysfs

During the initialization of the kernel, the CPUFreq core creates a sysfs directory (kobject) called cpufreq under
/sys/devices/system/cpu/.

That directory contains a policyX subdirectory (where X represents an integer number) for every policy object maintained by the
CPUFreq core. Each policyX directory is pointed to by cpufreq symbolic links under /sys/devices/system/cpu/cpuY/
(where Y represents an integer that may be different from the one represented by X) for all of the CPUs associated with (or belonging
to) the given policy. The policyX directories in /sys/devices/system/cpu/cpufreq each contain policy-specific attributes
(files) to control CPUFreq behavior for the corresponding policy objects (that is, for all of the CPUs associated with them).

Some of those attributes are generic. They are created by the CPUFreq core and their behavior generally does not depend on what
scaling driver is in use and what scaling governor is attached to the given policy. Some scaling drivers also add driver-specific attributes
to the policy directories in sysfs to control policy-specific aspects of driver behavior.

The generic attributes under /sys/devices/system/cpu/cpufreq/policyX/ are the following:

affected_cpus List of online CPUs belonging to this policy (i.e. sharing the hardware performance scaling interface represented
by the policyX policy object).

bios_limit If the platform firmware (BIOS) tells the OS to apply an upper limit to CPU frequencies, that limit will be reported
through this attribute (if present).

The existence of the limit may be a result of some (often unintentional) BIOS settings, restrictions coming from a service processor
or another BIOS/HW-based mechanisms.

This does not cover ACPI thermal limitations which can be discovered through a generic thermal driver.

This attribute is not present if the scaling driver in use does not support it.

cpuinfo_cur_freq Current frequency of the CPUs belonging to this policy as obtained from the hardware (in KHz).

This is expected to be the frequency the hardware actually runs at. If that frequency cannot be determined, this attribute should
not be present.

cpuinfo_max_freq Maximum possible operating frequency the CPUs belonging to this policy can run at (in kHz).

cpuinfo_min_freq Minimum possible operating frequency the CPUs belonging to this policy can run at (in kHz).

cpuinfo_transition_latency The time it takes to switch the CPUs belonging to this policy from one P-state to another, in
nanoseconds.

If unknown or if known to be so high that the scaling driver does not work with the ondemand governor, -1 (CPUFREQ_ETERNAL)
will be returned by reads from this attribute.

related_cpus List of all (online and offline) CPUs belonging to this policy.

scaling_available_governors List of CPUFreq scaling governors present in the kernel that can be attached to this policy or
(if the intel_pstate scaling driver is in use) list of scaling algorithms provided by the driver that can be applied to this policy.

[Note that some governors are modular and it may be necessary to load a kernel module for the governor held by it to become
available and be listed by this attribute.]

scaling_cur_freq Current frequency of all of the CPUs belonging to this policy (in kHz).

In the majority of cases, this is the frequency of the last P-state requested by the scaling driver from the hardware using the scaling
interface provided by it, which may or may not reflect the frequency the CPU is actually running at (due to hardware design and
other limitations).

Some architectures (e.g. x86) may attempt to provide information more precisely reflecting the current CPU frequency through
this attribute, but that still may not be the exact current CPU frequency as seen by the hardware at the moment.

scaling_driver The scaling driver currently in use.

30.3. Working-State Power Management 333



Linux Kernel User Documentation, v4.20.0

scaling_governor The scaling governor currently attached to this policy or (if the intel_pstate scaling driver is in use) the scaling
algorithm provided by the driver that is currently applied to this policy.

This attribute is read-write and writing to it will cause a new scaling governor to be attached to this policy or a new scaling
algorithm provided by the scaling driver to be applied to it (in the intel_pstate case), as indicated by the string written to this
attribute (which must be one of the names listed by the scaling_available_governors attribute described above).

scaling_max_freq Maximum frequency the CPUs belonging to this policy are allowed to be running at (in kHz).

This attribute is read-write and writing a string representing an integer to it will cause a new limit to be set (it must not be lower
than the value of the scaling_min_freq attribute).

scaling_min_freq Minimum frequency the CPUs belonging to this policy are allowed to be running at (in kHz).

This attribute is read-write and writing a string representing a non-negative integer to it will cause a new limit to be set (it must
not be higher than the value of the scaling_max_freq attribute).

scaling_setspeed This attribute is functional only if the userspace scaling governor is attached to the given policy.

It returns the last frequency requested by the governor (in kHz) or can be written to in order to set a new frequency for the policy.

Generic Scaling Governors

CPUFreq provides generic scaling governors that can be used with all scaling drivers. As stated before, each of them implements a
single, possibly parametrized, performance scaling algorithm.

Scaling governors are attached to policy objects and different policy objects can be handled by different scaling governors at the same
time (although that may lead to suboptimal results in some cases).

The scaling governor for a given policy object can be changed at any time with the help of the scaling_governor policy attribute
in sysfs.

Some governors expose sysfs attributes to control or fine-tune the scaling algorithms implemented by them. Those attributes, referred
to as governor tunables, can be either global (system-wide) or per-policy, depending on the scaling driver in use. If the driver requires
governor tunables to be per-policy, they are located in a subdirectory of each policy directory. Otherwise, they are located in a subdirec-
tory under /sys/devices/system/cpu/cpufreq/. In either case the name of the subdirectory containing the governor tunables
is the name of the governor providing them.

performance

When attached to a policy object, this governor causes the highest frequency, within the scaling_max_freq policy limit, to be
requested for that policy.

The request is made once at that time the governor for the policy is set to performance and whenever the scaling_max_freq or
scaling_min_freq policy limits change after that.

powersave

When attached to a policy object, this governor causes the lowest frequency, within the scaling_min_freq policy limit, to be
requested for that policy.

The request is made once at that time the governor for the policy is set to powersave and whenever the scaling_max_freq or
scaling_min_freq policy limits change after that.

334 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

userspace

This governor does not do anything by itself. Instead, it allows user space to set the CPU frequency for the policy it is attached to by
writing to the scaling_setspeed attribute of that policy.

schedutil

This governor uses CPU utilization data available from the CPU scheduler. It generally is regarded as a part of the CPU scheduler, so it
can access the scheduler’s internal data structures directly.

It runs entirely in scheduler context, although in some cases it may need to invoke the scaling driver asynchronously when it decides
that the CPU frequency should be changed for a given policy (that depends on whether or not the driver is capable of changing the CPU
frequency from scheduler context).

The actions of this governor for a particular CPU depend on the scheduling class invoking its utilization update callback for that CPU.
If it is invoked by the RT or deadline scheduling classes, the governor will increase the frequency to the allowed maximum (that is, the
scaling_max_freq policy limit). In turn, if it is invoked by the CFS scheduling class, the governor will use the Per-Entity Load
Tracking (PELT) metric for the root control group of the given CPU as the CPU utilization estimate (see the Per-entity load tracking
LWN.net article for a description of the PELT mechanism). Then, the new CPU frequency to apply is computed in accordance with the
formula

f = 1.25 * f_0 * util / max

where util is the PELT number, max is the theoretical maximum of util, and f_0 is either the maximum possible CPU frequency
for the given policy (if the PELT number is frequency-invariant), or the current CPU frequency (otherwise).

This governor also employs a mechanism allowing it to temporarily bump up the CPU frequency for tasks that have been waiting on I/O
most recently, called “IO-wait boosting”. That happens when the SCHED_CPUFREQ_IOWAIT flag is passed by the scheduler to the
governor callback which causes the frequency to go up to the allowed maximum immediately and then draw back to the value returned
by the above formula over time.

This governor exposes only one tunable:

rate_limit_us Minimum time (in microseconds) that has to pass between two consecutive runs of governor computations (default:
1000 times the scaling driver’s transition latency).

The purpose of this tunable is to reduce the scheduler context overhead of the governor which might be excessive without it.

This governor generally is regarded as a replacement for the older ondemand and conservative governors (described below), as it is
simpler and more tightly integrated with the CPU scheduler, its overhead in terms of CPU context switches and similar is less significant,
and it uses the scheduler’s own CPU utilization metric, so in principle its decisions should not contradict the decisions made by the other
parts of the scheduler.

ondemand

This governor uses CPU load as a CPU frequency selection metric.

In order to estimate the current CPU load, it measures the time elapsed between consecutive invocations of its worker routine and
computes the fraction of that time in which the given CPU was not idle. The ratio of the non-idle (active) time to the total CPU time is
taken as an estimate of the load.

If this governor is attached to a policy shared by multiple CPUs, the load is estimated for all of them and the greatest result is taken as
the load estimate for the entire policy.

The worker routine of this governor has to run in process context, so it is invoked asynchronously (via a workqueue) and CPU P-states
are updated from there if necessary. As a result, the scheduler context overhead from this governor is minimum, but it causes additional
CPU context switches to happen relatively often and the CPU P-state updates triggered by it can be relatively irregular. Also, it affects

30.3. Working-State Power Management 335

https://lwn.net/Articles/531853/


Linux Kernel User Documentation, v4.20.0

its own CPU load metric by running code that reduces the CPU idle time (even though the CPU idle time is only reduced very slightly
by it).

It generally selects CPU frequencies proportional to the estimated load, so that the value of the cpuinfo_max_freq policy attribute
corresponds to the load of 1 (or 100%), and the value of the cpuinfo_min_freq policy attribute corresponds to the load of 0, unless
when the load exceeds a (configurable) speedup threshold, in which case it will go straight for the highest frequency it is allowed to use
(the scaling_max_freq policy limit).

This governor exposes the following tunables:

sampling_rate This is how often the governor’s worker routine should run, in microseconds.

Typically, it is set to values of the order of 10000 (10 ms). Its default value is equal to the value of
cpuinfo_transition_latency for each policy this governor is attached to (but since the unit here is greater by 1000,
this means that the time represented by sampling_rate is 1000 times greater than the transition latency by default).

If this tunable is per-policy, the following shell command sets the time represented by it to be 750 times as high as the transition
latency:

# echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate

up_threshold If the estimated CPU load is above this value (in percent), the governor will set the frequency to the maximum value
allowed for the policy. Otherwise, the selected frequency will be proportional to the estimated CPU load.

ignore_nice_load If set to 1 (default 0), it will cause the CPU load estimation code to treat the CPU time spent on executing tasks
with “nice” levels greater than 0 as CPU idle time.

This may be useful if there are tasks in the system that should not be taken into account when deciding what frequency to run the
CPUs at. Then, to make that happen it is sufficient to increase the “nice” level of those tasks above 0 and set this attribute to 1.

sampling_down_factor Temporary multiplier, between 1 (default) and 100 inclusive, to apply to the sampling_rate value if
the CPU load goes above up_threshold.

This causes the next execution of the governor’s worker routine (after setting the frequency to the allowed maximum) to be delayed,
so the frequency stays at the maximum level for a longer time.

Frequency fluctuations in some bursty workloads may be avoided this way at the cost of additional energy spent on maintaining
the maximum CPU capacity.

powersave_bias Reduction factor to apply to the original frequency target of the governor (including the maximum value used when
the up_threshold value is exceeded by the estimated CPU load) or sensitivity threshold for the AMD frequency sensitivity
powersave bias driver (drivers/cpufreq/amd_freq_sensitivity.c), between 0 and 1000 inclusive.

If the AMD frequency sensitivity powersave bias driver is not loaded, the effective frequency to apply is given by

f * (1 - powersave_bias / 1000)

where f is the governor’s original frequency target. The default value of this attribute is 0 in that case.

If the AMD frequency sensitivity powersave bias driver is loaded, the value of this attribute is 400 by default and it is used in a
different way.

On Family 16h (and later) AMD processors there is a mechanism to get a measured workload sensitivity, between 0 and 100%
inclusive, from the hardware. That value can be used to estimate how the performance of the workload running on a CPU will
change in response to frequency changes.

The performance of a workload with the sensitivity of 0 (memory-bound or IO-bound) is not expected to increase at all as a result
of increasing the CPU frequency, whereas workloads with the sensitivity of 100% (CPU-bound) are expected to perform much
better if the CPU frequency is increased.

If the workload sensitivity is less than the threshold represented by the powersave_bias value, the sensitivity powersave bias
driver will cause the governor to select a frequency lower than its original target, so as to avoid over-provisioning workloads that
will not benefit from running at higher CPU frequencies.

336 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

conservative

This governor uses CPU load as a CPU frequency selection metric.

It estimates the CPU load in the same way as the ondemand governor described above, but the CPU frequency selection algorithm
implemented by it is different.

Namely, it avoids changing the frequency significantly over short time intervals which may not be suitable for systems with limited
power supply capacity (e.g. battery-powered). To achieve that, it changes the frequency in relatively small steps, one step at a time, up
or down - depending on whether or not a (configurable) threshold has been exceeded by the estimated CPU load.

This governor exposes the following tunables:

freq_step Frequency step in percent of the maximum frequency the governor is allowed to set (the scaling_max_freq policy
limit), between 0 and 100 (5 by default).

This is how much the frequency is allowed to change in one go. Setting it to 0 will cause the default frequency step (5 percent) to be
used and setting it to 100 effectively causes the governor to periodically switch the frequency between the scaling_min_freq
and scaling_max_freq policy limits.

down_threshold Threshold value (in percent, 20 by default) used to determine the frequency change direction.

If the estimated CPU load is greater than this value, the frequency will go up (by freq_step). If the load is less than this value
(and the sampling_down_factor mechanism is not in effect), the frequency will go down. Otherwise, the frequency will not
be changed.

sampling_down_factor Frequency decrease deferral factor, between 1 (default) and 10 inclusive.

It effectively causes the frequency to go down sampling_down_factor times slower than it ramps up.

Frequency Boost Support

Background

Some processors support a mechanism to raise the operating frequency of some cores in a multicore package temporarily (and above the
sustainable frequency threshold for the whole package) under certain conditions, for example if the whole chip is not fully utilized and
below its intended thermal or power budget.

Different names are used by different vendors to refer to this functionality. For Intel processors it is referred to as “Turbo Boost”, AMD
calls it “Turbo-Core” or (in technical documentation) “Core Performance Boost” and so on. As a rule, it also is implemented differently
by different vendors. The simple term “frequency boost” is used here for brevity to refer to all of those implementations.

The frequency boost mechanism may be either hardware-based or software-based. If it is hardware-based (e.g. on x86), the decision to
trigger the boosting is made by the hardware (although in general it requires the hardware to be put into a special state in which it can
control the CPU frequency within certain limits). If it is software-based (e.g. on ARM), the scaling driver decides whether or not to
trigger boosting and when to do that.

The boost File in sysfs

This file is located under /sys/devices/system/cpu/cpufreq/ and controls the “boost” setting for the whole system. It is not
present if the underlying scaling driver does not support the frequency boost mechanism (or supports it, but provides a driver-specific
interface for controlling it, like intel_pstate ).

If the value in this file is 1, the frequency boost mechanism is enabled. This means that either the hardware can be put into states in
which it is able to trigger boosting (in the hardware-based case), or the software is allowed to trigger boosting (in the software-based
case). It does not mean that boosting is actually in use at the moment on any CPUs in the system. It only means a permission to use the
frequency boost mechanism (which still may never be used for other reasons).

30.3. Working-State Power Management 337



Linux Kernel User Documentation, v4.20.0

If the value in this file is 0, the frequency boost mechanism is disabled and cannot be used at all.

The only values that can be written to this file are 0 and 1.

Rationale for Boost Control Knob

The frequency boost mechanism is generally intended to help to achieve optimum CPU performance on time scales below software
resolution (e.g. below the scheduler tick interval) and it is demonstrably suitable for many workloads, but it may lead to problems in
certain situations.

For this reason, many systems make it possible to disable the frequency boost mechanism in the platform firmware (BIOS) setup, but
that requires the system to be restarted for the setting to be adjusted as desired, which may not be practical at least in some cases. For
example:

1. Boosting means overclocking the processor, although under controlled conditions. Generally, the processor’s energy consumption
increases as a result of increasing its frequency and voltage, even temporarily. That may not be desirable on systems that switch
to power sources of limited capacity, such as batteries, so the ability to disable the boost mechanism while the system is running
may help there (but that depends on the workload too).

2. In some situations deterministic behavior is more important than performance or energy consumption (or both) and the ability to
disable boosting while the system is running may be useful then.

3. To examine the impact of the frequency boost mechanism itself, it is useful to be able to run tests with and without boosting,
preferably without restarting the system in the meantime.

4. Reproducible results are important when running benchmarks. Since the boosting functionality depends on the load of the whole
package, single-thread performance may vary because of it which may lead to unreproducible results sometimes. That can be
avoided by disabling the frequency boost mechanism before running benchmarks sensitive to that issue.

Legacy AMD cpb Knob

The AMD powernow-k8 scaling driver supports a sysfs knob very similar to the global boost one. It is used for disabling/enabling
the “Core Performance Boost” feature of some AMD processors.

If present, that knob is located in every CPUFreq policy directory in sysfs (/sys/devices/system/cpu/cpufreq/policyX/)
and is called cpb, which indicates a more fine grained control interface. The actual implementation, however, works on the system-wide
basis and setting that knob for one policy causes the same value of it to be set for all of the other policies at the same time.

That knob is still supported on AMD processors that support its underlying hardware feature, but it may be configured out of the kernel
(via the CONFIG_X86_ACPI_CPUFREQ_CPB configuration option) and the global boost knob is present regardless. Thus it is
always possible use the boost knob instead of the cpb one which is highly recommended, as that is more consistent with what all of
the other systems do (and the cpb knob may not be supported any more in the future).

The cpb knob is never present for any processors without the underlying hardware feature (e.g. all Intel ones), even if the
CONFIG_X86_ACPI_CPUFREQ_CPB configuration option is set.

intel_pstate CPU Performance Scaling Driver

Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com>

General Information

intel_pstate is a part of the CPU performance scaling subsystem in the Linux kernel (CPUFreq). It is a scaling driver for
the Sandy Bridge and later generations of Intel processors. Note, however, that some of those processors may not be supported. [To

338 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

understand intel_pstate it is necessary to know how CPUFreq works in general, so this is the time to read CPU Performance
Scaling if you have not done that yet.]

For the processors supported by intel_pstate, the P-state concept is broader than just an operating frequency or an operating
performance point (see the LinuxCon Europe 2015 presentation by Kristen Accardi for more information about that). For this reason,
the representation of P-states used by intel_pstate internally follows the hardware specification (for details refer to Intel® 64
and IA-32 Architectures Software Developer’s Manual Volume 3: System Programming Guide). However, the CPUFreq core uses
frequencies for identifying operating performance points of CPUs and frequencies are involved in the user space interface exposed by it,
so intel_pstate maps its internal representation of P-states to frequencies too (fortunately, that mapping is unambiguous). At the
same time, it would not be practical for intel_pstate to supply the CPUFreq core with a table of available frequencies due to the
possible size of it, so the driver does not do that. Some functionality of the core is limited by that.

Since the hardware P-state selection interface used by intel_pstate is available at the logical CPU level, the driver always works
with individual CPUs. Consequently, if intel_pstate is in use, every CPUFreq policy object corresponds to one logical CPU and
CPUFreq policies are effectively equivalent to CPUs. In particular, this means that they become “inactive” every time the corresponding
CPU is taken offline and need to be re-initialized when it goes back online.

intel_pstate is not modular, so it cannot be unloaded, which means that the only way to pass early-configuration-time parameters
to it is via the kernel command line. However, its configuration can be adjusted via sysfs to a great extent. In some configurations it
even is possible to unregister it via sysfs which allows another CPUFreq scaling driver to be loaded and registered (see below).

Operation Modes

intel_pstate can operate in three different modes: in the active mode with or without hardware-managed P-states support and in
the passive mode. Which of them will be in effect depends on what kernel command line options are used and on the capabilities of the
processor.

Active Mode

This is the default operation mode of intel_pstate. If it works in this mode, the scaling_driver policy attribute in sysfs for
all CPUFreq policies contains the string “intel_pstate”.

In this mode the driver bypasses the scaling governors layer of CPUFreq and provides its own scaling algorithms for P-state se-
lection. Those algorithms can be applied to CPUFreq policies in the same way as generic scaling governors (that is, through the
scaling_governor policy attribute in sysfs). [Note that different P-state selection algorithms may be chosen for different poli-
cies, but that is not recommended.]

They are not generic scaling governors, but their names are the same as the names of some of those governors. Moreover, confusingly
enough, they generally do not work in the same way as the generic governors they share the names with. For example, the powersave
P-state selection algorithm provided by intel_pstate is not a counterpart of the generic powersave governor (roughly, it corre-
sponds to the schedutil and ondemand governors).

There are two P-state selection algorithms provided by intel_pstate in the active mode: powersave and performance. The
way they both operate depends on whether or not the hardware-managed P-states (HWP) feature has been enabled in the processor and
possibly on the processor model.

Which of the P-state selection algorithms is used by default depends on the CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
kernel configuration option. Namely, if that option is set, the performance algorithm will be used by default, and the other one will
be used by default if it is not set.

Active Mode With HWP

If the processor supports the HWP feature, it will be enabled during the processor initialization and cannot be disabled after that. It is
possible to avoid enabling it by passing the intel_pstate=no_hwp argument to the kernel in the command line.

30.3. Working-State Power Management 339

http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html


Linux Kernel User Documentation, v4.20.0

If the HWP feature has been enabled, intel_pstate relies on the processor to select P-states by itself, but still it can give hints to the
processor’s internal P-state selection logic. What those hints are depends on which P-state selection algorithm has been applied to the
given policy (or to the CPU it corresponds to).

Even though the P-state selection is carried out by the processor automatically, intel_pstate registers utilization update callbacks
with the CPU scheduler in this mode. However, they are not used for running a P-state selection algorithm, but for periodic updates of
the current CPU frequency information to be made available from the scaling_cur_freq policy attribute in sysfs.

HWP + performance

In this configuration intel_pstate will write 0 to the processor’s Energy-Performance Preference (EPP) knob (if supported) or its
Energy-Performance Bias (EPB) knob (otherwise), which means that the processor’s internal P-state selection logic is expected to focus
entirely on performance.

This will override the EPP/EPB setting coming from the sysfs interface (see Energy vs Performance Hints below).

Also, in this configuration the range of P-states available to the processor’s internal P-state selection logic is always restricted to the
upper boundary (that is, the maximum P-state that the driver is allowed to use).

HWP + powersave

In this configuration intel_pstate will set the processor’s Energy-Performance Preference (EPP) knob (if supported) or its Energy-
Performance Bias (EPB) knob (otherwise) to whatever value it was previously set to via sysfs (or whatever default value it was set to
by the platform firmware). This usually causes the processor’s internal P-state selection logic to be less performance-focused.

Active Mode Without HWP

This is the default operation mode for processors that do not support the HWP feature. It also is used by default with the
intel_pstate=no_hwp argument in the kernel command line. However, in this mode intel_pstate may refuse to work with
the given processor if it does not recognize it. [Note that intel_pstate will never refuse to work with any processor with the HWP
feature enabled.]

In this mode intel_pstate registers utilization update callbacks with the CPU scheduler in order to run a P-state selection algorithm,
either powersave or performance, depending on the scaling_governor policy setting in sysfs. The current CPU frequency
information to be made available from the scaling_cur_freq policy attribute in sysfs is periodically updated by those utilization
update callbacks too.

performance

Without HWP, this P-state selection algorithm is always the same regardless of the processor model and platform configuration.

It selects the maximum P-state it is allowed to use, subject to limits set via sysfs, every time the driver configuration for the given
CPU is updated (e.g. via sysfs).

This is the default P-state selection algorithm if the CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE kernel configuration op-
tion is set.

powersave

Without HWP, this P-state selection algorithm is similar to the algorithm implemented by the generic schedutil scaling governor
except that the utilization metric used by it is based on numbers coming from feedback registers of the CPU. It generally selects P-states
proportional to the current CPU utilization.

340 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

This algorithm is run by the driver’s utilization update callback for the given CPU when it is invoked by the CPU scheduler, but not more
often than every 10 ms. Like in the performance case, the hardware configuration is not touched if the new P-state turns out to be
the same as the current one.

This is the default P-state selection algorithm if the CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE kernel configuration op-
tion is not set.

Passive Mode

This mode is used if the intel_pstate=passive argument is passed to the kernel in the command line (it implies the
intel_pstate=no_hwp setting too). Like in the active mode without HWP support, in this mode intel_pstate may refuse
to work with the given processor if it does not recognize it.

If the driver works in this mode, the scaling_driver policy attribute in sysfs for all CPUFreq policies contains the string
“intel_cpufreq”. Then, the driver behaves like a regular CPUFreq scaling driver. That is, it is invoked by generic scaling governors
when necessary to talk to the hardware in order to change the P-state of a CPU (in particular, the schedutil governor can invoke it
directly from scheduler context).

While in this mode, intel_pstate can be used with all of the (generic) scaling governors listed by the
scaling_available_governors policy attribute in sysfs (and the P-state selection algorithms described above are not
used). Then, it is responsible for the configuration of policy objects corresponding to CPUs and provides the CPUFreq core (and
the scaling governors attached to the policy objects) with accurate information on the maximum and minimum operating frequencies
supported by the hardware (including the so-called “turbo” frequency ranges). In other words, in the passive mode the entire range of
available P-states is exposed by intel_pstate to the CPUFreq core. However, in this mode the driver does not register utilization
update callbacks with the CPU scheduler and the scaling_cur_freq information comes from the CPUFreq core (and is the last
frequency selected by the current scaling governor for the given policy).

Turbo P-states Support

In the majority of cases, the entire range of P-states available to intel_pstate can be divided into two sub-ranges that correspond to
different types of processor behavior, above and below a boundary that will be referred to as the “turbo threshold” in what follows.

The P-states above the turbo threshold are referred to as “turbo P-states” and the whole sub-range of P-states they belong to is referred to
as the “turbo range”. These names are related to the Turbo Boost technology allowing a multicore processor to opportunistically increase
the P-state of one or more cores if there is enough power to do that and if that is not going to cause the thermal envelope of the processor
package to be exceeded.

Specifically, if software sets the P-state of a CPU core within the turbo range (that is, above the turbo threshold), the processor is
permitted to take over performance scaling control for that core and put it into turbo P-states of its choice going forward. However, that
permission is interpreted differently by different processor generations. Namely, the Sandy Bridge generation of processors will never
use any P-states above the last one set by software for the given core, even if it is within the turbo range, whereas all of the later processor
generations will take it as a license to use any P-states from the turbo range, even above the one set by software. In other words, on
those processors setting any P-state from the turbo range will enable the processor to put the given core into all turbo P-states up to and
including the maximum supported one as it sees fit.

One important property of turbo P-states is that they are not sustainable. More precisely, there is no guarantee that any CPUs will be
able to stay in any of those states indefinitely, because the power distribution within the processor package may change over time or the
thermal envelope it was designed for might be exceeded if a turbo P-state was used for too long.

In turn, the P-states below the turbo threshold generally are sustainable. In fact, if one of them is set by software, the processor is not
expected to change it to a lower one unless in a thermal stress or a power limit violation situation (a higher P-state may still be used if it
is set for another CPU in the same package at the same time, for example).

Some processors allow multiple cores to be in turbo P-states at the same time, but the maximum P-state that can be set for them generally
depends on the number of cores running concurrently. The maximum turbo P-state that can be set for 3 cores at the same time usually

30.3. Working-State Power Management 341



Linux Kernel User Documentation, v4.20.0

is lower than the analogous maximum P-state for 2 cores, which in turn usually is lower than the maximum turbo P-state that can be set
for 1 core. The one-core maximum turbo P-state is thus the maximum supported one overall.

The maximum supported turbo P-state, the turbo threshold (the maximum supported non-turbo P-state) and the minimum supported
P-state are specific to the processor model and can be determined by reading the processor’s model-specific registers (MSRs). Moreover,
some processors support the Configurable TDP (Thermal Design Power) feature and, when that feature is enabled, the turbo threshold
effectively becomes a configurable value that can be set by the platform firmware.

Unlike _PSS objects in the ACPI tables, intel_pstate always exposes the entire range of available P-states, including the whole
turbo range, to the CPUFreq core and (in the passive mode) to generic scaling governors. This generally causes turbo P-states to be set
more often when intel_pstate is used relative to ACPI-based CPU performance scaling (see below for more information).

Moreover, since intel_pstate always knows what the real turbo threshold is (even if the Configurable TDP feature is enabled in
the processor), its no_turbo attribute in sysfs (described below) should work as expected in all cases (that is, if set to disable turbo
P-states, it always should prevent intel_pstate from using them).

Processor Support

To handle a given processor intel_pstate requires a number of different pieces of information on it to be known, including:

• The minimum supported P-state.

• The maximum supported non-turbo P-state.

• Whether or not turbo P-states are supported at all.

• The maximum supported one-core turbo P-state (if turbo P-states are supported).

• The scaling formula to translate the driver’s internal representation of P-states into frequencies and the other way around.

Generally, ways to obtain that information are specific to the processor model or family. Although it often is possible to obtain all of it
from the processor itself (using model-specific registers), there are cases in which hardware manuals need to be consulted to get to it too.

For this reason, there is a list of supported processors in intel_pstate and the driver initialization will fail if the detected processor
is not in that list, unless it supports the HWP feature. [The interface to obtain all of the information listed above is the same for all of the
processors supporting the HWP feature, which is why they all are supported by intel_pstate.]

User Space Interface in sysfs

Global Attributes

intel_pstate exposes several global attributes (files) in sysfs to control its functionality at the system level. They are located in
the /sys/devices/system/cpu/intel_pstate/ directory and affect all CPUs.

Some of them are not present if the intel_pstate=per_cpu_perf_limits argument is passed to the kernel in the command
line.

max_perf_pct Maximum P-state the driver is allowed to set in percent of the maximum supported performance level (the highest
supported turbo P-state).

This attribute will not be exposed if the intel_pstate=per_cpu_perf_limits argument is present in the kernel com-
mand line.

min_perf_pct Minimum P-state the driver is allowed to set in percent of the maximum supported performance level (the highest
supported turbo P-state).

This attribute will not be exposed if the intel_pstate=per_cpu_perf_limits argument is present in the kernel com-
mand line.

342 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

num_pstates Number of P-states supported by the processor (between 0 and 255 inclusive) including both turbo and non-turbo
P-states (see Turbo P-states Support).

The value of this attribute is not affected by the no_turbo setting described below.

This attribute is read-only.

turbo_pct Ratio of the turbo range size to the size of the entire range of supported P-states, in percent.

This attribute is read-only.

no_turbo If set (equal to 1), the driver is not allowed to set any turbo P-states (see Turbo P-states Support). If unset (equalt to 0,
which is the default), turbo P-states can be set by the driver. [Note that intel_pstate does not support the general boost
attribute (supported by some other scaling drivers) which is replaced by this one.]

This attrubute does not affect the maximum supported frequency value supplied to the CPUFreq core and exposed via the policy
interface, but it affects the maximum possible value of per-policy P-state limits (see Interpretation of Policy Attributes below for
details).

hwp_dynamic_boost This attribute is only present if intel_pstate works in the active mode with the HWP feature enabled in
the processor. If set (equal to 1), it causes the minimum P-state limit to be increased dynamically for a short time whenever a task
previously waiting on I/O is selected to run on a given logical CPU (the purpose of this mechanism is to improve performance).

This setting has no effect on logical CPUs whose minimum P-state limit is directly set to the highest non-turbo P-state or above it.

status Operation mode of the driver: “active”, “passive” or “off”.

“active” The driver is functional and in the active mode.

“passive” The driver is functional and in the passive mode.

“off” The driver is not functional (it is not registered as a scaling driver with the CPUFreq core).

This attribute can be written to in order to change the driver’s operation mode or to unregister it. The string written to it must be
one of the possible values of it and, if successful, the write will cause the driver to switch over to the operation mode represented
by that string - or to be unregistered in the “off” case. [Actually, switching over from the active mode to the passive mode or the
other way around causes the driver to be unregistered and registered again with a different set of callbacks, so all of its settings
(the global as well as the per-policy ones) are then reset to their default values, possibly depending on the target operation mode.]

That only is supported in some configurations, though (for example, if the HWP feature is enabled in the processor, the operation
mode of the driver cannot be changed), and if it is not supported in the current configuration, writes to this attribute will fail with
an appropriate error.

Interpretation of Policy Attributes

The interpretation of some CPUFreq policy attributes described in CPU Performance Scaling is special with intel_pstate as the
current scaling driver and it generally depends on the driver’s operation mode.

First of all, the values of the cpuinfo_max_freq, cpuinfo_min_freq and scaling_cur_freq attributes are produced
by applying a processor-specific multiplier to the internal P-state representation used by intel_pstate. Also, the values of the
scaling_max_freq and scaling_min_freq attributes are capped by the frequency corresponding to the maximum P-state that
the driver is allowed to set.

If the no_turbo global attribute is set, the driver is not allowed to use turbo P-states, so the maximum value of scaling_max_freq
and scaling_min_freq is limited to the maximum non-turbo P-state frequency. Accordingly, setting no_turbo causes
scaling_max_freq and scaling_min_freq to go down to that value if they were above it before. However, the old values
of scaling_max_freq and scaling_min_freq will be restored after unsetting no_turbo, unless these attributes have been
written to after no_turbo was set.

If no_turbo is not set, the maximum possible value of scaling_max_freq and scaling_min_freq corresponds to the maxi-
mum supported turbo P-state, which also is the value of cpuinfo_max_freq in either case.

30.3. Working-State Power Management 343



Linux Kernel User Documentation, v4.20.0

Next, the following policy attributes have special meaning if intel_pstate works in the active mode:

scaling_available_governors List of P-state selection algorithms provided by intel_pstate.

scaling_governor P-state selection algorithm provided by intel_pstate currently in use with the given policy.

scaling_cur_freq Frequency of the average P-state of the CPU represented by the given policy for the time interval between the
last two invocations of the driver’s utilization update callback by the CPU scheduler for that CPU.

One more policy attribute is present if the HWP feature is enabled in the processor:

base_frequency Shows the base frequency of the CPU. Any frequency above this will be in the turbo frequency range.

The meaning of these attributes in the passive mode is the same as for other scaling drivers.

Additionally, the value of the scaling_driver attribute for intel_pstate depends on the operation mode of the driver. Namely,
it is either “intel_pstate” (in the active mode) or “intel_cpufreq” (in the passive mode).

Coordination of P-State Limits

intel_pstate allows P-state limits to be set in two ways: with the help of the max_perf_pct and min_perf_pct global
attributes or via the scaling_max_freq and scaling_min_freq CPUFreq policy attributes. The coordination between those
limits is based on the following rules, regardless of the current operation mode of the driver:

1. All CPUs are affected by the global limits (that is, none of them can be requested to run faster than the global maximum and none
of them can be requested to run slower than the global minimum).

2. Each individual CPU is affected by its own per-policy limits (that is, it cannot be requested to run faster than its own per-policy
maximum and it cannot be requested to run slower than its own per-policy minimum).

3. The global and per-policy limits can be set independently.

If the HWP feature is enabled in the processor, the resulting effective values are written into its registers whenever the limits change in
order to request its internal P-state selection logic to always set P-states within these limits. Otherwise, the limits are taken into account
by scaling governors (in the passive mode) and by the driver every time before setting a new P-state for a CPU.

Additionally, if the intel_pstate=per_cpu_perf_limits command line argument is passed to the kernel, max_perf_pct
and min_perf_pct are not exposed at all and the only way to set the limits is by using the policy attributes.

Energy vs Performance Hints

If intel_pstate works in the active mode with the HWP feature enabled in the processor, additional attributes are present in every
CPUFreq policy directory in sysfs. They are intended to allow user space to help intel_pstate to adjust the processor’s internal
P-state selection logic by focusing it on performance or on energy-efficiency, or somewhere between the two extremes:

energy_performance_preference Current value of the energy vs performance hint for the given policy (or the CPU represented
by it).

The hint can be changed by writing to this attribute.

energy_performance_available_preferences List of strings that can be written to the
energy_performance_preference attribute.

They represent different energy vs performance hints and should be self-explanatory, except that default represents whatever
hint value was set by the platform firmware.

Strings written to the energy_performance_preference attribute are internally translated to integer values written to the pro-
cessor’s Energy-Performance Preference (EPP) knob (if supported) or its Energy-Performance Bias (EPB) knob.

344 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

[Note that tasks may by migrated from one CPU to another by the scheduler’s load-balancing algorithm and if different energy vs
performance hints are set for those CPUs, that may lead to undesirable outcomes. To avoid such issues it is better to set the same energy
vs performance hint for all CPUs or to pin every task potentially sensitive to them to a specific CPU.]

intel_pstate vs acpi-cpufreq

On the majority of systems supported by intel_pstate, the ACPI tables provided by the platform firmware contain _PSS objects
returning information that can be used for CPU performance scaling (refer to the ACPI specification for details on the _PSS objects and
the format of the information returned by them).

The information returned by the ACPI _PSS objects is used by the acpi-cpufreq scaling driver. On systems supported by
intel_pstate the acpi-cpufreq driver uses the same hardware CPU performance scaling interface, but the set of P-states it
can use is limited by the _PSS output.

On those systems each _PSS object returns a list of P-states supported by the corresponding CPU which basically is a subset of the
P-states range that can be used by intel_pstate on the same system, with one exception: the whole turbo range is represented by
one item in it (the topmost one). By convention, the frequency returned by _PSS for that item is greater by 1 MHz than the frequency
of the highest non-turbo P-state listed by it, but the corresponding P-state representation (following the hardware specification) returned
for it matches the maximum supported turbo P-state (or is the special value 255 meaning essentially “go as high as you can get”).

The list of P-states returned by _PSS is reflected by the table of available frequencies supplied by acpi-cpufreq to the CPUFreq
core and scaling governors and the minimum and maximum supported frequencies reported by it come from that list as well. In particular,
given the special representation of the turbo range described above, this means that the maximum supported frequency reported by
acpi-cpufreq is higher by 1 MHz than the frequency of the highest supported non-turbo P-state listed by _PSS which, of course,
affects decisions made by the scaling governors, except for powersave and performance.

For example, if a given governor attempts to select a frequency proportional to estimated CPU load and maps the load of 100% to the
maximum supported frequency (possibly multiplied by a constant), then it will tend to choose P-states below the turbo threshold if
acpi-cpufreq is used as the scaling driver, because in that case the turbo range corresponds to a small fraction of the frequency band
it can use (1 MHz vs 1 GHz or more). In consequence, it will only go to the turbo range for the highest loads and the other loads above
50% that might benefit from running at turbo frequencies will be given non-turbo P-states instead.

One more issue related to that may appear on systems supporting the Configurable TDP feature allowing the platform firmware to set
the turbo threshold. Namely, if that is not coordinated with the lists of P-states returned by _PSS properly, there may be more than one
item corresponding to a turbo P-state in those lists and there may be a problem with avoiding the turbo range (if desirable or necessary).
Usually, to avoid using turbo P-states overall, acpi-cpufreq simply avoids using the topmost state listed by _PSS, but that is not
sufficient when there are other turbo P-states in the list returned by it.

Apart from the above, acpi-cpufreq works like intel_pstate in the passive mode, except that the number of P-states it can set
is limited to the ones listed by the ACPI _PSS objects.

Kernel Command Line Options for intel_pstate

Several kernel command line options can be used to pass early-configuration-time parameters to intel_pstate in order to enforce
specific behavior of it. All of them have to be prepended with the intel_pstate= prefix.

disable Do not register intel_pstate as the scaling driver even if the processor is supported by it.

passive Register intel_pstate in the passive mode to start with.

This option implies the no_hwp one described below.

force Register intel_pstate as the scaling driver instead of acpi-cpufreq even if the latter is preferred on the given system.

This may prevent some platform features (such as thermal controls and power capping) that rely on the availability of ACPI
P-states information from functioning as expected, so it should be used with caution.

This option does not work with processors that are not supported by intel_pstate and on platforms where the pcc-cpufreq
scaling driver is used instead of acpi-cpufreq.

30.3. Working-State Power Management 345

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf


Linux Kernel User Documentation, v4.20.0

no_hwp Do not enable the hardware-managed P-states (HWP) feature even if it is supported by the processor.

hwp_only Register intel_pstate as the scaling driver only if the hardware-managed P-states (HWP) feature is supported by the
processor.

support_acpi_ppc Take ACPI _PPC performance limits into account.

If the preferred power management profile in the FADT (Fixed ACPI Description Table) is set to “Enterprise Server” or “Perfor-
mance Server”, the ACPI _PPC limits are taken into account by default and this option has no effect.

per_cpu_perf_limits Use per-logical-CPU P-State limits (see Coordination of P-state Limits for details).

Diagnostics and Tuning

Trace Events

There are two static trace events that can be used for intel_pstate diagnostics. One of them is the cpu_frequency trace event
generally used by CPUFreq, and the other one is the pstate_sample trace event specific to intel_pstate. Both of them are
triggered by intel_pstate only if it works in the active mode.

The following sequence of shell commands can be used to enable them and see their output (if the kernel is generally configured to
support event tracing):

# cd /sys/kernel/debug/tracing/
# echo 1 > events/power/pstate_sample/enable
# echo 1 > events/power/cpu_frequency/enable
# cat trace
gnome-terminal--4510 [001] ..s. 1177.680733: pstate_sample: core_busy=107 scaled=94 from=26 to=26
→˓mperf=1143818 aperf=1230607 tsc=29838618 freq=2474476
cat-5235 [002] ..s. 1177.681723: cpu_frequency: state=2900000 cpu_id=2

If intel_pstate works in the passive mode, the cpu_frequency trace event will be triggered either by the schedutil scaling
governor (for the policies it is attached to), or by the CPUFreq core (for the policies with other scaling governors).

ftrace

The ftrace interface can be used for low-level diagnostics of intel_pstate. For example, to check how often the function to set
a P-state is called, the ftrace filter can be set to to intel_pstate_set_pstate():

# cd /sys/kernel/debug/tracing/
# cat available_filter_functions | grep -i pstate
intel_pstate_set_pstate
intel_pstate_cpu_init
...
# echo intel_pstate_set_pstate > set_ftrace_filter
# echo function > current_tracer
# cat trace | head -15
# tracer: function
#
# entries-in-buffer/entries-written: 80/80 #P:4
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION

346 Chapter 30. Power Management



Linux Kernel User Documentation, v4.20.0

# | | | |||| | |
Xorg-3129 [000] ..s. 2537.644844: intel_pstate_set_pstate <-intel_pstate_timer_func

gnome-terminal--4510 [002] ..s. 2537.649844: intel_pstate_set_pstate <-intel_pstate_timer_func
gnome-shell-3409 [001] ..s. 2537.650850: intel_pstate_set_pstate <-intel_pstate_timer_func

<idle>-0 [000] ..s. 2537.654843: intel_pstate_set_pstate <-intel_pstate_timer_func

30.3. Working-State Power Management 347



Linux Kernel User Documentation, v4.20.0

348 Chapter 30. Power Management



CHAPTER 31

Thunderbolt

The interface presented here is not meant for end users. Instead there should be a userspace tool that handles all the low-level details,
keeps a database of the authorized devices and prompts users for new connections.

More details about the sysfs interface for Thunderbolt devices can be found in Documentation/ABI/testing/sysfs-bus-thunderbolt.

Those users who just want to connect any device without any sort of manual work can add following line to
/etc/udev/rules.d/99-local.rules:

ACTION=="add", SUBSYSTEM=="thunderbolt", ATTR{authorized}=="0", ATTR{authorized}="1"

This will authorize all devices automatically when they appear. However, keep in mind that this bypasses the security levels and makes
the system vulnerable to DMA attacks.

Security levels and how to use them

Starting with Intel Falcon Ridge Thunderbolt controller there are 4 security levels available. Intel Titan Ridge added one more security
level (usbonly). The reason for these is the fact that the connected devices can be DMA masters and thus read contents of the host
memory without CPU and OS knowing about it. There are ways to prevent this by setting up an IOMMU but it is not always available
for various reasons.

The security levels are as follows:

none All devices are automatically connected by the firmware. No user approval is needed. In BIOS settings this is typically
called Legacy mode.

user User is asked whether the device is allowed to be connected. Based on the device identification information available
through /sys/bus/thunderbolt/devices, the user then can make the decision. In BIOS settings this is
typically called Unique ID.

secure User is asked whether the device is allowed to be connected. In addition to UUID the device (if it supports secure
connect) is sent a challenge that should match the expected one based on a random key written to the key sysfs
attribute. In BIOS settings this is typically called One time saved key.

dponly The firmware automatically creates tunnels for Display Port and USB. No PCIe tunneling is done. In BIOS settings
this is typically called Display Port Only.

usbonly The firmware automatically creates tunnels for the USB controller and Display Port in a dock. All PCIe links
downstream of the dock are removed.

The current security level can be read from /sys/bus/thunderbolt/devices/domainX/security where domainX is the
Thunderbolt domain the host controller manages. There is typically one domain per Thunderbolt host controller.

349



Linux Kernel User Documentation, v4.20.0

If the security level reads as user or secure the connected device must be authorized by the user before PCIe tunnels are created (e.g
the PCIe device appears).

Each Thunderbolt device plugged in will appear in sysfs under /sys/bus/thunderbolt/devices. The device directory carries
information that can be used to identify the particular device, including its name and UUID.

Authorizing devices when security level is user or secure

When a device is plugged in it will appear in sysfs as follows:

/sys/bus/thunderbolt/devices/0-1/authorized - 0
/sys/bus/thunderbolt/devices/0-1/device - 0x8004
/sys/bus/thunderbolt/devices/0-1/device_name - Thunderbolt to FireWire Adapter
/sys/bus/thunderbolt/devices/0-1/vendor - 0x1
/sys/bus/thunderbolt/devices/0-1/vendor_name - Apple, Inc.
/sys/bus/thunderbolt/devices/0-1/unique_id - e0376f00-0300-0100-ffff-ffffffffffff

The authorized attribute reads 0 which means no PCIe tunnels are created yet. The user can authorize the device by simply entering:

# echo 1 > /sys/bus/thunderbolt/devices/0-1/authorized

This will create the PCIe tunnels and the device is now connected.

If the device supports secure connect, and the domain security level is set to secure, it has an additional attribute key which can hold
a random 32-byte value used for authorization and challenging the device in future connects:

/sys/bus/thunderbolt/devices/0-3/authorized - 0
/sys/bus/thunderbolt/devices/0-3/device - 0x305
/sys/bus/thunderbolt/devices/0-3/device_name - AKiTiO Thunder3 PCIe Box
/sys/bus/thunderbolt/devices/0-3/key -
/sys/bus/thunderbolt/devices/0-3/vendor - 0x41
/sys/bus/thunderbolt/devices/0-3/vendor_name - inXtron
/sys/bus/thunderbolt/devices/0-3/unique_id - dc010000-0000-8508-a22d-32ca6421cb16

Notice the key is empty by default.

If the user does not want to use secure connect they can just echo 1 to the authorized attribute and the PCIe tunnels will be created
in the same way as in the user security level.

If the user wants to use secure connect, the first time the device is plugged a key needs to be created and sent to the device:

# key=$(openssl rand -hex 32)
# echo $key > /sys/bus/thunderbolt/devices/0-3/key
# echo 1 > /sys/bus/thunderbolt/devices/0-3/authorized

Now the device is connected (PCIe tunnels are created) and in addition the key is stored on the device NVM.

Next time the device is plugged in the user can verify (challenge) the device using the same key:

# echo $key > /sys/bus/thunderbolt/devices/0-3/key
# echo 2 > /sys/bus/thunderbolt/devices/0-3/authorized

If the challenge the device returns back matches the one we expect based on the key, the device is connected and the PCIe tunnels are
created. However, if the challenge fails no tunnels are created and error is returned to the user.

If the user still wants to connect the device they can either approve the device without a key or write a new key and write 1 to the
authorized file to get the new key stored on the device NVM.

350 Chapter 31. Thunderbolt



Linux Kernel User Documentation, v4.20.0

Upgrading NVM on Thunderbolt device or host

Since most of the functionality is handled in firmware running on a host controller or a device, it is important that the firmware can be
upgraded to the latest where possible bugs in it have been fixed. Typically OEMs provide this firmware from their support site.

There is also a central site which has links where to download firmware for some machines:

Thunderbolt Updates

Before you upgrade firmware on a device or host, please make sure it is a suitable upgrade. Failing to do that may render the device (or
host) in a state where it cannot be used properly anymore without special tools!

Host NVM upgrade on Apple Macs is not supported.

Once the NVM image has been downloaded, you need to plug in a Thunderbolt device so that the host controller appears. It does not
matter which device is connected (unless you are upgrading NVM on a device - then you need to connect that particular device).

Note an OEM-specific method to power the controller up (“force power”) may be available for your system in which case there is no
need to plug in a Thunderbolt device.

After that we can write the firmware to the non-active parts of the NVM of the host or device. As an example here is how Intel
NUC6i7KYK (Skull Canyon) Thunderbolt controller NVM is upgraded:

# dd if=KYK_TBT_FW_0018.bin of=/sys/bus/thunderbolt/devices/0-0/nvm_non_active0/nvmem

Once the operation completes we can trigger NVM authentication and upgrade process as follows:

# echo 1 > /sys/bus/thunderbolt/devices/0-0/nvm_authenticate

If no errors are returned, the host controller shortly disappears. Once it comes back the driver notices it and initiates a full power cycle.
After a while the host controller appears again and this time it should be fully functional.

We can verify that the new NVM firmware is active by running the following commands:

# cat /sys/bus/thunderbolt/devices/0-0/nvm_authenticate
0x0
# cat /sys/bus/thunderbolt/devices/0-0/nvm_version
18.0

If nvm_authenticate contains anything other than 0x0 it is the error code from the last authentication cycle, which means the
authentication of the NVM image failed.

Note names of the NVMem devices nvm_activeN and nvm_non_activeN depend on the order they are registered in the NVMem
subsystem. N in the name is the identifier added by the NVMem subsystem.

Upgrading NVM when host controller is in safe mode

If the existing NVM is not properly authenticated (or is missing) the host controller goes into safe mode which means that the only
available functionality is flashing a new NVM image. When in this mode, reading nvm_version fails with ENODATA and the device
identification information is missing.

To recover from this mode, one needs to flash a valid NVM image to the host controller in the same way it is done in the previous chapter.

Networking over Thunderbolt cable

Thunderbolt technology allows software communication between two hosts connected by a Thunderbolt cable.

31.3. Upgrading NVM on Thunderbolt device or host 351

https://thunderbolttechnology.net/updates


Linux Kernel User Documentation, v4.20.0

It is possible to tunnel any kind of traffic over a Thunderbolt link but currently we only support Apple ThunderboltIP protocol.

If the other host is running Windows or macOS, the only thing you need to do is to connect a Thunderbolt cable between the two hosts;
the thunderbolt-net driver is loaded automatically. If the other host is also Linux you should load thunderbolt-net manually
on one host (it does not matter which one):

# modprobe thunderbolt-net

This triggers module load on the other host automatically. If the driver is built-in to the kernel image, there is no need to do anything.

The driver will create one virtual ethernet interface per Thunderbolt port which are named like thunderbolt0 and so on. From this
point you can either use standard userspace tools like ifconfig to configure the interface or let your GUI handle it automatically.

Forcing power

Many OEMs include a method that can be used to force the power of a Thunderbolt controller to an “On” state even if nothing is
connected. If supported by your machine this will be exposed by the WMI bus with a sysfs attribute called “force_power”.

For example the intel-wmi-thunderbolt driver exposes this attribute in: /sys/bus/wmi/devices/86CCFD48-205E-4A77-9C48-
2021CBEDE341/force_power

To force the power to on, write 1 to this attribute file. To disable force power, write 0 to this attribute file.

Note: it’s currently not possible to query the force power state of a platform.

352 Chapter 31. Thunderbolt



CHAPTER 32

Linux Security Module Usage

The Linux Security Module (LSM) framework provides a mechanism for various security checks to be hooked by new kernel extensions.
The name “module” is a bit of a misnomer since these extensions are not actually loadable kernel modules. Instead, they are selectable
at build-time via CONFIG_DEFAULT_SECURITY and can be overridden at boot-time via the "security=..." kernel command
line argument, in the case where multiple LSMs were built into a given kernel.

The primary users of the LSM interface are Mandatory Access Control (MAC) extensions which provide a comprehensive security
policy. Examples include SELinux, Smack, Tomoyo, and AppArmor. In addition to the larger MAC extensions, other extensions can
be built using the LSM to provide specific changes to system operation when these tweaks are not available in the core functionality of
Linux itself.

Without a specific LSM built into the kernel, the default LSM will be the Linux capabilities system. Most LSMs choose to extend the ca-
pabilities system, building their checks on top of the defined capability hooks. For more details on capabilities, see capabilities(7)
in the Linux man-pages project.

A list of the active security modules can be found by reading /sys/kernel/security/lsm. This is a comma separated list, and
will always include the capability module. The list reflects the order in which checks are made. The capability module will always be
first, followed by any “minor” modules (e.g. Yama) and then the one “major” module (e.g. SELinux) if there is one configured.

AppArmor

What is AppArmor?

AppArmor is MAC style security extension for the Linux kernel. It implements a task centered policy, with task “profiles” being created
and loaded from user space. Tasks on the system that do not have a profile defined for them run in an unconfined state which is equivalent
to standard Linux DAC permissions.

How to enable/disable

set CONFIG_SECURITY_APPARMOR=y

If AppArmor should be selected as the default security module then set:

CONFIG_DEFAULT_SECURITY="apparmor"
CONFIG_SECURITY_APPARMOR_BOOTPARAM_VALUE=1

Build the kernel

If AppArmor is not the default security module it can be enabled by passing security=apparmor on the kernel’s command line.

353



Linux Kernel User Documentation, v4.20.0

If AppArmor is the default security module it can be disabled by passing apparmor=0,security=XXXX (where XXXX is valid
security module), on the kernel’s command line.

For AppArmor to enforce any restrictions beyond standard Linux DAC permissions policy must be loaded into the kernel from user
space (see the Documentation and tools links).

Documentation

Documentation can be found on the wiki, linked below.

Links

Mailing List - apparmor@lists.ubuntu.com

Wiki - http://wiki.apparmor.net

User space tools - https://gitlab.com/apparmor

Kernel module - git://git.kernel.org/pub/scm/linux/kernel/git/jj/linux-apparmor

LoadPin

LoadPin is a Linux Security Module that ensures all kernel-loaded files (modules, firmware, etc) all originate from the same filesystem,
with the expectation that such a filesystem is backed by a read-only device such as dm-verity or CDROM. This allows systems that
have a verified and/or unchangeable filesystem to enforce module and firmware loading restrictions without needing to sign the files
individually.

The LSM is selectable at build-time with CONFIG_SECURITY_LOADPIN, and can be controlled at boot-time with the kernel command
line option “loadpin.enabled”. By default, it is enabled, but can be disabled at boot (“loadpin.enabled=0”).

LoadPin starts pinning when it sees the first file loaded. If the block device backing the filesystem is not read-only, a sysctl is created to
toggle pinning: /proc/sys/kernel/loadpin/enabled. (Having a mutable filesystem means pinning is mutable too, but having
the sysctl allows for easy testing on systems with a mutable filesystem.)

SELinux

If you want to use SELinux, chances are you will want to use the distro-provided policies, or install the latest reference policy release
from

http://oss.tresys.com/projects/refpolicy

However, if you want to install a dummy policy for testing, you can do using mdp provided under scripts/selinux. Note that this requires
the selinux userspace to be installed - in particular you will need checkpolicy to compile a kernel, and setfiles and fixfiles to label the
filesystem.

1. Compile the kernel with selinux enabled.

2. Type make to compile mdp.

3. Make sure that you are not running with SELinux enabled and a real policy. If you are, reboot with selinux disabled before
continuing.

4. Run install_policy.sh:

354 Chapter 32. Linux Security Module Usage

mailto:apparmor@lists.ubuntu.com
http://wiki.apparmor.net
https://gitlab.com/apparmor
http://oss.tresys.com/projects/refpolicy


Linux Kernel User Documentation, v4.20.0

cd scripts/selinux
sh install_policy.sh

Step 4 will create a new dummy policy valid for your kernel, with a single selinux user, role, and type. It will compile the policy, will
set your SELINUXTYPE to dummy in /etc/selinux/config, install the compiled policy as dummy, and relabel your filesystem.

Smack

“Good for you, you’ve decided to clean the elevator!” - The Elevator, from Dark Star

Smack is the Simplified Mandatory Access Control Kernel. Smack is a kernel based implementation of mandatory access control that
includes simplicity in its primary design goals.

Smack is not the only Mandatory Access Control scheme available for Linux. Those new to Mandatory Access Control are encouraged
to compare Smack with the other mechanisms available to determine which is best suited to the problem at hand.

Smack consists of three major components:

• The kernel

• Basic utilities, which are helpful but not required

• Configuration data

The kernel component of Smack is implemented as a Linux Security Modules (LSM) module. It requires netlabel and works best with
file systems that support extended attributes, although xattr support is not strictly required. It is safe to run a Smack kernel under a
“vanilla” distribution.

Smack kernels use the CIPSO IP option. Some network configurations are intolerant of IP options and can impede access to systems
that use them as Smack does.

Smack is used in the Tizen operating system. Please go to http://wiki.tizen.org for information about how Smack is used in Tizen.

The current git repository for Smack user space is:

git://github.com/smack-team/smack.git

This should make and install on most modern distributions. There are five commands included in smackutil:

chsmack: display or set Smack extended attribute values

smackctl: load the Smack access rules

smackaccess: report if a process with one label has access to an object with another

These two commands are obsolete with the introduction of the smackfs/load2 and smackfs/cipso2 interfaces.

smackload: properly formats data for writing to smackfs/load

smackcipso: properly formats data for writing to smackfs/cipso

In keeping with the intent of Smack, configuration data is minimal and not strictly required. The most important configuration step is
mounting the smackfs pseudo filesystem. If smackutil is installed the startup script will take care of this, but it can be manually as well.

Add this line to /etc/fstab:

smackfs /sys/fs/smackfs smackfs defaults 0 0

The /sys/fs/smackfs directory is created by the kernel.

Smack uses extended attributes (xattrs) to store labels on filesystem objects. The attributes are stored in the extended attribute security
name space. A process must have CAP_MAC_ADMIN to change any of these attributes.

32.4. Smack 355

http://wiki.tizen.org


Linux Kernel User Documentation, v4.20.0

The extended attributes that Smack uses are:

SMACK64 Used to make access control decisions. In almost all cases the label given to a new filesystem object will be the label of the
process that created it.

SMACK64EXEC The Smack label of a process that execs a program file with this attribute set will run with this attribute’s value.

SMACK64MMAP Don’t allow the file to be mmapped by a process whose Smack label does not allow all of the access permitted to a
process with the label contained in this attribute. This is a very specific use case for shared libraries.

SMACK64TRANSMUTE Can only have the value “TRUE”. If this attribute is present on a directory when an object is created in
the directory and the Smack rule (more below) that permitted the write access to the directory includes the transmute (“t”) mode
the object gets the label of the directory instead of the label of the creating process. If the object being created is a directory the
SMACK64TRANSMUTE attribute is set as well.

SMACK64IPIN This attribute is only available on file descriptors for sockets. Use the Smack label in this attribute for access control
decisions on packets being delivered to this socket.

SMACK64IPOUT This attribute is only available on file descriptors for sockets. Use the Smack label in this attribute for access control
decisions on packets coming from this socket.

There are multiple ways to set a Smack label on a file:

# attr -S -s SMACK64 -V "value" path
# chsmack -a value path

A process can see the Smack label it is running with by reading /proc/self/attr/current. A process with CAP_MAC_ADMIN
can set the process Smack by writing there.

Most Smack configuration is accomplished by writing to files in the smackfs filesystem. This pseudo-filesystem is mounted on
/sys/fs/smackfs.

access Provided for backward compatibility. The access2 interface is preferred and should be used instead. This interface reports
whether a subject with the specified Smack label has a particular access to an object with a specified Smack label. Write a fixed
format access rule to this file. The next read will indicate whether the access would be permitted. The text will be either “1”
indicating access, or “0” indicating denial.

access2 This interface reports whether a subject with the specified Smack label has a particular access to an object with a specified
Smack label. Write a long format access rule to this file. The next read will indicate whether the access would be permitted. The
text will be either “1” indicating access, or “0” indicating denial.

ambient This contains the Smack label applied to unlabeled network packets.

change-rule This interface allows modification of existing access control rules. The format accepted on write is:

"%s %s %s %s"

where the first string is the subject label, the second the object label, the third the access to allow and the fourth the access to deny.
The access strings may contain only the characters “rwxat-”. If a rule for a given subject and object exists it will be modified by
enabling the permissions in the third string and disabling those in the fourth string. If there is no such rule it will be created using
the access specified in the third and the fourth strings.

cipso Provided for backward compatibility. The cipso2 interface is preferred and should be used instead. This interface allows a specific
CIPSO header to be assigned to a Smack label. The format accepted on write is:

"%24s%4d%4d"["%4d"]...

The first string is a fixed Smack label. The first number is the level to use. The second number is the number of categories. The
following numbers are the categories:

"level-3-cats-5-19 3 2 5 19"

356 Chapter 32. Linux Security Module Usage



Linux Kernel User Documentation, v4.20.0

cipso2 This interface allows a specific CIPSO header to be assigned to a Smack label. The format accepted on write is:

"%s%4d%4d"["%4d"]...

The first string is a long Smack label. The first number is the level to use. The second number is the number of categories. The
following numbers are the categories:

"level-3-cats-5-19 3 2 5 19"

direct This contains the CIPSO level used for Smack direct label representation in network packets.

doi This contains the CIPSO domain of interpretation used in network packets.

ipv6host This interface allows specific IPv6 internet addresses to be treated as single label hosts. Packets are sent to single label hosts
only from processes that have Smack write access to the host label. All packets received from single label hosts are given the
specified label. The format accepted on write is:

"%h:%h:%h:%h:%h:%h:%h:%h label" or
"%h:%h:%h:%h:%h:%h:%h:%h/%d label".

The ”::” address shortcut is not supported. If label is “-DELETE” a matched entry will be deleted.

load Provided for backward compatibility. The load2 interface is preferred and should be used instead. This interface allows access
control rules in addition to the system defined rules to be specified. The format accepted on write is:

"%24s%24s%5s"

where the first string is the subject label, the second the object label, and the third the requested access. The access string may
contain only the characters “rwxat-”, and specifies which sort of access is allowed. The “-” is a placeholder for permissions that
are not allowed. The string “r-x–” would specify read and execute access. Labels are limited to 23 characters in length.

load2 This interface allows access control rules in addition to the system defined rules to be specified. The format accepted on write is:

"%s %s %s"

where the first string is the subject label, the second the object label, and the third the requested access. The access string may
contain only the characters “rwxat-”, and specifies which sort of access is allowed. The “-” is a placeholder for permissions that
are not allowed. The string “r-x–” would specify read and execute access.

load-self Provided for backward compatibility. The load-self2 interface is preferred and should be used instead. This interface allows
process specific access rules to be defined. These rules are only consulted if access would otherwise be permitted, and are intended
to provide additional restrictions on the process. The format is the same as for the load interface.

load-self2 This interface allows process specific access rules to be defined. These rules are only consulted if access would otherwise be
permitted, and are intended to provide additional restrictions on the process. The format is the same as for the load2 interface.

logging This contains the Smack logging state.

mapped This contains the CIPSO level used for Smack mapped label representation in network packets.

netlabel This interface allows specific internet addresses to be treated as single label hosts. Packets are sent to single label hosts without
CIPSO headers, but only from processes that have Smack write access to the host label. All packets received from single label
hosts are given the specified label. The format accepted on write is:

"%d.%d.%d.%d label" or "%d.%d.%d.%d/%d label".

If the label specified is “-CIPSO” the address is treated as a host that supports CIPSO headers.

onlycap This contains labels processes must have for CAP_MAC_ADMIN and CAP_MAC_OVERRIDE to be effective. If this file is
empty these capabilities are effective at for processes with any label. The values are set by writing the desired labels, separated by
spaces, to the file or cleared by writing “-” to the file.

32.4. Smack 357



Linux Kernel User Documentation, v4.20.0

ptrace This is used to define the current ptrace policy

0 - default: this is the policy that relies on Smack access rules. For the PTRACE_READ a subject needs to have a read access on
object. For the PTRACE_ATTACH a read-write access is required.

1 - exact: this is the policy that limits PTRACE_ATTACH. Attach is only allowed when subject’s and object’s labels are equal.
PTRACE_READ is not affected. Can be overridden with CAP_SYS_PTRACE.

2 - draconian: this policy behaves like the ‘exact’ above with an exception that it can’t be overridden with CAP_SYS_PTRACE.

revoke-subject Writing a Smack label here sets the access to ‘-‘ for all access rules with that subject label.

unconfined If the kernel is configured with CONFIG_SECURITY_SMACK_BRINGUP a process with CAP_MAC_ADMIN can write
a label into this interface. Thereafter, accesses that involve that label will be logged and the access permitted if it wouldn’t be
otherwise. Note that this is dangerous and can ruin the proper labeling of your system. It should never be used in production.

relabel-self This interface contains a list of labels to which the process can transition to, by writing to
/proc/self/attr/current. Normally a process can change its own label to any legal value, but only if it has
CAP_MAC_ADMIN. This interface allows a process without CAP_MAC_ADMIN to relabel itself to one of labels from predefined
list. A process without CAP_MAC_ADMIN can change its label only once. When it does, this list will be cleared. The values are
set by writing the desired labels, separated by spaces, to the file or cleared by writing “-” to the file.

If you are using the smackload utility you can add access rules in /etc/smack/accesses. They take the form:

subjectlabel objectlabel access

access is a combination of the letters rwxatb which specify the kind of access permitted a subject with subjectlabel on an object with
objectlabel. If there is no rule no access is allowed.

Look for additional programs on http://schaufler-ca.com

The Simplified Mandatory Access Control Kernel (Whitepaper)

Casey Schaufler casey@schaufler-ca.com

Mandatory Access Control

Computer systems employ a variety of schemes to constrain how information is shared among the people and services using the machine.
Some of these schemes allow the program or user to decide what other programs or users are allowed access to pieces of data. These
schemes are called discretionary access control mechanisms because the access control is specified at the discretion of the user. Other
schemes do not leave the decision regarding what a user or program can access up to users or programs. These schemes are called
mandatory access control mechanisms because you don’t have a choice regarding the users or programs that have access to pieces of
data.

Bell & LaPadula

From the middle of the 1980’s until the turn of the century Mandatory Access Control (MAC) was very closely associated with the Bell &
LaPadula security model, a mathematical description of the United States Department of Defense policy for marking paper documents.
MAC in this form enjoyed a following within the Capital Beltway and Scandinavian supercomputer centers but was often sited as failing
to address general needs.

Domain Type Enforcement

Around the turn of the century Domain Type Enforcement (DTE) became popular. This scheme organizes users, programs, and data
into domains that are protected from each other. This scheme has been widely deployed as a component of popular Linux distributions.

358 Chapter 32. Linux Security Module Usage

http://schaufler-ca.com
mailto:casey@schaufler-ca.com


Linux Kernel User Documentation, v4.20.0

The administrative overhead required to maintain this scheme and the detailed understanding of the whole system necessary to provide
a secure domain mapping leads to the scheme being disabled or used in limited ways in the majority of cases.

Smack

Smack is a Mandatory Access Control mechanism designed to provide useful MAC while avoiding the pitfalls of its predecessors. The
limitations of Bell & LaPadula are addressed by providing a scheme whereby access can be controlled according to the requirements of
the system and its purpose rather than those imposed by an arcane government policy. The complexity of Domain Type Enforcement
and avoided by defining access controls in terms of the access modes already in use.

Smack Terminology

The jargon used to talk about Smack will be familiar to those who have dealt with other MAC systems and shouldn’t be too difficult for
the uninitiated to pick up. There are four terms that are used in a specific way and that are especially important:

Subject: A subject is an active entity on the computer system. On Smack a subject is a task, which is in turn the basic unit
of execution.

Object: An object is a passive entity on the computer system. On Smack files of all types, IPC, and tasks can be objects.

Access: Any attempt by a subject to put information into or get information from an object is an access.

Label: Data that identifies the Mandatory Access Control characteristics of a subject or an object.

These definitions are consistent with the traditional use in the security community. There are also some terms from Linux that are likely
to crop up:

Capability: A task that possesses a capability has permission to violate an aspect of the system security policy, as identified
by the specific capability. A task that possesses one or more capabilities is a privileged task, whereas a task with no
capabilities is an unprivileged task.

Privilege: A task that is allowed to violate the system security policy is said to have privilege. As of this writing a task can
have privilege either by possessing capabilities or by having an effective user of root.

Smack Basics

Smack is an extension to a Linux system. It enforces additional restrictions on what subjects can access which objects, based on the
labels attached to each of the subject and the object.

Labels

Smack labels are ASCII character strings. They can be up to 255 characters long, but keeping them to twenty-three characters is
recommended. Single character labels using special characters, that being anything other than a letter or digit, are reserved for use by the
Smack development team. Smack labels are unstructured, case sensitive, and the only operation ever performed on them is comparison
for equality. Smack labels cannot contain unprintable characters, the “/” (slash), the “” (backslash), the “”’ (quote) and ‘”’ (double-quote)
characters. Smack labels cannot begin with a ‘-‘. This is reserved for special options.

There are some predefined labels:

_ Pronounced "floor", a single underscore character.
^ Pronounced "hat", a single circumflex character.

* Pronounced "star", a single asterisk character.
? Pronounced "huh", a single question mark character.
@ Pronounced "web", a single at sign character.

32.4. Smack 359



Linux Kernel User Documentation, v4.20.0

Every task on a Smack system is assigned a label. The Smack label of a process will usually be assigned by the system initialization
mechanism.

Access Rules

Smack uses the traditional access modes of Linux. These modes are read, execute, write, and occasionally append. There are a few cases
where the access mode may not be obvious. These include:

Signals: A signal is a write operation from the subject task to the object task.

Internet Domain IPC: Transmission of a packet is considered a write operation from the source task to the destination
task.

Smack restricts access based on the label attached to a subject and the label attached to the object it is trying to access. The rules enforced
are, in order:

1. Any access requested by a task labeled “*” is denied.

2. A read or execute access requested by a task labeled “^” is permitted.

3. A read or execute access requested on an object labeled “_” is permitted.

4. Any access requested on an object labeled “*” is permitted.

5. Any access requested by a task on an object with the same label is permitted.

6. Any access requested that is explicitly defined in the loaded rule set is permitted.

7. Any other access is denied.

Smack Access Rules

With the isolation provided by Smack access separation is simple. There are many interesting cases where limited access by subjects
to objects with different labels is desired. One example is the familiar spy model of sensitivity, where a scientist working on a highly
classified project would be able to read documents of lower classifications and anything she writes will be “born” highly classified. To
accommodate such schemes Smack includes a mechanism for specifying rules allowing access between labels.

Access Rule Format

The format of an access rule is:

subject-label object-label access

Where subject-label is the Smack label of the task, object-label is the Smack label of the thing being accessed, and access is a string
specifying the sort of access allowed. The access specification is searched for letters that describe access modes:

a: indicates that append access should be granted. r: indicates that read access should be granted. w: indicates that write
access should be granted. x: indicates that execute access should be granted. t: indicates that the rule requests transmutation.
b: indicates that the rule should be reported for bring-up.

Uppercase values for the specification letters are allowed as well. Access mode specifications can be in any order. Examples of acceptable
rules are:

TopSecret Secret rx
Secret Unclass R
Manager Game x
User HR w
Snap Crackle rwxatb

360 Chapter 32. Linux Security Module Usage



Linux Kernel User Documentation, v4.20.0

New Old rRrRr
Closed Off -

Examples of unacceptable rules are:

Top Secret Secret rx
Ace Ace r
Odd spells waxbeans

Spaces are not allowed in labels. Since a subject always has access to files with the same label specifying a rule for that case is pointless.
Only valid letters (rwxatbRWXATB) and the dash (‘-‘) character are allowed in access specifications. The dash is a placeholder, so “a-r”
is the same as “ar”. A lone dash is used to specify that no access should be allowed.

Applying Access Rules

The developers of Linux rarely define new sorts of things, usually importing schemes and concepts from other systems. Most often, the
other systems are variants of Unix. Unix has many endearing properties, but consistency of access control models is not one of them.
Smack strives to treat accesses as uniformly as is sensible while keeping with the spirit of the underlying mechanism.

File system objects including files, directories, named pipes, symbolic links, and devices require access permissions that closely match
those used by mode bit access. To open a file for reading read access is required on the file. To search a directory requires execute access.
Creating a file with write access requires both read and write access on the containing directory. Deleting a file requires read and write
access to the file and to the containing directory. It is possible that a user may be able to see that a file exists but not any of its attributes
by the circumstance of having read access to the containing directory but not to the differently labeled file. This is an artifact of the file
name being data in the directory, not a part of the file.

If a directory is marked as transmuting (SMACK64TRANSMUTE=TRUE) and the access rule that allows a process to create an object
in that directory includes ‘t’ access the label assigned to the new object will be that of the directory, not the creating process. This makes
it much easier for two processes with different labels to share data without granting access to all of their files.

IPC objects, message queues, semaphore sets, and memory segments exist in flat namespaces and access requests are only required to
match the object in question.

Process objects reflect tasks on the system and the Smack label used to access them is the same Smack label that the task would use for
its own access attempts. Sending a signal via the kill() system call is a write operation from the signaler to the recipient. Debugging
a process requires both reading and writing. Creating a new task is an internal operation that results in two tasks with identical Smack
labels and requires no access checks.

Sockets are data structures attached to processes and sending a packet from one process to another requires that the sender have write
access to the receiver. The receiver is not required to have read access to the sender.

Setting Access Rules

The configuration file /etc/smack/accesses contains the rules to be set at system startup. The contents are written to the special file
/sys/fs/smackfs/load2. Rules can be added at any time and take effect immediately. For any pair of subject and object labels there can
be only one rule, with the most recently specified overriding any earlier specification.

Task Attribute

The Smack label of a process can be read from /proc/<pid>/attr/current. A process can read its own Smack label from
/proc/self/attr/current. A privileged process can change its own Smack label by writing to /proc/self/attr/current but not the label of
another process.

32.4. Smack 361



Linux Kernel User Documentation, v4.20.0

File Attribute

The Smack label of a filesystem object is stored as an extended attribute named SMACK64 on the file. This attribute is in the security
namespace. It can only be changed by a process with privilege.

Privilege

A process with CAP_MAC_OVERRIDE or CAP_MAC_ADMIN is privileged. CAP_MAC_OVERRIDE allows the process access to
objects it would be denied otherwise. CAP_MAC_ADMIN allows a process to change Smack data, including rules and attributes.

Smack Networking

As mentioned before, Smack enforces access control on network protocol transmissions. Every packet sent by a Smack process is tagged
with its Smack label. This is done by adding a CIPSO tag to the header of the IP packet. Each packet received is expected to have a
CIPSO tag that identifies the label and if it lacks such a tag the network ambient label is assumed. Before the packet is delivered a check
is made to determine that a subject with the label on the packet has write access to the receiving process and if that is not the case the
packet is dropped.

CIPSO Configuration

It is normally unnecessary to specify the CIPSO configuration. The default values used by the system handle all internal cases. Smack
will compose CIPSO label values to match the Smack labels being used without administrative intervention. Unlabeled packets that
come into the system will be given the ambient label.

Smack requires configuration in the case where packets from a system that is not Smack that speaks CIPSO may be encountered. Usually
this will be a Trusted Solaris system, but there are other, less widely deployed systems out there. CIPSO provides 3 important values, a
Domain Of Interpretation (DOI), a level, and a category set with each packet. The DOI is intended to identify a group of systems that
use compatible labeling schemes, and the DOI specified on the Smack system must match that of the remote system or packets will be
discarded. The DOI is 3 by default. The value can be read from /sys/fs/smackfs/doi and can be changed by writing to /sys/fs/smackfs/doi.

The label and category set are mapped to a Smack label as defined in /etc/smack/cipso.

A Smack/CIPSO mapping has the form:

smack level [category [category]*]

Smack does not expect the level or category sets to be related in any particular way and does not assume or assign accesses based on
them. Some examples of mappings:

TopSecret 7
TS:A,B 7 1 2
SecBDE 5 2 4 6
RAFTERS 7 12 26

The ”:” and ”,” characters are permitted in a Smack label but have no special meaning.

The mapping of Smack labels to CIPSO values is defined by writing to /sys/fs/smackfs/cipso2.

In addition to explicit mappings Smack supports direct CIPSO mappings. One CIPSO level is used to indicate that the category set passed
in the packet is in fact an encoding of the Smack label. The level used is 250 by default. The value can be read from /sys/fs/smackfs/direct
and changed by writing to /sys/fs/smackfs/direct.

362 Chapter 32. Linux Security Module Usage



Linux Kernel User Documentation, v4.20.0

Socket Attributes

There are two attributes that are associated with sockets. These attributes can only be set by privileged tasks, but any task can read them
for their own sockets.

SMACK64IPIN: The Smack label of the task object. A privileged program that will enforce policy may set this to the star
label.

SMACK64IPOUT: The Smack label transmitted with outgoing packets. A privileged program may set this to match the
label of another task with which it hopes to communicate.

Smack Netlabel Exceptions

You will often find that your labeled application has to talk to the outside, unlabeled world. To do this there’s a special file
/sys/fs/smackfs/netlabel where you can add some exceptions in the form of:

@IP1 LABEL1 or
@IP2/MASK LABEL2

It means that your application will have unlabeled access to @IP1 if it has write access on LABEL1, and access to the subnet
@IP2/MASK if it has write access on LABEL2.

Entries in the /sys/fs/smackfs/netlabel file are matched by longest mask first, like in classless IPv4 routing.

A special label ‘@’ and an option ‘-CIPSO’ can be used there:

@ means Internet, any application with any label has access to it
-CIPSO means standard CIPSO networking

If you don’t know what CIPSO is and don’t plan to use it, you can just do:

echo 127.0.0.1 -CIPSO > /sys/fs/smackfs/netlabel
echo 0.0.0.0/0 @ > /sys/fs/smackfs/netlabel

If you use CIPSO on your 192.168.0.0/16 local network and need also unlabeled Internet access, you can have:

echo 127.0.0.1 -CIPSO > /sys/fs/smackfs/netlabel
echo 192.168.0.0/16 -CIPSO > /sys/fs/smackfs/netlabel
echo 0.0.0.0/0 @ > /sys/fs/smackfs/netlabel

Writing Applications for Smack

There are three sorts of applications that will run on a Smack system. How an application interacts with Smack will determine what it
will have to do to work properly under Smack.

Smack Ignorant Applications

By far the majority of applications have no reason whatever to care about the unique properties of Smack. Since invoking a program has
no impact on the Smack label associated with the process the only concern likely to arise is whether the process has execute access to
the program.

32.4. Smack 363



Linux Kernel User Documentation, v4.20.0

Smack Relevant Applications

Some programs can be improved by teaching them about Smack, but do not make any security decisions themselves. The utility ls(1) is
one example of such a program.

Smack Enforcing Applications

These are special programs that not only know about Smack, but participate in the enforcement of system policy. In most cases these
are the programs that set up user sessions. There are also network services that provide information to processes running with various
labels.

File System Interfaces

Smack maintains labels on file system objects using extended attributes. The Smack label of a file, directory, or other file system object
can be obtained using getxattr(2):

len = getxattr("/", "security.SMACK64", value, sizeof (value));

will put the Smack label of the root directory into value. A privileged process can set the Smack label of a file system object with
setxattr(2):

len = strlen("Rubble");
rc = setxattr("/foo", "security.SMACK64", "Rubble", len, 0);

will set the Smack label of /foo to “Rubble” if the program has appropriate privilege.

Socket Interfaces

The socket attributes can be read using fgetxattr(2).

A privileged process can set the Smack label of outgoing packets with fsetxattr(2):

len = strlen("Rubble");
rc = fsetxattr(fd, "security.SMACK64IPOUT", "Rubble", len, 0);

will set the Smack label “Rubble” on packets going out from the socket if the program has appropriate privilege:

rc = fsetxattr(fd, "security.SMACK64IPIN, "*", strlen("*"), 0);

will set the Smack label “*” as the object label against which incoming packets will be checked if the program has appropriate privilege.

Administration

Smack supports some mount options:

smackfsdef=label: specifies the label to give files that lack the Smack label extended attribute.

smackfsroot=label: specifies the label to assign the root of the file system if it lacks the Smack extended attribute.

smackfshat=label: specifies a label that must have read access to all labels set on the filesystem. Not yet enforced.

smackfsfloor=label: specifies a label to which all labels set on the filesystem must have read access. Not yet enforced.

These mount options apply to all file system types.

364 Chapter 32. Linux Security Module Usage



Linux Kernel User Documentation, v4.20.0

Smack auditing

If you want Smack auditing of security events, you need to set CONFIG_AUDIT in your kernel configuration. By default, all denied
events will be audited. You can change this behavior by writing a single character to the /sys/fs/smackfs/logging file:

0 : no logging
1 : log denied (default)
2 : log accepted
3 : log denied & accepted

Events are logged as ‘key=value’ pairs, for each event you at least will get the subject, the object, the rights requested, the action, the
kernel function that triggered the event, plus other pairs depending on the type of event audited.

Bringup Mode

Bringup mode provides logging features that can make application configuration and system bringup easier. Configure the kernel with
CONFIG_SECURITY_SMACK_BRINGUP to enable these features. When bringup mode is enabled accesses that succeed due to rules
marked with the “b” access mode will logged. When a new label is introduced for processes rules can be added aggressively, marked
with the “b”. The logging allows tracking of which rules actual get used for that label.

Another feature of bringup mode is the “unconfined” option. Writing a label to /sys/fs/smackfs/unconfined makes subjects with that label
able to access any object, and objects with that label accessible to all subjects. Any access that is granted because a label is unconfined
is logged. This feature is dangerous, as files and directories may be created in places they couldn’t if the policy were being enforced.

TOMOYO

What is TOMOYO?

TOMOYO is a name-based MAC extension (LSM module) for the Linux kernel.

LiveCD-based tutorials are available at

http://tomoyo.sourceforge.jp/1.8/ubuntu12.04-live.html http://tomoyo.sourceforge.jp/1.8/centos6-live.html

Though these tutorials use non-LSM version of TOMOYO, they are useful for you to know what TOMOYO is.

How to enable TOMOYO?

Build the kernel with CONFIG_SECURITY_TOMOYO=y and pass security=tomoyo on kernel’s command line.

Please see http://tomoyo.osdn.jp/2.5/ for details.

Where is documentation?

User <-> Kernel interface documentation is available at http://tomoyo.osdn.jp/2.5/policy-specification/index.html .

Materials we prepared for seminars and symposiums are available at http://osdn.jp/projects/tomoyo/docs/?category_id=532&language_
id=1 . Below lists are chosen from three aspects.

What is TOMOYO?

TOMOYO Linux Overview http://osdn.jp/projects/tomoyo/docs/lca2009-takeda.pdf

TOMOYO Linux: pragmatic and manageable security for Linux http://osdn.jp/projects/tomoyo/docs/
freedomhectaipei-tomoyo.pdf

32.5. TOMOYO 365

http://tomoyo.sourceforge.jp/1.8/ubuntu12.04-live.html
http://tomoyo.sourceforge.jp/1.8/centos6-live.html
http://tomoyo.osdn.jp/2.5/
http://tomoyo.osdn.jp/2.5/policy-specification/index.html
http://osdn.jp/projects/tomoyo/docs/?category_id=532&language_id=1
http://osdn.jp/projects/tomoyo/docs/?category_id=532&language_id=1
http://osdn.jp/projects/tomoyo/docs/lca2009-takeda.pdf
http://osdn.jp/projects/tomoyo/docs/freedomhectaipei-tomoyo.pdf
http://osdn.jp/projects/tomoyo/docs/freedomhectaipei-tomoyo.pdf


Linux Kernel User Documentation, v4.20.0

TOMOYO Linux: A Practical Method to Understand and Protect Your Own Linux Box http://osdn.jp/projects/tomoyo/
docs/PacSec2007-en-no-demo.pdf

What can TOMOYO do?

Deep inside TOMOYO Linux http://osdn.jp/projects/tomoyo/docs/lca2009-kumaneko.pdf

The role of “pathname based access control” in security. http://osdn.jp/projects/tomoyo/docs/lfj2008-bof.pdf

History of TOMOYO?

Realities of Mainlining http://osdn.jp/projects/tomoyo/docs/lfj2008.pdf

What is future plan?

We believe that inode based security and name based security are complementary and both should be used together. But unfortunately,
so far, we cannot enable multiple LSM modules at the same time. We feel sorry that you have to give up SELinux/SMACK/AppArmor
etc. when you want to use TOMOYO.

We hope that LSM becomes stackable in future. Meanwhile, you can use non-LSM version of TOMOYO, available at http://tomoyo.
osdn.jp/1.8/ . LSM version of TOMOYO is a subset of non-LSM version of TOMOYO. We are planning to port non-LSM version’s
functionalities to LSM versions.

Yama

Yama is a Linux Security Module that collects system-wide DAC security protections that are not handled by the core kernel
itself. This is selectable at build-time with CONFIG_SECURITY_YAMA, and can be controlled at run-time through sysctls in
/proc/sys/kernel/yama:

ptrace_scope

As Linux grows in popularity, it will become a larger target for malware. One particularly troubling weakness of the Linux process
interfaces is that a single user is able to examine the memory and running state of any of their processes. For example, if one application
(e.g. Pidgin) was compromised, it would be possible for an attacker to attach to other running processes (e.g. Firefox, SSH sessions,
GPG agent, etc) to extract additional credentials and continue to expand the scope of their attack without resorting to user-assisted
phishing.

This is not a theoretical problem. SSH session hijacking (http://www.storm.net.nz/projects/7) and arbitrary code injection (http://c-skills.
blogspot.com/2007/05/injectso.html) attacks already exist and remain possible if ptrace is allowed to operate as before. Since ptrace is
not commonly used by non-developers and non-admins, system builders should be allowed the option to disable this debugging system.

For a solution, some applications use prctl(PR_SET_DUMPABLE,...) to specifically disallow such ptrace attachment (e.g. ssh-
agent), but many do not. A more general solution is to only allow ptrace directly from a parent to a child process (i.e. direct “gdb EXE”
and “strace EXE” still work), or with CAP_SYS_PTRACE (i.e. “gdb –pid=PID”, and “strace -p PID” still work as root).

In mode 1, software that has defined application-specific relationships between a debugging process and its inferior (crash handlers, etc),
prctl(PR_SET_PTRACER,pid,...) can be used. An inferior can declare which other process (and its descendants) are allowed
to call PTRACE_ATTACH against it. Only one such declared debugging process can exists for each inferior at a time. For example,
this is used by KDE, Chromium, and Firefox’s crash handlers, and by Wine for allowing only Wine processes to ptrace each other. If a
process wishes to entirely disable these ptrace restrictions, it can call prctl(PR_SET_PTRACER,PR_SET_PTRACER_ANY,...)
so that any otherwise allowed process (even those in external pid namespaces) may attach.

The sysctl settings (writable only with CAP_SYS_PTRACE) are:

366 Chapter 32. Linux Security Module Usage

http://osdn.jp/projects/tomoyo/docs/PacSec2007-en-no-demo.pdf
http://osdn.jp/projects/tomoyo/docs/PacSec2007-en-no-demo.pdf
http://osdn.jp/projects/tomoyo/docs/lca2009-kumaneko.pdf
http://osdn.jp/projects/tomoyo/docs/lfj2008-bof.pdf
http://osdn.jp/projects/tomoyo/docs/lfj2008.pdf
http://tomoyo.osdn.jp/1.8/
http://tomoyo.osdn.jp/1.8/
http://www.storm.net.nz/projects/7
http://c-skills.blogspot.com/2007/05/injectso.html
http://c-skills.blogspot.com/2007/05/injectso.html


Linux Kernel User Documentation, v4.20.0

0 - classic ptrace permissions: a process can PTRACE_ATTACH to any other process running under the same uid, as long as it is
dumpable (i.e. did not transition uids, start privileged, or have called prctl(PR_SET_DUMPABLE...) already). Similarly,
PTRACE_TRACEME is unchanged.

1 - restricted ptrace: a process must have a predefined relationship with the inferior it wants to call PTRACE_ATTACH on. By default,
this relationship is that of only its descendants when the above classic criteria is also met. To change the relationship, an inferior
can call prctl(PR_SET_PTRACER,debugger,...) to declare an allowed debugger PID to call PTRACE_ATTACH on the
inferior. Using PTRACE_TRACEME is unchanged.

2 - admin-only attach: only processes with CAP_SYS_PTRACE may use ptrace, either with PTRACE_ATTACH or through children
calling PTRACE_TRACEME.

3 - no attach: no processes may use ptrace with PTRACE_ATTACH nor via PTRACE_TRACEME. Once set, this sysctl value cannot be
changed.

The original children-only logic was based on the restrictions in grsecurity.

32.6. Yama 367



Linux Kernel User Documentation, v4.20.0

368 Chapter 32. Linux Security Module Usage



CHAPTER 33

Memory Management

Linux memory management subsystem is responsible, as the name implies, for managing the memory in the system. This includes
implemnetation of virtual memory and demand paging, memory allocation both for kernel internal structures and user space programms,
mapping of files into processes address space and many other cool things.

Linux memory management is a complex system with many configurable settings. Most of these settings are available via /proc
filesystem and can be quired and adjusted using sysctl. These APIs are described in Documentation/sysctl/vm.txt and in man 5 proc.

Linux memory management has its own jargon and if you are not yet familiar with it, consider reading Documentation/admin-
guide/mm/concepts.rst .

Here we document in detail how to interact with various mechanisms in the Linux memory management.

Concepts overview

The memory management in Linux is complex system that evolved over the years and included more and more functionality to support
variety of systems from MMU-less microcontrollers to supercomputers. The memory management for systems without MMU is called
nommu and it definitely deserves a dedicated document, which hopefully will be eventually written. Yet, although some of the concepts
are the same, here we assume that MMU is available and CPU can translate a virtual address to a physical address.

• Virtual Memory Primer

• Huge Pages

• Zones

• Nodes

• Page cache

• Anonymous Memory

• Reclaim

• Compaction

• OOM killer

Virtual Memory Primer

The physical memory in a computer system is a limited resource and even for systems that support memory hotplug there is a hard limit
on the amount of memory that can be installed. The physical memory is not necessary contiguous, it might be accessible as a set of

369

http://man7.org/linux/man-pages/man5/proc.5.html


Linux Kernel User Documentation, v4.20.0

distinct address ranges. Besides, different CPU architectures, and even different implementations of the same architecture have different
view how these address ranges defined.

All this makes dealing directly with physical memory quite complex and to avoid this complexity a concept of virtual memory was
developed.

The virtual memory abstracts the details of physical memory from the application software, allows to keep only needed information in
the physical memory (demand paging) and provides a mechanism for the protection and controlled sharing of data between processes.

With virtual memory, each and every memory access uses a virtual address. When the CPU decodes the an instruction that reads (or
writes) from (or to) the system memory, it translates the virtual address encoded in that instruction to a physical address that the memory
controller can understand.

The physical system memory is divided into page frames, or pages. The size of each page is architecture specific. Some architectures
allow selection of the page size from several supported values; this selection is performed at the kernel build time by setting an appropriate
kernel configuration option.

Each physical memory page can be mapped as one or more virtual pages. These mappings are described by page tables that allow
translation from virtual address used by programs to real address in the physical memory. The page tables organized hierarchically.

The tables at the lowest level of the hierarchy contain physical addresses of actual pages used by the software. The tables at higher levels
contain physical addresses of the pages belonging to the lower levels. The pointer to the top level page table resides in a register. When
the CPU performs the address translation, it uses this register to access the top level page table. The high bits of the virtual address are
used to index an entry in the top level page table. That entry is then used to access the next level in the hierarchy with the next bits of
the virtual address as the index to that level page table. The lowest bits in the virtual address define the offset inside the actual page.

Huge Pages

The address translation requires several memory accesses and memory accesses are slow relatively to CPU speed. To avoid spending
precious processor cycles on the address translation, CPUs maintain a cache of such translations called Translation Lookaside Buffer (or
TLB). Usually TLB is pretty scarce resource and applications with large memory working set will experience performance hit because
of TLB misses.

Many modern CPU architectures allow mapping of the memory pages directly by the higher levels in the page table. For instance,
on x86, it is possible to map 2M and even 1G pages using entries in the second and the third level page tables. In Linux such pages
are called huge. Usage of huge pages significantly reduces pressure on TLB, improves TLB hit-rate and thus improves overall system
performance.

There are two mechanisms in Linux that enable mapping of the physical memory with the huge pages. The first one is HugeTLB
filesystem, or hugetlbfs. It is a pseudo filesystem that uses RAM as its backing store. For the files created in this filesystem the data
resides in the memory and mapped using huge pages. The hugetlbfs is described at Documentation/admin-guide/mm/hugetlbpage.rst .

Another, more recent, mechanism that enables use of the huge pages is called Transparent HugePages, or THP. Unlike the hugetlbfs
that requires users and/or system administrators to configure what parts of the system memory should and can be mapped by the huge
pages, THP manages such mappings transparently to the user and hence the name. See Documentation/admin-guide/mm/transhuge.rst
for more details about THP.

Zones

Often hardware poses restrictions on how different physical memory ranges can be accessed. In some cases, devices cannot perform
DMA to all the addressable memory. In other cases, the size of the physical memory exceeds the maximal addressable size of virtual
memory and special actions are required to access portions of the memory. Linux groups memory pages into zones according to their
possible usage. For example, ZONE_DMA will contain memory that can be used by devices for DMA, ZONE_HIGHMEM will contain
memory that is not permanently mapped into kernel’s address space and ZONE_NORMAL will contain normally addressed pages.

The actual layout of the memory zones is hardware dependent as not all architectures define all zones, and requirements for DMA are
different for different platforms.

370 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

Nodes

Many multi-processor machines are NUMA - Non-Uniform Memory Access - systems. In such systems the memory is arranged into
banks that have different access latency depending on the “distance” from the processor. Each bank is referred as node and for each
node Linux constructs an independent memory management subsystem. A node has it’s own set of zones, lists of free and used pages
and various statistics counters. You can find more details about NUMA in Documentation/vm/numa.rst and in Documentation/admin-
guide/mm/numa_memory_policy.rst .

Page cache

The physical memory is volatile and the common case for getting data into the memory is to read it from files. Whenever a file is read,
the data is put into the page cache to avoid expensive disk access on the subsequent reads. Similarly, when one writes to a file, the data
is placed in the page cache and eventually gets into the backing storage device. The written pages are marked as dirty and when Linux
decides to reuse them for other purposes, it makes sure to synchronize the file contents on the device with the updated data.

Anonymous Memory

The anonymous memory or anonymous mappings represent memory that is not backed by a filesystem. Such mappings are implicitly
created for program’s stack and heap or by explicit calls to mmap(2) system call. Usually, the anonymous mappings only define virtual
memory areas that the program is allowed to access. The read accesses will result in creation of a page table entry that references a
special physical page filled with zeroes. When the program performs a write, regular physical page will be allocated to hold the written
data. The page will be marked dirty and if the kernel will decide to repurpose it, the dirty page will be swapped out.

Reclaim

Throughout the system lifetime, a physical page can be used for storing different types of data. It can be kernel internal data structures,
DMA’able buffers for device drivers use, data read from a filesystem, memory allocated by user space processes etc.

Depending on the page usage it is treated differently by the Linux memory management. The pages that can be freed at any time, either
because they cache the data available elsewhere, for instance, on a hard disk, or because they can be swapped out, again, to the hard
disk, are called reclaimable. The most notable categories of the reclaimable pages are page cache and anonymous memory.

In most cases, the pages holding internal kernel data and used as DMA buffers cannot be repurposed, and they remain pinned until freed
by their user. Such pages are called unreclaimable. However, in certain circumstances, even pages occupied with kernel data structures
can be reclaimed. For instance, in-memory caches of filesystem metadata can be re-read from the storage device and therefore it is
possible to discard them from the main memory when system is under memory pressure.

The process of freeing the reclaimable physical memory pages and repurposing them is called (surprise!) reclaim. Linux can reclaim
pages either asynchronously or synchronously, depending on the state of the system. When system is not loaded, most of the memory
is free and allocation request will be satisfied immediately from the free pages supply. As the load increases, the amount of the free
pages goes down and when it reaches a certain threshold (high watermark), an allocation request will awaken the kswapd daemon. It
will asynchronously scan memory pages and either just free them if the data they contain is available elsewhere, or evict to the backing
storage device (remember those dirty pages?). As memory usage increases even more and reaches another threshold - min watermark
- an allocation will trigger the direct reclaim. In this case allocation is stalled until enough memory pages are reclaimed to satisfy the
request.

Compaction

As the system runs, tasks allocate and free the memory and it becomes fragmented. Although with virtual memory it is possible to
present scattered physical pages as virtually contiguous range, sometimes it is necessary to allocate large physically contiguous memory
areas. Such need may arise, for instance, when a device driver requires large buffer for DMA, or when THP allocates a huge page.
Memory compaction addresses the fragmentation issue. This mechanism moves occupied pages from the lower part of a memory zone

33.1. Concepts overview 371



Linux Kernel User Documentation, v4.20.0

to free pages in the upper part of the zone. When a compaction scan is finished free pages are grouped together at the beginning of the
zone and allocations of large physically contiguous areas become possible.

Like reclaim, the compaction may happen asynchronously in kcompactd daemon or synchronously as a result of memory allocation
request.

OOM killer

It may happen, that on a loaded machine memory will be exhausted. When the kernel detects that the system runs out of memory (OOM)
it invokes OOM killer. Its mission is simple: all it has to do is to select a task to sacrifice for the sake of the overall system health. The
selected task is killed in a hope that after it exits enough memory will be freed to continue normal operation.

HugeTLB Pages

Overview

The intent of this file is to give a brief summary of hugetlbpage support in the Linux kernel. This support is built on top of multiple page
size support that is provided by most modern architectures. For example, x86 CPUs normally support 4K and 2M (1G if architecturally
supported) page sizes, ia64 architecture supports multiple page sizes 4K, 8K, 64K, 256K, 1M, 4M, 16M, 256M and ppc64 supports 4K
and 16M. A TLB is a cache of virtual-to-physical translations. Typically this is a very scarce resource on processor. Operating systems
try to make best use of limited number of TLB resources. This optimization is more critical now as bigger and bigger physical memories
(several GBs) are more readily available.

Users can use the huge page support in Linux kernel by either using the mmap system call or standard SYSV shared memory system
calls (shmget, shmat).

First the Linux kernel needs to be built with the CONFIG_HUGETLBFS (present under “File systems”) and CON-
FIG_HUGETLB_PAGE (selected automatically when CONFIG_HUGETLBFS is selected) configuration options.

The /proc/meminfo file provides information about the total number of persistent hugetlb pages in the kernel’s huge page pool. It
also displays default huge page size and information about the number of free, reserved and surplus huge pages in the pool of huge pages
of default size. The huge page size is needed for generating the proper alignment and size of the arguments to system calls that map
huge page regions.

The output of cat /proc/meminfo will include lines like:

HugePages_Total: uuu
HugePages_Free: vvv
HugePages_Rsvd: www
HugePages_Surp: xxx
Hugepagesize: yyy kB
Hugetlb: zzz kB

where:

HugePages_Total is the size of the pool of huge pages.

HugePages_Free is the number of huge pages in the pool that are not yet allocated.

HugePages_Rsvd is short for “reserved,” and is the number of huge pages for which a commitment to allocate from the pool has been
made, but no allocation has yet been made. Reserved huge pages guarantee that an application will be able to allocate a huge page
from the pool of huge pages at fault time.

HugePages_Surp is short for “surplus,” and is the number of huge pages in the pool above the value in
/proc/sys/vm/nr_hugepages. The maximum number of surplus huge pages is controlled by
/proc/sys/vm/nr_overcommit_hugepages.

372 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

Hugepagesize is the default hugepage size (in Kb).

Hugetlb is the total amount of memory (in kB), consumed by huge pages of all sizes. If huge pages of different sizes are
in use, this number will exceed HugePages_Total * Hugepagesize. To get more detailed information, please, refer to
/sys/kernel/mm/hugepages (described below).

/proc/filesystems should also show a filesystem of type “hugetlbfs” configured in the kernel.

/proc/sys/vm/nr_hugepages indicates the current number of “persistent” huge pages in the kernel’s huge page pool. “Persistent”
huge pages will be returned to the huge page pool when freed by a task. A user with root privileges can dynamically allocate more or
free some persistent huge pages by increasing or decreasing the value of nr_hugepages.

Pages that are used as huge pages are reserved inside the kernel and cannot be used for other purposes. Huge pages cannot be swapped
out under memory pressure.

Once a number of huge pages have been pre-allocated to the kernel huge page pool, a user with appropriate privilege can use either the
mmap system call or shared memory system calls to use the huge pages. See the discussion of Using Huge Pages , below.

The administrator can allocate persistent huge pages on the kernel boot command line by specifying the “hugepages=N” parameter,
where ‘N’ = the number of huge pages requested. This is the most reliable method of allocating huge pages as memory has not yet
become fragmented.

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, one must precede the huge pages boot
command parameters with a huge page size selection parameter “hugepagesz=<size>”. <size> must be specified in bytes with optional
scale suffix [kKmMgG]. The default huge page size may be selected with the “default_hugepagesz=<size>” boot parameter.

When multiple huge page sizes are supported, /proc/sys/vm/nr_hugepages indicates the current number of pre-allocated huge
pages of the default size. Thus, one can use the following command to dynamically allocate/deallocate default sized persistent huge
pages:

echo 20 > /proc/sys/vm/nr_hugepages

This command will try to adjust the number of default sized huge pages in the huge page pool to 20, allocating or freeing huge pages, as
required.

On a NUMA platform, the kernel will attempt to distribute the huge page pool over all the set of allowed nodes specified by the NUMA
memory policy of the task that modifies nr_hugepages. The default for the allowed nodes–when the task has default memory
policy–is all on-line nodes with memory. Allowed nodes with insufficient available, contiguous memory for a huge page will be silently
skipped when allocating persistent huge pages. See the discussion below of the interaction of task memory policy, cpusets and per node
attributes with the allocation and freeing of persistent huge pages.

The success or failure of huge page allocation depends on the amount of physically contiguous memory that is present in system at the
time of the allocation attempt. If the kernel is unable to allocate huge pages from some nodes in a NUMA system, it will attempt to
make up the difference by allocating extra pages on other nodes with sufficient available contiguous memory, if any.

System administrators may want to put this command in one of the local rc init files. This will enable the kernel to allocate huge pages
early in the boot process when the possibility of getting physical contiguous pages is still very high. Administrators can verify the
number of huge pages actually allocated by checking the sysctl or meminfo. To check the per node distribution of huge pages in a
NUMA system, use:

cat /sys/devices/system/node/node*/meminfo | fgrep Huge

/proc/sys/vm/nr_overcommit_hugepages specifies how large the pool of huge pages can grow, if more huge pages than
/proc/sys/vm/nr_hugepages are requested by applications. Writing any non-zero value into this file indicates that the hugetlb
subsystem is allowed to try to obtain that number of “surplus” huge pages from the kernel’s normal page pool, when the persistent huge
page pool is exhausted. As these surplus huge pages become unused, they are freed back to the kernel’s normal page pool.

When increasing the huge page pool size via nr_hugepages, any existing surplus pages will first be promoted to persistent huge
pages. Then, additional huge pages will be allocated, if necessary and if possible, to fulfill the new persistent huge page pool size.

33.2. HugeTLB Pages 373



Linux Kernel User Documentation, v4.20.0

The administrator may shrink the pool of persistent huge pages for the default huge page size by setting the nr_hugepages sysctl to a
smaller value. The kernel will attempt to balance the freeing of huge pages across all nodes in the memory policy of the task modifying
nr_hugepages. Any free huge pages on the selected nodes will be freed back to the kernel’s normal page pool.

Caveat: Shrinking the persistent huge page pool via nr_hugepages such that it becomes less than the number of huge pages in use
will convert the balance of the in-use huge pages to surplus huge pages. This will occur even if the number of surplus pages would
exceed the overcommit value. As long as this condition holds–that is, until nr_hugepages+nr_overcommit_hugepages is
increased sufficiently, or the surplus huge pages go out of use and are freed– no more surplus huge pages will be allowed to be allocated.

With support for multiple huge page pools at run-time available, much of the huge page userspace interface in /proc/sys/vm has
been duplicated in sysfs. The /proc interfaces discussed above have been retained for backwards compatibility. The root huge page
control directory in sysfs is:

/sys/kernel/mm/hugepages

For each huge page size supported by the running kernel, a subdirectory will exist, of the form:

hugepages-${size}kB

Inside each of these directories, the same set of files will exist:

nr_hugepages
nr_hugepages_mempolicy
nr_overcommit_hugepages
free_hugepages
resv_hugepages
surplus_hugepages

which function as described above for the default huge page-sized case.

Interaction of Task Memory Policy with Huge Page Allocation/Freeing

Whether huge pages are allocated and freed via the /proc interface or the /sysfs interface using the nr_hugepages_mempolicy
attribute, the NUMA nodes from which huge pages are allocated or freed are controlled by the NUMA memory policy of the task that
modifies the nr_hugepages_mempolicy sysctl or attribute. When the nr_hugepages attribute is used, mempolicy is ignored.

The recommended method to allocate or free huge pages to/from the kernel huge page pool, using the nr_hugepages example above,
is:

numactl --interleave <node-list> echo 20 \
>/proc/sys/vm/nr_hugepages_mempolicy

or, more succinctly:

numactl -m <node-list> echo 20 >/proc/sys/vm/nr_hugepages_mempolicy

This will allocate or free abs(20 -nr_hugepages) to or from the nodes specified in <node-list>, depending on whether number
of persistent huge pages is initially less than or greater than 20, respectively. No huge pages will be allocated nor freed on any node not
included in the specified <node-list>.

When adjusting the persistent hugepage count via nr_hugepages_mempolicy, any memory policy mode–bind, preferred, local or
interleave–may be used. The resulting effect on persistent huge page allocation is as follows:

1. Regardless of mempolicy mode [see Documentation/admin-guide/mm/numa_memory_policy.rst ], persistent huge pages will be
distributed across the node or nodes specified in the mempolicy as if “interleave” had been specified. However, if a node in the
policy does not contain sufficient contiguous memory for a huge page, the allocation will not “fallback” to the nearest neighbor
node with sufficient contiguous memory. To do this would cause undesirable imbalance in the distribution of the huge page pool,
or possibly, allocation of persistent huge pages on nodes not allowed by the task’s memory policy.

374 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

2. One or more nodes may be specified with the bind or interleave policy. If more than one node is specified with the preferred policy,
only the lowest numeric id will be used. Local policy will select the node where the task is running at the time the nodes_allowed
mask is constructed. For local policy to be deterministic, the task must be bound to a cpu or cpus in a single node. Otherwise,
the task could be migrated to some other node at any time after launch and the resulting node will be indeterminate. Thus, local
policy is not very useful for this purpose. Any of the other mempolicy modes may be used to specify a single node.

3. The nodes allowed mask will be derived from any non-default task mempolicy, whether this policy was set explicitly by the task
itself or one of its ancestors, such as numactl. This means that if the task is invoked from a shell with non-default policy, that
policy will be used. One can specify a node list of “all” with numactl –interleave or –membind [-m] to achieve interleaving over
all nodes in the system or cpuset.

4. Any task mempolicy specified–e.g., using numactl–will be constrained by the resource limits of any cpuset in which the task runs.
Thus, there will be no way for a task with non-default policy running in a cpuset with a subset of the system nodes to allocate huge
pages outside the cpuset without first moving to a cpuset that contains all of the desired nodes.

5. Boot-time huge page allocation attempts to distribute the requested number of huge pages over all on-lines nodes with memory.

Per Node Hugepages Attributes

A subset of the contents of the root huge page control directory in sysfs, described above, will be replicated under each the system device
of each NUMA node with memory in:

/sys/devices/system/node/node[0-9]*/hugepages/

Under this directory, the subdirectory for each supported huge page size contains the following attribute files:

nr_hugepages
free_hugepages
surplus_hugepages

The free_’ and surplus_’ attribute files are read-only. They return the number of free and surplus [overcommitted] huge pages, respec-
tively, on the parent node.

The nr_hugepages attribute returns the total number of huge pages on the specified node. When this attribute is written, the number
of persistent huge pages on the parent node will be adjusted to the specified value, if sufficient resources exist, regardless of the task’s
mempolicy or cpuset constraints.

Note that the number of overcommit and reserve pages remain global quantities, as we don’t know until fault time, when the faulting
task’s mempolicy is applied, from which node the huge page allocation will be attempted.

Using Huge Pages

If the user applications are going to request huge pages using mmap system call, then it is required that system administrator mount a
file system of type hugetlbfs:

mount -t hugetlbfs \
-o uid=<value>,gid=<value>,mode=<value>,pagesize=<value>,size=<value>,\
min_size=<value>,nr_inodes=<value> none /mnt/huge

This command mounts a (pseudo) filesystem of type hugetlbfs on the directory /mnt/huge. Any file created on /mnt/huge uses
huge pages.

The uid and gid options sets the owner and group of the root of the file system. By default the uid and gid of the current process
are taken.

The mode option sets the mode of root of file system to value & 01777. This value is given in octal. By default the value 0755 is picked.

33.2. HugeTLB Pages 375



Linux Kernel User Documentation, v4.20.0

If the platform supports multiple huge page sizes, the pagesize option can be used to specify the huge page size and associated pool.
pagesize is specified in bytes. If pagesize is not specified the platform’s default huge page size and associated pool will be used.

The size option sets the maximum value of memory (huge pages) allowed for that filesystem (/mnt/huge). The size option can be
specified in bytes, or as a percentage of the specified huge page pool (nr_hugepages). The size is rounded down to HPAGE_SIZE
boundary.

The min_size option sets the minimum value of memory (huge pages) allowed for the filesystem. min_size can be specified in
the same way as size, either bytes or a percentage of the huge page pool. At mount time, the number of huge pages specified by
min_size are reserved for use by the filesystem. If there are not enough free huge pages available, the mount will fail. As huge pages
are allocated to the filesystem and freed, the reserve count is adjusted so that the sum of allocated and reserved huge pages is always at
least min_size.

The option nr_inodes sets the maximum number of inodes that /mnt/huge can use.

If the size, min_size or nr_inodes option is not provided on command line then no limits are set.

For pagesize, size, min_size and nr_inodes options, you can use [G|g]/[M|m]/[K|k] to represent giga/mega/kilo. For example,
size=2K has the same meaning as size=2048.

While read system calls are supported on files that reside on hugetlb file systems, write system calls are not.

Regular chown, chgrp, and chmod commands (with right permissions) could be used to change the file attributes on hugetlbfs.

Also, it is important to note that no such mount command is required if applications are going to use only shmat/shmget system calls or
mmap with MAP_HUGETLB. For an example of how to use mmap with MAP_HUGETLB see map_hugetlb below.

Users who wish to use hugetlb memory via shared memory segment should be members of a supplementary group and system admin
needs to configure that gid into /proc/sys/vm/hugetlb_shm_group. It is possible for same or different applications to use any
combination of mmaps and shm* calls, though the mount of filesystem will be required for using mmap calls without MAP_HUGETLB.

Syscalls that operate on memory backed by hugetlb pages only have their lengths aligned to the native page size of the processor;
they will normally fail with errno set to EINVAL or exclude hugetlb pages that extend beyond the length if not hugepage aligned. For
example, munmap(2) will fail if memory is backed by a hugetlb page and the length is smaller than the hugepage size.

Examples

map_hugetlb see tools/testing/selftests/vm/map_hugetlb.c

hugepage-shm see tools/testing/selftests/vm/hugepage-shm.c

hugepage-mmap see tools/testing/selftests/vm/hugepage-mmap.c

The libhugetlbfs library provides a wide range of userspace tools to help with huge page usability, environment setup, and control.

Idle Page Tracking

Motivation

The idle page tracking feature allows to track which memory pages are being accessed by a workload and which are idle. This infor-
mation can be useful for estimating the workload’s working set size, which, in turn, can be taken into account when configuring the
workload parameters, setting memory cgroup limits, or deciding where to place the workload within a compute cluster.

It is enabled by CONFIG_IDLE_PAGE_TRACKING=y.

376 Chapter 33. Memory Management

https://github.com/libhugetlbfs/libhugetlbfs


Linux Kernel User Documentation, v4.20.0

User API

The idle page tracking API is located at /sys/kernel/mm/page_idle. Currently, it consists of the only read-write file,
/sys/kernel/mm/page_idle/bitmap.

The file implements a bitmap where each bit corresponds to a memory page. The bitmap is represented by an array of 8-byte integers,
and the page at PFN #i is mapped to bit #i%64 of array element #i/64, byte order is native. When a bit is set, the corresponding page is
idle.

A page is considered idle if it has not been accessed since it was marked idle (for more details on what “accessed” actually means see
the Implementation Details section). To mark a page idle one has to set the bit corresponding to the page by writing to the file. A value
written to the file is OR-ed with the current bitmap value.

Only accesses to user memory pages are tracked. These are pages mapped to a process address space, page cache and buffer pages, swap
cache pages. For other page types (e.g. SLAB pages) an attempt to mark a page idle is silently ignored, and hence such pages are never
reported idle.

For huge pages the idle flag is set only on the head page, so one has to read /proc/kpageflags in order to correctly count idle huge
pages.

Reading from or writing to /sys/kernel/mm/page_idle/bitmap will return -EINVAL if you are not starting the read/write on
an 8-byte boundary, or if the size of the read/write is not a multiple of 8 bytes. Writing to this file beyond max PFN will return -ENXIO.

That said, in order to estimate the amount of pages that are not used by a workload one should:

1. Mark all the workload’s pages as idle by setting corresponding bits in /sys/kernel/mm/page_idle/bitmap. The pages
can be found by reading /proc/pid/pagemap if the workload is represented by a process, or by filtering out alien pages using
/proc/kpagecgroup in case the workload is placed in a memory cgroup.

2. Wait until the workload accesses its working set.

3. Read /sys/kernel/mm/page_idle/bitmap and count the number of bits set. If one wants to ignore certain types of
pages, e.g. mlocked pages since they are not reclaimable, he or she can filter them out using /proc/kpageflags.

The page-types tool in the tools/vm directory can be used to assist in this. If the tool is run initially with the appropriate option, it will
mark all the queried pages as idle. Subsequent runs of the tool can then show which pages have their idle flag cleared in the interim.

See Documentation/admin-guide/mm/pagemap.rst for more information about /proc/pid/pagemap, /proc/kpageflags, and
/proc/kpagecgroup.

Implementation Details

The kernel internally keeps track of accesses to user memory pages in order to reclaim unreferenced pages first on memory shortage
conditions. A page is considered referenced if it has been recently accessed via a process address space, in which case one or more
PTEs it is mapped to will have the Accessed bit set, or marked accessed explicitly by the kernel (see mark_page_accessed()). The latter
happens when:

• a userspace process reads or writes a page using a system call (e.g. read(2) or write(2))

• a page that is used for storing filesystem buffers is read or written, because a process needs filesystem metadata stored in it (e.g.
lists a directory tree)

• a page is accessed by a device driver using get_user_pages()

When a dirty page is written to swap or disk as a result of memory reclaim or exceeding the dirty memory limit, it is not marked
referenced.

The idle memory tracking feature adds a new page flag, the Idle flag. This flag is set manually, by writing to
/sys/kernel/mm/page_idle/bitmap (see the User API section), and cleared automatically whenever a page is referenced
as defined above.

33.3. Idle Page Tracking 377



Linux Kernel User Documentation, v4.20.0

When a page is marked idle, the Accessed bit must be cleared in all PTEs it is mapped to, otherwise we will not be able to detect accesses
to the page coming from a process address space. To avoid interference with the reclaimer, which, as noted above, uses the Accessed bit
to promote actively referenced pages, one more page flag is introduced, the Young flag. When the PTE Accessed bit is cleared as a result
of setting or updating a page’s Idle flag, the Young flag is set on the page. The reclaimer treats the Young flag as an extra PTE Accessed
bit and therefore will consider such a page as referenced.

Since the idle memory tracking feature is based on the memory reclaimer logic, it only works with pages that are on an LRU list, other
pages are silently ignored. That means it will ignore a user memory page if it is isolated, but since there are usually not many of them, it
should not affect the overall result noticeably. In order not to stall scanning of the idle page bitmap, locked pages may be skipped too.

Kernel Samepage Merging

Overview

KSM is a memory-saving de-duplication feature, enabled by CONFIG_KSM=y, added to the Linux kernel in 2.6.32. See mm/ksm.c
for its implementation, and http://lwn.net/Articles/306704/ and http://lwn.net/Articles/330589/

KSM was originally developed for use with KVM (where it was known as Kernel Shared Memory), to fit more virtual machines into
physical memory, by sharing the data common between them. But it can be useful to any application which generates many instances of
the same data.

The KSM daemon ksmd periodically scans those areas of user memory which have been registered with it, looking for pages of identical
content which can be replaced by a single write-protected page (which is automatically copied if a process later wants to update its
content). The amount of pages that KSM daemon scans in a single pass and the time between the passes are configured using sysfs
intraface

KSM only merges anonymous (private) pages, never pagecache (file) pages. KSM’s merged pages were originally locked into kernel
memory, but can now be swapped out just like other user pages (but sharing is broken when they are swapped back in: ksmd must
rediscover their identity and merge again).

Controlling KSM with madvise

KSM only operates on those areas of address space which an application has advised to be likely candidates for merging, by using the
madvise(2) system call:

int madvise(addr, length, MADV_MERGEABLE)

The app may call

int madvise(addr, length, MADV_UNMERGEABLE)

to cancel that advice and restore unshared pages: whereupon KSM unmerges whatever it merged in that range. Note: this unmerging call
may suddenly require more memory than is available - possibly failing with EAGAIN, but more probably arousing the Out-Of-Memory
killer.

If KSM is not configured into the running kernel, madvise MADV_MERGEABLE and MADV_UNMERGEABLE simply fail with
EINVAL. If the running kernel was built with CONFIG_KSM=y, those calls will normally succeed: even if the the KSM daemon
is not currently running, MADV_MERGEABLE still registers the range for whenever the KSM daemon is started; even if the range
cannot contain any pages which KSM could actually merge; even if MADV_UNMERGEABLE is applied to a range which was never
MADV_MERGEABLE.

If a region of memory must be split into at least one new MADV_MERGEABLE or MADV_UNMERGEABLE region, the madvise
may return ENOMEM if the process will exceed vm.max_map_count (see Documentation/sysctl/vm.txt).

378 Chapter 33. Memory Management

http://lwn.net/Articles/306704/
http://lwn.net/Articles/330589/


Linux Kernel User Documentation, v4.20.0

Like other madvise calls, they are intended for use on mapped areas of the user address space: they will report ENOMEM if the specified
range includes unmapped gaps (though working on the intervening mapped areas), and might fail with EAGAIN if not enough memory
for internal structures.

Applications should be considerate in their use of MADV_MERGEABLE, restricting its use to areas likely to benefit. KSM’s scans may
use a lot of processing power: some installations will disable KSM for that reason.

KSM daemon sysfs interface

The KSM daemon is controlled by sysfs files in /sys/kernel/mm/ksm/, readable by all but writable only by root:

pages_to_scan how many pages to scan before ksmd goes to sleep e.g. echo 100 >
/sys/kernel/mm/ksm/pages_to_scan.

Default: 100 (chosen for demonstration purposes)

sleep_millisecs how many milliseconds ksmd should sleep before next scan e.g. echo 20 >
/sys/kernel/mm/ksm/sleep_millisecs

Default: 20 (chosen for demonstration purposes)

merge_across_nodes specifies if pages from different NUMA nodes can be merged. When set to 0, ksm merges only pages which
physically reside in the memory area of same NUMA node. That brings lower latency to access of shared pages. Systems with
more nodes, at significant NUMA distances, are likely to benefit from the lower latency of setting 0. Smaller systems, which need
to minimize memory usage, are likely to benefit from the greater sharing of setting 1 (default). You may wish to compare how your
system performs under each setting, before deciding on which to use. merge_across_nodes setting can be changed only when
there are no ksm shared pages in the system: set run 2 to unmerge pages first, then to 1 after changing merge_across_nodes,
to remerge according to the new setting.

Default: 1 (merging across nodes as in earlier releases)

run

• set to 0 to stop ksmd from running but keep merged pages,

• set to 1 to run ksmd e.g. echo 1 > /sys/kernel/mm/ksm/run,

• set to 2 to stop ksmd and unmerge all pages currently merged, but leave mergeable areas registered for next run.

Default: 0 (must be changed to 1 to activate KSM, except if CONFIG_SYSFS is disabled)

use_zero_pages specifies whether empty pages (i.e. allocated pages that only contain zeroes) should be treated specially. When set to
1, empty pages are merged with the kernel zero page(s) instead of with each other as it would happen normally. This can improve
the performance on architectures with coloured zero pages, depending on the workload. Care should be taken when enabling
this setting, as it can potentially degrade the performance of KSM for some workloads, for example if the checksums of pages
candidate for merging match the checksum of an empty page. This setting can be changed at any time, it is only effective for pages
merged after the change.

Default: 0 (normal KSM behaviour as in earlier releases)

max_page_sharing Maximum sharing allowed for each KSM page. This enforces a deduplication limit to avoid high latency for virtual
memory operations that involve traversal of the virtual mappings that share the KSM page. The minimum value is 2 as a newly
created KSM page will have at least two sharers. The higher this value the faster KSM will merge the memory and the higher
the deduplication factor will be, but the slower the worst case virtual mappings traversal could be for any given KSM page.
Slowing down this traversal means there will be higher latency for certain virtual memory operations happening during swapping,
compaction, NUMA balancing and page migration, in turn decreasing responsiveness for the caller of those virtual memory
operations. The scheduler latency of other tasks not involved with the VM operations doing the virtual mappings traversal is not
affected by this parameter as these traversals are always schedule friendly themselves.

33.4. Kernel Samepage Merging 379



Linux Kernel User Documentation, v4.20.0

stable_node_chains_prune_millisecs specifies how frequently KSM checks the metadata of the pages that hit the deduplication limit
for stale information. Smaller milllisecs values will free up the KSM metadata with lower latency, but they will make ksmd use
more CPU during the scan. It’s a noop if not a single KSM page hit the max_page_sharing yet.

The effectiveness of KSM and MADV_MERGEABLE is shown in /sys/kernel/mm/ksm/:

pages_shared how many shared pages are being used

pages_sharing how many more sites are sharing them i.e. how much saved

pages_unshared how many pages unique but repeatedly checked for merging

pages_volatile how many pages changing too fast to be placed in a tree

full_scans how many times all mergeable areas have been scanned

stable_node_chains the number of KSM pages that hit the max_page_sharing limit

stable_node_dups number of duplicated KSM pages

A high ratio of pages_sharing to pages_shared indicates good sharing, but a high ratio of pages_unshared to
pages_sharing indicates wasted effort. pages_volatile embraces several different kinds of activity, but a high proportion
there would also indicate poor use of madvise MADV_MERGEABLE.

The maximum possible pages_sharing/pages_shared ratio is limited by the max_page_sharing tunable. To increase the
ratio max_page_sharing must be increased accordingly.

– Izik Eidus, Hugh Dickins, 17 Nov 2009

Memory Hotplug

Created Jul 28 2007

Updated Add some details about locking internals: Aug 20 2018

This document is about memory hotplug including how-to-use and current status. Because Memory Hotplug is still under development,
contents of this text will be changed often.

• Introduction

– Purpose of memory hotplug

– Phases of memory hotplug

– Unit of Memory online/offline operation

• Kernel Configuration

• sysfs files for memory hotplug

• Physical memory hot-add phase

– Hardware(Firmware) Support

– Notify memory hot-add event by hand

• Logical Memory hot-add phase

– State of memory

– How to online memory

• Logical memory remove

380 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

– Memory offline and ZONE_MOVABLE

– How to offline memory

• Physical memory remove

• Locking Internals

• Future Work

:

1. x86_64’s has special implementation for memory hotplug. This text does not describe it.
2. This text assumes that sysfs is mounted at /sys.

Introduction

Purpose of memory hotplug

Memory Hotplug allows users to increase/decrease the amount of memory. Generally, there are two purposes.

1. For changing the amount of memory. This is to allow a feature like capacity on demand.

2. For installing/removing DIMMs or NUMA-nodes physically. This is to exchange DIMMs/NUMA-nodes, reduce power consump-
tion, etc.

(A) is required by highly virtualized environments and (B) is required by hardware which supports memory power management.

Linux memory hotplug is designed for both purpose.

Phases of memory hotplug

There are 2 phases in Memory Hotplug:

1. Physical Memory Hotplug phase

2. Logical Memory Hotplug phase.

The First phase is to communicate hardware/firmware and make/erase environment for hotplugged memory. Basically, this phase is
necessary for the purpose (B), but this is good phase for communication between highly virtualized environments too.

When memory is hotplugged, the kernel recognizes new memory, makes new memory management tables, and makes sysfs files for new
memory’s operation.

If firmware supports notification of connection of new memory to OS, this phase is triggered automatically. ACPI can notify this event.
If not, “probe” operation by system administration is used instead. (see Physical memory hot-add phase ).

Logical Memory Hotplug phase is to change memory state into available/unavailable for users. Amount of memory from user’s view is
changed by this phase. The kernel makes all memory in it as free pages when a memory range is available.

In this document, this phase is described as online/offline.

Logical Memory Hotplug phase is triggered by write of sysfs file by system administrator. For the hot-add case, it must be executed
after Physical Hotplug phase by hand. (However, if you writes udev’s hotplug scripts for memory hotplug, these phases can be execute
in seamless way.)

33.5. Memory Hotplug 381



Linux Kernel User Documentation, v4.20.0

Unit of Memory online/offline operation

Memory hotplug uses SPARSEMEM memory model which allows memory to be divided into chunks of the same size. These chunks
are called “sections”. The size of a memory section is architecture dependent. For example, power uses 16MiB, ia64 uses 1GiB.

Memory sections are combined into chunks referred to as “memory blocks”. The size of a memory block is architecture dependent and
represents the logical unit upon which memory online/offline operations are to be performed. The default size of a memory block is the
same as memory section size unless an architecture specifies otherwise. (see sysfs files for memory hotplug .)

To determine the size (in bytes) of a memory block please read this file:

/sys/devices/system/memory/block_size_bytes

Kernel Configuration

To use memory hotplug feature, kernel must be compiled with following config options.

• For all memory hotplug:

– Memory model -> Sparse Memory (CONFIG_SPARSEMEM)

– Allow for memory hot-add (CONFIG_MEMORY_HOTPLUG)

• To enable memory removal, the following are also necessary:

– Allow for memory hot remove (CONFIG_MEMORY_HOTREMOVE)

– Page Migration (CONFIG_MIGRATION)

• For ACPI memory hotplug, the following are also necessary:

– Memory hotplug (under ACPI Support menu) (CONFIG_ACPI_HOTPLUG_MEMORY)

– This option can be kernel module.

• As a related configuration, if your box has a feature of NUMA-node hotplug via ACPI, then this option is necessary too.

– ACPI0004,PNP0A05 and PNP0A06 Container Driver (under ACPI Support menu)
(CONFIG_ACPI_CONTAINER).

This option can be kernel module too.

sysfs files for memory hotplug

All memory blocks have their device information in sysfs. Each memory block is described under /sys/devices/system/memory
as:

/sys/devices/system/memory/memoryXXX

where XXX is the memory block id.

For the memory block covered by the sysfs directory. It is expected that all memory sections in this range are present and no memory
holes exist in the range. Currently there is no way to determine if there is a memory hole, but the existence of one should not affect the
hotplug capabilities of the memory block.

For example, assume 1GiB memory block size. A device for a memory starting at 0x100000000 is
/sys/device/system/memory/memory4:

(0x100000000 / 1Gib = 4)

382 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

This device covers address range [0x100000000 ... 0x140000000)

Under each memory block, you can see 5 files:

• /sys/devices/system/memory/memoryXXX/phys_index

• /sys/devices/system/memory/memoryXXX/phys_device

• /sys/devices/system/memory/memoryXXX/state

• /sys/devices/system/memory/memoryXXX/removable

• /sys/devices/system/memory/memoryXXX/valid_zones

phys_index read-only and contains memory block id, same as XXX.
state read-write

• at read: contains online/offline state of memory.
• at write: user can specify “online_kernel”,

“online_movable”, “online”, “offline” command which will be
performed on all sections in the block.

phys_device read-only: designed to show the name of physical memory de-
vice. This is not well implemented now.

removable read-only: contains an integer value indicating whether the mem-
ory block is removable or not removable. A value of 1 indicates
that the memory block is removable and a value of 0 indicates
that it is not removable. A memory block is removable only if
every section in the block is removable.

valid_zones read-only: designed to show which zones this memory block can
be onlined to.
The first column shows it‘s default zone.
“memory6/valid_zones: Normal Movable” shows this memo-
ryblock can be onlined to ZONE_NORMAL by default and to
ZONE_MOVABLE by online_movable.
“memory7/valid_zones: Movable Normal” shows this memory-
block can be onlined to ZONE_MOVABLE by default and to
ZONE_NORMAL by online_kernel.

:

These directories/files appear after physical memory hotplug phase.

If CONFIG_NUMA is enabled the memoryXXX/ directories can also be accessed via symbolic links located in the
/sys/devices/system/node/node* directories.

For example:

/sys/devices/system/node/node0/memory9 -> ../../memory/memory9

A backlink will also be created:

/sys/devices/system/memory/memory9/node0 -> ../../node/node0

Physical memory hot-add phase

33.5. Memory Hotplug 383



Linux Kernel User Documentation, v4.20.0

Hardware(Firmware) Support

On x86_64/ia64 platform, memory hotplug by ACPI is supported.

In general, the firmware (ACPI) which supports memory hotplug defines memory class object of _HID “PNP0C80”. When a notify
is asserted to PNP0C80, Linux’s ACPI handler does hot-add memory to the system and calls a hotplug udev script. This will be done
automatically.

But scripts for memory hotplug are not contained in generic udev package(now). You may have to write it by yourself or online/offline
memory by hand. Please see How to online memory and How to offline memory .

If firmware supports NUMA-node hotplug, and defines an object _HID “ACPI0004”, “PNP0A05”, or “PNP0A06”, notification is as-
serted to it, and ACPI handler calls hotplug code for all of objects which are defined in it. If memory device is found, memory hotplug
code will be called.

Notify memory hot-add event by hand

On some architectures, the firmware may not notify the kernel of a memory hotplug event. Therefore, the memory “probe” interface
is supported to explicitly notify the kernel. This interface depends on CONFIG_ARCH_MEMORY_PROBE and can be configured on
powerpc, sh, and x86 if hotplug is supported, although for x86 this should be handled by ACPI notification.

Probe interface is located at:

/sys/devices/system/memory/probe

You can tell the physical address of new memory to the kernel by:

% echo start_address_of_new_memory > /sys/devices/system/memory/probe

Then, [start_address_of_new_memory, start_address_of_new_memory + memory_block_size] memory range is hot-added. In this case,
hotplug script is not called (in current implementation). You’ll have to online memory by yourself. Please see How to online memory .

Logical Memory hot-add phase

State of memory

To see (online/offline) state of a memory block, read ‘state’ file:

% cat /sys/device/system/memory/memoryXXX/state

• If the memory block is online, you’ll read “online”.

• If the memory block is offline, you’ll read “offline”.

How to online memory

When the memory is hot-added, the kernel decides whether or not to “online” it according to the policy which can be read from
“auto_online_blocks” file:

% cat /sys/devices/system/memory/auto_online_blocks

The default depends on the CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE kernel config option. If it is disabled the default is
“offline” which means the newly added memory is not in a ready-to-use state and you have to “online” the newly added memory blocks
manually. Automatic onlining can be requested by writing “online” to “auto_online_blocks” file:

384 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

% echo online > /sys/devices/system/memory/auto_online_blocks

This sets a global policy and impacts all memory blocks that will subsequently be hotplugged. Currently offline blocks keep their state.
It is possible, under certain circumstances, that some memory blocks will be added but will fail to online. User space tools can check
their “state” files (/sys/devices/system/memory/memoryXXX/state) and try to online them manually.

If the automatic onlining wasn’t requested, failed, or some memory block was offlined it is possible to change the individual block’s
state by writing to the “state” file:

% echo online > /sys/devices/system/memory/memoryXXX/state

This onlining will not change the ZONE type of the target memory block, If the memory block doesn’t belong to any zone an ap-
propriate kernel zone (usually ZONE_NORMAL) will be used unless movable_node kernel command line option is specified when
ZONE_MOVABLE will be used.

You can explicitly request to associate it with ZONE_MOVABLE by:

% echo online_movable > /sys/devices/system/memory/memoryXXX/state

:

current limit: this memory block must be adjacent to ZONE_MOVABLE

Or you can explicitly request a kernel zone (usually ZONE_NORMAL) by:

% echo online_kernel > /sys/devices/system/memory/memoryXXX/state

:

current limit: this memory block must be adjacent to ZONE_NORMAL

An explicit zone onlining can fail (e.g. when the range is already within and existing and incompatible zone already).

After this, memory block XXX’s state will be ‘online’ and the amount of available memory will be increased.

This may be changed in future.

Logical memory remove

Memory offline and ZONE_MOVABLE

Memory offlining is more complicated than memory online. Because memory offline has to make the whole memory block be unused,
memory offline can fail if the memory block includes memory which cannot be freed.

In general, memory offline can use 2 techniques.

1. reclaim and free all memory in the memory block.

2. migrate all pages in the memory block.

In the current implementation, Linux’s memory offline uses method (2), freeing all pages in the memory block by page migration. But
not all pages are migratable. Under current Linux, migratable pages are anonymous pages and page caches. For offlining a memory
block by migration, the kernel has to guarantee that the memory block contains only migratable pages.

33.5. Memory Hotplug 385



Linux Kernel User Documentation, v4.20.0

Now, a boot option for making a memory block which consists of migratable pages is supported. By specifying “kernelcore=”
or “movablecore=” boot option, you can create ZONE_MOVABLE...a zone which is just used for movable pages. (See also
Documentation/admin-guide/kernel-parameters.rst)

Assume the system has “TOTAL” amount of memory at boot time, this boot option creates ZONE_MOVABLE as following.

1. When kernelcore=YYYY boot option is used, Size of memory not for movable pages (not for offline) is YYYY. Size of memory
for movable pages (for offline) is TOTAL-YYYY.

2. When movablecore=ZZZZ boot option is used, Size of memory not for movable pages (not for offline) is TOTAL - ZZZZ. Size of
memory for movable pages (for offline) is ZZZZ.

:

Unfortunately, there is no information to show which memory block belongs to ZONE_MOVABLE. This is TBD.

How to offline memory

You can offline a memory block by using the same sysfs interface that was used in memory onlining:

% echo offline > /sys/devices/system/memory/memoryXXX/state

If offline succeeds, the state of the memory block is changed to be “offline”. If it fails, some error core (like -EBUSY) will be returned
by the kernel. Even if a memory block does not belong to ZONE_MOVABLE, you can try to offline it. If it doesn’t contain ‘unmovable’
memory, you’ll get success.

A memory block under ZONE_MOVABLE is considered to be able to be offlined easily. But under some busy state, it may return
-EBUSY. Even if a memory block cannot be offlined due to -EBUSY, you can retry offlining it and may be able to offline it (or not). (For
example, a page is referred to by some kernel internal call and released soon.)

Consideration: Memory hotplug’s design direction is to make the possibility of memory offlining higher and to guarantee unplugging
memory under any situation. But it needs more work. Returning -EBUSY under some situation may be good because the user can
decide to retry more or not by himself. Currently, memory offlining code does some amount of retry with 120 seconds timeout.

Physical memory remove

Need more implementation yet....

• Notification completion of remove works by OS to firmware.

• Guard from remove if not yet.

Locking Internals

When adding/removing memory that uses memory block devices (i.e. ordinary RAM), the device_hotplug_lock should be held to:

• synchronize against online/offline requests (e.g. via sysfs). This way, memory block devices can only be accessed (.online/.state
attributes) by user space once memory has been fully added. And when removing memory, we know nobody is in critical sections.

• synchronize against CPU hotplug and similar (e.g. relevant for ACPI and PPC)

Especially, there is a possible lock inversion that is avoided using device_hotplug_lock when adding memory and user space tries to
online that memory faster than expected:

• device_online() will first take the device_lock(), followed by mem_hotplug_lock

386 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

• add_memory_resource() will first take the mem_hotplug_lock, followed by the device_lock() (while creating the devices, during
bus_add_device()).

As the device is visible to user space before taking the device_lock(), this can result in a lock inversion.

onlining/offlining of memory should be done via device_online()/ device_offline() - to make sure it is properly synchronized to actions
via sysfs. Holding device_hotplug_lock is advised (to e.g. protect online_type)

When adding/removing/onlining/offlining memory or adding/removing heterogeneous/device memory, we should always hold the
mem_hotplug_lock in write mode to serialise memory hotplug (e.g. access to global/zone variables).

In addition, mem_hotplug_lock (in contrast to device_hotplug_lock) in read mode allows for a quite efficient
get_online_mems/put_online_mems implementation, so code accessing memory can protect from that memory vanishing.

Future Work

• allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like sysctl or new control file.

• showing memory block and physical device relationship.

• test and make it better memory offlining.

• support HugeTLB page migration and offlining.

• memmap removing at memory offline.

• physical remove memory.

NUMA Memory Policy

What is NUMA Memory Policy?

In the Linux kernel, “memory policy” determines from which node the kernel will allocate memory in a NUMA system or in an emulated
NUMA system. Linux has supported platforms with Non-Uniform Memory Access architectures since 2.4.?. The current memory policy
support was added to Linux 2.6 around May 2004. This document attempts to describe the concepts and APIs of the 2.6 memory policy
support.

Memory policies should not be confused with cpusets (Documentation/cgroup-v1/cpusets.txt) which is an administrative
mechanism for restricting the nodes from which memory may be allocated by a set of processes. Memory policies are a programming
interface that a NUMA-aware application can take advantage of. When both cpusets and policies are applied to a task, the restrictions of
the cpuset takes priority. See Memory Policies and cpusets below for more details.

Memory Policy Concepts

Scope of Memory Policies

The Linux kernel supports _scopes_ of memory policy, described here from most general to most specific:

System Default Policy this policy is “hard coded” into the kernel. It is the policy that governs all page allocations that aren’t controlled
by one of the more specific policy scopes discussed below. When the system is “up and running”, the system default policy will
use “local allocation” described below. However, during boot up, the system default policy will be set to interleave allocations
across all nodes with “sufficient” memory, so as not to overload the initial boot node with boot-time allocations.

Task/Process Policy this is an optional, per-task policy. When defined for a specific task, this policy controls all page allocations made
by or on behalf of the task that aren’t controlled by a more specific scope. If a task does not define a task policy, then all page
allocations that would have been controlled by the task policy “fall back” to the System Default Policy.

33.6. NUMA Memory Policy 387



Linux Kernel User Documentation, v4.20.0

The task policy applies to the entire address space of a task. Thus, it is inheritable, and indeed is inherited, across both fork()
[clone() w/o the CLONE_VM flag] and exec*(). This allows a parent task to establish the task policy for a child task exec()’d
from an executable image that has no awareness of memory policy. See the Memory Policy APIs section, below, for an overview
of the system call that a task may use to set/change its task/process policy.

In a multi-threaded task, task policies apply only to the thread [Linux kernel task] that installs the policy and any threads subse-
quently created by that thread. Any sibling threads existing at the time a new task policy is installed retain their current policy.

A task policy applies only to pages allocated after the policy is installed. Any pages already faulted in by the task when the task
changes its task policy remain where they were allocated based on the policy at the time they were allocated.

VMA Policy A “VMA” or “Virtual Memory Area” refers to a range of a task’s virtual address space. A task may define a specific policy
for a range of its virtual address space. See the Memory Policy APIs section, below, for an overview of the mbind() system call
used to set a VMA policy.

A VMA policy will govern the allocation of pages that back this region of the address space. Any regions of the task’s address
space that don’t have an explicit VMA policy will fall back to the task policy, which may itself fall back to the System Default
Policy.

VMA policies have a few complicating details:

• VMA policy applies ONLY to anonymous pages. These include pages allocated for anonymous segments, such as the task
stack and heap, and any regions of the address space mmap()ed with the MAP_ANONYMOUS flag. If a VMA policy is
applied to a file mapping, it will be ignored if the mapping used the MAP_SHARED flag. If the file mapping used the
MAP_PRIVATE flag, the VMA policy will only be applied when an anonymous page is allocated on an attempt to write to
the mapping– i.e., at Copy-On-Write.

• VMA policies are shared between all tasks that share a virtual address space–a.k.a. threads–independent of when the policy
is installed; and they are inherited across fork(). However, because VMA policies refer to a specific region of a task’s address
space, and because the address space is discarded and recreated on exec*(), VMA policies are NOT inheritable across exec().
Thus, only NUMA-aware applications may use VMA policies.

• A task may install a new VMA policy on a sub-range of a previously mmap()ed region. When this happens, Linux splits the
existing virtual memory area into 2 or 3 VMAs, each with it’s own policy.

• By default, VMA policy applies only to pages allocated after the policy is installed. Any pages already faulted into the VMA
range remain where they were allocated based on the policy at the time they were allocated. However, since 2.6.16, Linux
supports page migration via the mbind() system call, so that page contents can be moved to match a newly installed policy.

Shared Policy Conceptually, shared policies apply to “memory objects” mapped shared into one or more tasks’ distinct address spaces.
An application installs shared policies the same way as VMA policies–using the mbind() system call specifying a range of virtual
addresses that map the shared object. However, unlike VMA policies, which can be considered to be an attribute of a range of a
task’s address space, shared policies apply directly to the shared object. Thus, all tasks that attach to the object share the policy,
and all pages allocated for the shared object, by any task, will obey the shared policy.

As of 2.6.22, only shared memory segments, created by shmget() or mmap(MAP_ANONYMOUS|MAP_SHARED), support
shared policy. When shared policy support was added to Linux, the associated data structures were added to hugetlbfs shmem
segments. At the time, hugetlbfs did not support allocation at fault time–a.k.a lazy allocation–so hugetlbfs shmem segments were
never “hooked up” to the shared policy support. Although hugetlbfs segments now support lazy allocation, their support for shared
policy has not been completed.

As mentioned above in VMA policies section, allocations of page cache pages for regular files mmap()ed with MAP_SHARED
ignore any VMA policy installed on the virtual address range backed by the shared file mapping. Rather, shared page cache pages,
including pages backing private mappings that have not yet been written by the task, follow task policy, if any, else System Default
Policy.

The shared policy infrastructure supports different policies on subset ranges of the shared object. However, Linux still splits
the VMA of the task that installs the policy for each range of distinct policy. Thus, different tasks that attach to a shared
memory segment can have different VMA configurations mapping that one shared object. This can be seen by examining the

388 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

/proc/<pid>/numa_maps of tasks sharing a shared memory region, when one task has installed shared policy on one or more
ranges of the region.

Components of Memory Policies

A NUMA memory policy consists of a “mode”, optional mode flags, and an optional set of nodes. The mode determines the behavior of
the policy, the optional mode flags determine the behavior of the mode, and the optional set of nodes can be viewed as the arguments to
the policy behavior.

Internally, memory policies are implemented by a reference counted structure, struct mempolicy. Details of this structure will be
discussed in context, below, as required to explain the behavior.

NUMA memory policy supports the following 4 behavioral modes:

Default Mode–MPOL_DEFAULT This mode is only used in the memory policy APIs. Internally, MPOL_DEFAULT is converted to
the NULL memory policy in all policy scopes. Any existing non-default policy will simply be removed when MPOL_DEFAULT
is specified. As a result, MPOL_DEFAULT means “fall back to the next most specific policy scope.”

For example, a NULL or default task policy will fall back to the system default policy. A NULL or default vma policy will fall
back to the task policy.

When specified in one of the memory policy APIs, the Default mode does not use the optional set of nodes.

It is an error for the set of nodes specified for this policy to be non-empty.

MPOL_BIND This mode specifies that memory must come from the set of nodes specified by the policy. Memory will be allocated
from the node in the set with sufficient free memory that is closest to the node where the allocation takes place.

MPOL_PREFERRED This mode specifies that the allocation should be attempted from the single node specified in the policy. If that
allocation fails, the kernel will search other nodes, in order of increasing distance from the preferred node based on information
provided by the platform firmware.

Internally, the Preferred policy uses a single node–the preferred_node member of struct mempolicy. When the internal mode flag
MPOL_F_LOCAL is set, the preferred_node is ignored and the policy is interpreted as local allocation. “Local” allocation policy
can be viewed as a Preferred policy that starts at the node containing the cpu where the allocation takes place.

It is possible for the user to specify that local allocation is always preferred by passing an empty nodemask with this mode. If
an empty nodemask is passed, the policy cannot use the MPOL_F_STATIC_NODES or MPOL_F_RELATIVE_NODES flags
described below.

MPOL_INTERLEAVED This mode specifies that page allocations be interleaved, on a page granularity, across the nodes specified in
the policy. This mode also behaves slightly differently, based on the context where it is used:

For allocation of anonymous pages and shared memory pages, Interleave mode indexes the set of nodes specified by the policy
using the page offset of the faulting address into the segment [VMA] containing the address modulo the number of nodes specified
by the policy. It then attempts to allocate a page, starting at the selected node, as if the node had been specified by a Preferred
policy or had been selected by a local allocation. That is, allocation will follow the per node zonelist.

For allocation of page cache pages, Interleave mode indexes the set of nodes specified by the policy using a node counter main-
tained per task. This counter wraps around to the lowest specified node after it reaches the highest specified node. This will tend
to spread the pages out over the nodes specified by the policy based on the order in which they are allocated, rather than based on
any page offset into an address range or file. During system boot up, the temporary interleaved system default policy works in this
mode.

NUMA memory policy supports the following optional mode flags:

MPOL_F_STATIC_NODES This flag specifies that the nodemask passed by the user should not be remapped if the task or VMA’s set
of allowed nodes changes after the memory policy has been defined.

33.6. NUMA Memory Policy 389



Linux Kernel User Documentation, v4.20.0

Without this flag, any time a mempolicy is rebound because of a change in the set of allowed nodes, the node (Preferred) or
nodemask (Bind, Interleave) is remapped to the new set of allowed nodes. This may result in nodes being used that were previously
undesired.

With this flag, if the user-specified nodes overlap with the nodes allowed by the task’s cpuset, then the memory policy is applied
to their intersection. If the two sets of nodes do not overlap, the Default policy is used.

For example, consider a task that is attached to a cpuset with mems 1-3 that sets an Interleave policy over the same set. If the
cpuset’s mems change to 3-5, the Interleave will now occur over nodes 3, 4, and 5. With this flag, however, since only node 3
is allowed from the user’s nodemask, the “interleave” only occurs over that node. If no nodes from the user’s nodemask are now
allowed, the Default behavior is used.

MPOL_F_STATIC_NODES cannot be combined with the MPOL_F_RELATIVE_NODES flag. It also cannot be used for
MPOL_PREFERRED policies that were created with an empty nodemask (local allocation).

MPOL_F_RELATIVE_NODES This flag specifies that the nodemask passed by the user will be mapped relative to the set of the task
or VMA’s set of allowed nodes. The kernel stores the user-passed nodemask, and if the allowed nodes changes, then that original
nodemask will be remapped relative to the new set of allowed nodes.

Without this flag (and without MPOL_F_STATIC_NODES), anytime a mempolicy is rebound because of a change in the set of
allowed nodes, the node (Preferred) or nodemask (Bind, Interleave) is remapped to the new set of allowed nodes. That remap may
not preserve the relative nature of the user’s passed nodemask to its set of allowed nodes upon successive rebinds: a nodemask of
1,3,5 may be remapped to 7-9 and then to 1-3 if the set of allowed nodes is restored to its original state.

With this flag, the remap is done so that the node numbers from the user’s passed nodemask are relative to the set of allowed
nodes. In other words, if nodes 0, 2, and 4 are set in the user’s nodemask, the policy will be effected over the first (and in the
Bind or Interleave case, the third and fifth) nodes in the set of allowed nodes. The nodemask passed by the user represents nodes
relative to task or VMA’s set of allowed nodes.

If the user’s nodemask includes nodes that are outside the range of the new set of allowed nodes (for example, node 5 is set in the
user’s nodemask when the set of allowed nodes is only 0-3), then the remap wraps around to the beginning of the nodemask and,
if not already set, sets the node in the mempolicy nodemask.

For example, consider a task that is attached to a cpuset with mems 2-5 that sets an Interleave policy over the same set with
MPOL_F_RELATIVE_NODES. If the cpuset’s mems change to 3-7, the interleave now occurs over nodes 3,5-7. If the cpuset’s
mems then change to 0,2-3,5, then the interleave occurs over nodes 0,2-3,5.

Thanks to the consistent remapping, applications preparing nodemasks to specify memory policies using this flag should disregard
their current, actual cpuset imposed memory placement and prepare the nodemask as if they were always located on memory
nodes 0 to N-1, where N is the number of memory nodes the policy is intended to manage. Let the kernel then remap to the set of
memory nodes allowed by the task’s cpuset, as that may change over time.

MPOL_F_RELATIVE_NODES cannot be combined with the MPOL_F_STATIC_NODES flag. It also cannot be used for
MPOL_PREFERRED policies that were created with an empty nodemask (local allocation).

Memory Policy Reference Counting

To resolve use/free races, struct mempolicy contains an atomic reference count field. Internal interfaces, mpol_get()/mpol_put() incre-
ment and decrement this reference count, respectively. mpol_put() will only free the structure back to the mempolicy kmem cache when
the reference count goes to zero.

When a new memory policy is allocated, its reference count is initialized to ‘1’, representing the reference held by the task that is
installing the new policy. When a pointer to a memory policy structure is stored in another structure, another reference is added, as the
task’s reference will be dropped on completion of the policy installation.

During run-time “usage” of the policy, we attempt to minimize atomic operations on the reference count, as this can lead to cache lines
bouncing between cpus and NUMA nodes. “Usage” here means one of the following:

1. querying of the policy, either by the task itself [using the get_mempolicy() API discussed below] or by another task using the
/proc/<pid>/numa_maps interface.

390 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

2. examination of the policy to determine the policy mode and associated node or node lists, if any, for page allocation. This is
considered a “hot path”. Note that for MPOL_BIND, the “usage” extends across the entire allocation process, which may sleep
during page reclaimation, because the BIND policy nodemask is used, by reference, to filter ineligible nodes.

We can avoid taking an extra reference during the usages listed above as follows:

1. we never need to get/free the system default policy as this is never changed nor freed, once the system is up and running.

2. for querying the policy, we do not need to take an extra reference on the target task’s task policy nor vma policies because we
always acquire the task’s mm’s mmap_sem for read during the query. The set_mempolicy() and mbind() APIs [see below] always
acquire the mmap_sem for write when installing or replacing task or vma policies. Thus, there is no possibility of a task or thread
freeing a policy while another task or thread is querying it.

3. Page allocation usage of task or vma policy occurs in the fault path where we hold them mmap_sem for read. Again, because
replacing the task or vma policy requires that the mmap_sem be held for write, the policy can’t be freed out from under us while
we’re using it for page allocation.

4. Shared policies require special consideration. One task can replace a shared memory policy while another task, with a distinct
mmap_sem, is querying or allocating a page based on the policy. To resolve this potential race, the shared policy infrastructure
adds an extra reference to the shared policy during lookup while holding a spin lock on the shared policy management structure.
This requires that we drop this extra reference when we’re finished “using” the policy. We must drop the extra reference on shared
policies in the same query/allocation paths used for non-shared policies. For this reason, shared policies are marked as such, and
the extra reference is dropped “conditionally”–i.e., only for shared policies.

Because of this extra reference counting, and because we must lookup shared policies in a tree structure under spinlock, shared
policies are more expensive to use in the page allocation path. This is especially true for shared policies on shared memory regions
shared by tasks running on different NUMA nodes. This extra overhead can be avoided by always falling back to task or system
default policy for shared memory regions, or by prefaulting the entire shared memory region into memory and locking it down.
However, this might not be appropriate for all applications.

Memory Policy APIs

Linux supports 3 system calls for controlling memory policy. These APIS always affect only the calling task, the calling task’s address
space, or some shared object mapped into the calling task’s address space.

:

the headers that define these APIs and the parameter data types for user space applications reside in a package that is not part
of the Linux kernel. The kernel system call interfaces, with the ‘sys_’ prefix, are defined in <linux/syscalls.h>; the mode and flag
definitions are defined in <linux/mempolicy.h>.

Set [Task] Memory Policy:

long set_mempolicy(int mode, const unsigned long *nmask,
unsigned long maxnode);

Set’s the calling task’s “task/process memory policy” to mode specified by the ‘mode’ argument and the set of nodes defined by ‘nmask’.
‘nmask’ points to a bit mask of node ids containing at least ‘maxnode’ ids. Optional mode flags may be passed by combining the ‘mode’
argument with the flag (for example: MPOL_INTERLEAVE | MPOL_F_STATIC_NODES).

See the set_mempolicy(2) man page for more details

Get [Task] Memory Policy or Related Information:

long get_mempolicy(int *mode,
const unsigned long *nmask, unsigned long maxnode,
void *addr, int flags);

33.6. NUMA Memory Policy 391



Linux Kernel User Documentation, v4.20.0

Queries the “task/process memory policy” of the calling task, or the policy or location of a specified virtual address, depending on the
‘flags’ argument.

See the get_mempolicy(2) man page for more details

Install VMA/Shared Policy for a Range of Task’s Address Space:

long mbind(void *start, unsigned long len, int mode,
const unsigned long *nmask, unsigned long maxnode,
unsigned flags);

mbind() installs the policy specified by (mode, nmask, maxnodes) as a VMA policy for the range of the calling task’s address space
specified by the ‘start’ and ‘len’ arguments. Additional actions may be requested via the ‘flags’ argument.

See the mbind(2) man page for more details.

Memory Policy Command Line Interface

Although not strictly part of the Linux implementation of memory policy, a command line tool, numactl(8), exists that allows one to:

• set the task policy for a specified program via set_mempolicy(2), fork(2) and exec(2)

• set the shared policy for a shared memory segment via mbind(2)

The numactl(8) tool is packaged with the run-time version of the library containing the memory policy system call wrappers. Some
distributions package the headers and compile-time libraries in a separate development package.

Memory Policies and cpusets

Memory policies work within cpusets as described above. For memory policies that require a node or set of nodes, the nodes are
restricted to the set of nodes whose memories are allowed by the cpuset constraints. If the nodemask specified for the policy contains
nodes that are not allowed by the cpuset and MPOL_F_RELATIVE_NODES is not used, the intersection of the set of nodes specified
for the policy and the set of nodes with memory is used. If the result is the empty set, the policy is considered invalid and cannot be
installed. If MPOL_F_RELATIVE_NODES is used, the policy’s nodes are mapped onto and folded into the task’s set of allowed nodes
as previously described.

The interaction of memory policies and cpusets can be problematic when tasks in two cpusets share access to a memory region, such
as shared memory segments created by shmget() of mmap() with the MAP_ANONYMOUS and MAP_SHARED flags, and any of the
tasks install shared policy on the region, only nodes whose memories are allowed in both cpusets may be used in the policies. Obtaining
this information requires “stepping outside” the memory policy APIs to use the cpuset information and requires that one know in what
cpusets other task might be attaching to the shared region. Furthermore, if the cpusets’ allowed memory sets are disjoint, “local”
allocation is the only valid policy.

Examining Process Page Tables

pagemap is a new (as of 2.6.25) set of interfaces in the kernel that allow userspace programs to examine the page tables and related
information by reading files in /proc.

There are four components to pagemap:

• /proc/pid/pagemap. This file lets a userspace process find out which physical frame each virtual page is mapped to. It con-
tains one 64-bit value for each virtual page, containing the following data (from fs/proc/task_mmu.c, above pagemap_read):

– Bits 0-54 page frame number (PFN) if present

– Bits 0-4 swap type if swapped

392 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

– Bits 5-54 swap offset if swapped

– Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst )

– Bit 56 page exclusively mapped (since 4.2)

– Bits 57-60 zero

– Bit 61 page is file-page or shared-anon (since 3.5)

– Bit 62 page swapped

– Bit 63 page present

Since Linux 4.0 only users with the CAP_SYS_ADMIN capability can get PFNs. In 4.0 and 4.1 opens by unprivileged fail with
-EPERM. Starting from 4.2 the PFN field is zeroed if the user does not have CAP_SYS_ADMIN. Reason: information about
PFNs helps in exploiting Rowhammer vulnerability.

If the page is not present but in swap, then the PFN contains an encoding of the swap file number and the page’s offset into the
swap. Unmapped pages return a null PFN. This allows determining precisely which pages are mapped (or in swap) and comparing
mapped pages between processes.

Efficient users of this interface will use /proc/pid/maps to determine which areas of memory are actually mapped and llseek
to skip over unmapped regions.

• /proc/kpagecount. This file contains a 64-bit count of the number of times each page is mapped, indexed by PFN.

The page-types tool in the tools/vm directory can be used to query the number of times a page is mapped.

• /proc/kpageflags. This file contains a 64-bit set of flags for each page, indexed by PFN.

The flags are (from fs/proc/page.c, above kpageflags_read):

0. LOCKED

1. ERROR

2. REFERENCED

3. UPTODATE

4. DIRTY

5. LRU

6. ACTIVE

7. SLAB

8. WRITEBACK

9. RECLAIM

10. BUDDY

11. MMAP

12. ANON

13. SWAPCACHE

14. SWAPBACKED

15. COMPOUND_HEAD

16. COMPOUND_TAIL

17. HUGE

18. UNEVICTABLE

33.7. Examining Process Page Tables 393



Linux Kernel User Documentation, v4.20.0

19. HWPOISON

20. NOPAGE

21. KSM

22. THP

23. BALLOON

24. ZERO_PAGE

25. IDLE

• /proc/kpagecgroup. This file contains a 64-bit inode number of the memory cgroup each page is charged to, indexed by
PFN. Only available when CONFIG_MEMCG is set.

Short descriptions to the page flags

0 - LOCKED page is being locked for exclusive access, e.g. by undergoing read/write IO

7 - SLAB page is managed by the SLAB/SLOB/SLUB/SLQB kernel memory allocator When compound page is used, SLUB/SLQB
will only set this flag on the head page; SLOB will not flag it at all.

10 - BUDDY a free memory block managed by the buddy system allocator The buddy system organizes free memory in blocks of
various orders. An order N block has 2^N physically contiguous pages, with the BUDDY flag set for and _only_ for the first page.

15 - COMPOUND_HEAD A compound page with order N consists of 2^N physically contiguous pages. A compound page with order
2 takes the form of “HTTT”, where H donates its head page and T donates its tail page(s). The major consumers of compound
pages are hugeTLB pages ( Documentation/admin-guide/mm/hugetlbpage.rst ), the SLUB etc. memory allocators and various
device drivers. However in this interface, only huge/giga pages are made visible to end users.

16 - COMPOUND_TAIL A compound page tail (see description above).

17 - HUGE this is an integral part of a HugeTLB page

19 - HWPOISON hardware detected memory corruption on this page: don’t touch the data!

20 - NOPAGE no page frame exists at the requested address

21 - KSM identical memory pages dynamically shared between one or more processes

22 - THP contiguous pages which construct transparent hugepages

23 - BALLOON balloon compaction page

24 - ZERO_PAGE zero page for pfn_zero or huge_zero page

25 - IDLE page has not been accessed since it was marked idle (see Documentation/admin-guide/mm/idle_page_tracking.rst ). Note
that this flag may be stale in case the page was accessed via a PTE. To make sure the flag is up-to-date one has to read
/sys/kernel/mm/page_idle/bitmap first.

IO related page flags

1 - ERROR IO error occurred

3 - UPTODATE page has up-to-date data ie. for file backed page: (in-memory data revision >= on-disk one)

4 - DIRTY page has been written to, hence contains new data i.e. for file backed page: (in-memory data revision > on-disk one)

8 - WRITEBACK page is being synced to disk

394 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

LRU related page flags

5 - LRU page is in one of the LRU lists

6 - ACTIVE page is in the active LRU list

18 - UNEVICTABLE page is in the unevictable (non-)LRU list It is somehow pinned and not a candidate for LRU page reclaims, e.g.
ramfs pages, shmctl(SHM_LOCK) and mlock() memory segments

2 - REFERENCED page has been referenced since last LRU list enqueue/requeue

9 - RECLAIM page will be reclaimed soon after its pageout IO completed

11 - MMAP a memory mapped page

12 - ANON a memory mapped page that is not part of a file

13 - SWAPCACHE page is mapped to swap space, i.e. has an associated swap entry

14 - SWAPBACKED page is backed by swap/RAM

The page-types tool in the tools/vm directory can be used to query the above flags.

Using pagemap to do something useful

The general procedure for using pagemap to find out about a process’ memory usage goes like this:

1. Read /proc/pid/maps to determine which parts of the memory space are mapped to what.

2. Select the maps you are interested in – all of them, or a particular library, or the stack or the heap, etc.

3. Open /proc/pid/pagemap and seek to the pages you would like to examine.

4. Read a u64 for each page from pagemap.

5. Open /proc/kpagecount and/or /proc/kpageflags. For each PFN you just read, seek to that entry in the file, and read
the data you want.

For example, to find the “unique set size” (USS), which is the amount of memory that a process is using that is not shared with any other
process, you can go through every map in the process, find the PFNs, look those up in kpagecount, and tally up the number of pages that
are only referenced once.

Other notes

Reading from any of the files will return -EINVAL if you are not starting the read on an 8-byte boundary (e.g., if you sought an odd
number of bytes into the file), or if the size of the read is not a multiple of 8 bytes.

Before Linux 3.11 pagemap bits 55-60 were used for “page-shift” (which is always 12 at most architectures). Since Linux 3.11 their
meaning changes after first clear of soft-dirty bits. Since Linux 4.2 they are used for flags unconditionally.

Soft-Dirty PTEs

The soft-dirty is a bit on a PTE which helps to track which pages a task writes to. In order to do this tracking one should

1. Clear soft-dirty bits from the task’s PTEs.

This is done by writing “4” into the /proc/PID/clear_refs file of the task in question.

2. Wait some time.

33.8. Soft-Dirty PTEs 395



Linux Kernel User Documentation, v4.20.0

3. Read soft-dirty bits from the PTEs.

This is done by reading from the /proc/PID/pagemap. The bit 55 of the 64-bit qword is the soft-dirty one. If set, the
respective PTE was written to since step 1.

Internally, to do this tracking, the writable bit is cleared from PTEs when the soft-dirty bit is cleared. So, after this, when the task tries
to modify a page at some virtual address the #PF occurs and the kernel sets the soft-dirty bit on the respective PTE.

Note, that although all the task’s address space is marked as r/o after the soft-dirty bits clear, the #PF-s that occur after that are processed
fast. This is so, since the pages are still mapped to physical memory, and thus all the kernel does is finds this fact out and puts both
writable and soft-dirty bits on the PTE.

While in most cases tracking memory changes by #PF-s is more than enough there is still a scenario when we can lose soft dirty bits – a
task unmaps a previously mapped memory region and then maps a new one at exactly the same place. When unmap is called, the kernel
internally clears PTE values including soft dirty bits. To notify user space application about such memory region renewal the kernel
always marks new memory regions (and expanded regions) as soft dirty.

This feature is actively used by the checkpoint-restore project. You can find more details about it on http://criu.org

– Pavel Emelyanov, Apr 9, 2013

Transparent Hugepage Support

Objective

Performance critical computing applications dealing with large memory working sets are already running on top of libhugetlbfs and in
turn hugetlbfs. Transparent HugePage Support (THP) is an alternative mean of using huge pages for the backing of virtual memory with
huge pages that supports the automatic promotion and demotion of page sizes and without the shortcomings of hugetlbfs.

Currently THP only works for anonymous memory mappings and tmpfs/shmem. But in the future it can expand to other filesystems.

:

in the examples below we presume that the basic page size is 4K and the huge page size is 2M, although the actual numbers may
vary depending on the CPU architecture.

The reason applications are running faster is because of two factors. The first factor is almost completely irrelevant and it’s not of
significant interest because it’ll also have the downside of requiring larger clear-page copy-page in page faults which is a potentially
negative effect. The first factor consists in taking a single page fault for each 2M virtual region touched by userland (so reducing the
enter/exit kernel frequency by a 512 times factor). This only matters the first time the memory is accessed for the lifetime of a memory
mapping. The second long lasting and much more important factor will affect all subsequent accesses to the memory for the whole
runtime of the application. The second factor consist of two components:

1. the TLB miss will run faster (especially with virtualization using nested pagetables but almost always also on bare metal without
virtualization)

2. a single TLB entry will be mapping a much larger amount of virtual memory in turn reducing the number of TLB misses. With
virtualization and nested pagetables the TLB can be mapped of larger size only if both KVM and the Linux guest are using
hugepages but a significant speedup already happens if only one of the two is using hugepages just because of the fact the TLB
miss is going to run faster.

THP can be enabled system wide or restricted to certain tasks or even memory ranges inside task’s address space. Unless THP is
completely disabled, there is khugepaged daemon that scans memory and collapses sequences of basic pages into huge pages.

The THP behaviour is controlled via sysfs interface and using madivse(2) and prctl(2) system calls.

396 Chapter 33. Memory Management

http://criu.org


Linux Kernel User Documentation, v4.20.0

Transparent Hugepage Support maximizes the usefulness of free memory if compared to the reservation approach of hugetlbfs by
allowing all unused memory to be used as cache or other movable (or even unmovable entities). It doesn’t require reservation to prevent
hugepage allocation failures to be noticeable from userland. It allows paging and all other advanced VM features to be available on the
hugepages. It requires no modifications for applications to take advantage of it.

Applications however can be further optimized to take advantage of this feature, like for example they’ve been optimized before to avoid
a flood of mmap system calls for every malloc(4k). Optimizing userland is by far not mandatory and khugepaged already can take care
of long lived page allocations even for hugepage unaware applications that deals with large amounts of memory.

In certain cases when hugepages are enabled system wide, application may end up allocating more memory resources. An application
may mmap a large region but only touch 1 byte of it, in that case a 2M page might be allocated instead of a 4k page for no good. This is
why it’s possible to disable hugepages system-wide and to only have them inside MADV_HUGEPAGE madvise regions.

Embedded systems should enable hugepages only inside madvise regions to eliminate any risk of wasting any precious byte of memory
and to only run faster.

Applications that gets a lot of benefit from hugepages and that don’t risk to lose memory by using hugepages, should use mad-
vise(MADV_HUGEPAGE) on their critical mmapped regions.

sysfs

Global THP controls

Transparent Hugepage Support for anonymous memory can be entirely disabled (mostly for debugging purposes) or only enabled inside
MADV_HUGEPAGE regions (to avoid the risk of consuming more memory resources) or enabled system wide. This can be achieved
with one of:

echo always >/sys/kernel/mm/transparent_hugepage/enabled
echo madvise >/sys/kernel/mm/transparent_hugepage/enabled
echo never >/sys/kernel/mm/transparent_hugepage/enabled

It’s also possible to limit defrag efforts in the VM to generate anonymous hugepages in case they’re not immediately free to madvise
regions or to never try to defrag memory and simply fallback to regular pages unless hugepages are immediately available. Clearly if
we spend CPU time to defrag memory, we would expect to gain even more by the fact we use hugepages later instead of regular pages.
This isn’t always guaranteed, but it may be more likely in case the allocation is for a MADV_HUGEPAGE region.

echo always >/sys/kernel/mm/transparent_hugepage/defrag
echo defer >/sys/kernel/mm/transparent_hugepage/defrag
echo defer+madvise >/sys/kernel/mm/transparent_hugepage/defrag
echo madvise >/sys/kernel/mm/transparent_hugepage/defrag
echo never >/sys/kernel/mm/transparent_hugepage/defrag

always means that an application requesting THP will stall on allocation failure and directly reclaim pages and compact memory in an
effort to allocate a THP immediately. This may be desirable for virtual machines that benefit heavily from THP use and are willing
to delay the VM start to utilise them.

defer means that an application will wake kswapd in the background to reclaim pages and wake kcompactd to compact memory so that
THP is available in the near future. It’s the responsibility of khugepaged to then install the THP pages later.

defer+madvise will enter direct reclaim and compaction like always, but only for regions that have used mad-
vise(MADV_HUGEPAGE); all other regions will wake kswapd in the background to reclaim pages and wake kcompactd to
compact memory so that THP is available in the near future.

madvise will enter direct reclaim like always but only for regions that are have used madvise(MADV_HUGEPAGE). This is the
default behaviour.

never should be self-explanatory.

33.9. Transparent Hugepage Support 397



Linux Kernel User Documentation, v4.20.0

By default kernel tries to use huge zero page on read page fault to anonymous mapping. It’s possible to disable huge zero page by writing
0 or enable it back by writing 1:

echo 0 >/sys/kernel/mm/transparent_hugepage/use_zero_page
echo 1 >/sys/kernel/mm/transparent_hugepage/use_zero_page

Some userspace (such as a test program, or an optimized memory allocation library) may want to know the size (in bytes) of a transparent
hugepage:

cat /sys/kernel/mm/transparent_hugepage/hpage_pmd_size

khugepaged will be automatically started when transparent_hugepage/enabled is set to “always” or “madvise, and it’ll be automatically
shutdown if it’s set to “never”.

Khugepaged controls

khugepaged runs usually at low frequency so while one may not want to invoke defrag algorithms synchronously during the page faults,
it should be worth invoking defrag at least in khugepaged. However it’s also possible to disable defrag in khugepaged by writing 0 or
enable defrag in khugepaged by writing 1:

echo 0 >/sys/kernel/mm/transparent_hugepage/khugepaged/defrag
echo 1 >/sys/kernel/mm/transparent_hugepage/khugepaged/defrag

You can also control how many pages khugepaged should scan at each pass:

/sys/kernel/mm/transparent_hugepage/khugepaged/pages_to_scan

and how many milliseconds to wait in khugepaged between each pass (you can set this to 0 to run khugepaged at 100% utilization of
one core):

/sys/kernel/mm/transparent_hugepage/khugepaged/scan_sleep_millisecs

and how many milliseconds to wait in khugepaged if there’s an hugepage allocation failure to throttle the next allocation attempt:

/sys/kernel/mm/transparent_hugepage/khugepaged/alloc_sleep_millisecs

The khugepaged progress can be seen in the number of pages collapsed:

/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed

for each pass:

/sys/kernel/mm/transparent_hugepage/khugepaged/full_scans

max_ptes_none specifies how many extra small pages (that are not already mapped) can be allocated when collapsing a group of
small pages into one large page:

/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_none

A higher value leads to use additional memory for programs. A lower value leads to gain less thp performance. Value of max_ptes_none
can waste cpu time very little, you can ignore it.

max_ptes_swap specifies how many pages can be brought in from swap when collapsing a group of pages into a transparent huge
page:

398 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_swap

A higher value can cause excessive swap IO and waste memory. A lower value can prevent THPs from being collapsed, resulting fewer
pages being collapsed into THPs, and lower memory access performance.

Boot parameter

You can change the sysfs boot time defaults of Transparent Hugepage Support by passing the parameter
transparent_hugepage=always or transparent_hugepage=madvise or transparent_hugepage=never to
the kernel command line.

Hugepages in tmpfs/shmem

You can control hugepage allocation policy in tmpfs with mount option huge=. It can have following values:

always Attempt to allocate huge pages every time we need a new page;

never Do not allocate huge pages;

within_size Only allocate huge page if it will be fully within i_size. Also respect fadvise()/madvise() hints;

advise Only allocate huge pages if requested with fadvise()/madvise();

The default policy is never.

mount -o remount,huge= /mountpointworks fine after mount: remounting huge=neverwill not attempt to break up huge
pages at all, just stop more from being allocated.

There’s also sysfs knob to control hugepage allocation policy for internal shmem mount:
/sys/kernel/mm/transparent_hugepage/shmem_enabled. The mount is used for SysV SHM, memfds, shared anonymous mmaps
(of /dev/zero or MAP_ANONYMOUS), GPU drivers’ DRM objects, Ashmem.

In addition to policies listed above, shmem_enabled allows two further values:

deny For use in emergencies, to force the huge option off from all mounts;

force Force the huge option on for all - very useful for testing;

Need of application restart

The transparent_hugepage/enabled values and tmpfs mount option only affect future behavior. So to make them effective you need to
restart any application that could have been using hugepages. This also applies to the regions registered in khugepaged.

Monitoring usage

The number of anonymous transparent huge pages currently used by the system is available by reading the AnonHugePages
field in /proc/meminfo. To identify what applications are using anonymous transparent huge pages, it is necessary to read
/proc/PID/smaps and count the AnonHugePages fields for each mapping.

The number of file transparent huge pages mapped to userspace is available by reading ShmemPmdMapped and ShmemHugePages
fields in /proc/meminfo. To identify what applications are mapping file transparent huge pages, it is necessary to read
/proc/PID/smaps and count the FileHugeMapped fields for each mapping.

Note that reading the smaps file is expensive and reading it frequently will incur overhead.

There are a number of counters in /proc/vmstat that may be used to monitor how successfully the system is providing huge pages
for use.

33.9. Transparent Hugepage Support 399



Linux Kernel User Documentation, v4.20.0

thp_fault_alloc is incremented every time a huge page is successfully allocated to handle a page fault. This applies to both the first
time a page is faulted and for COW faults.

thp_collapse_alloc is incremented by khugepaged when it has found a range of pages to collapse into one huge page and has success-
fully allocated a new huge page to store the data.

thp_fault_fallback is incremented if a page fault fails to allocate a huge page and instead falls back to using small pages.

thp_collapse_alloc_failed is incremented if khugepaged found a range of pages that should be collapsed into one huge page but failed
the allocation.

thp_file_alloc is incremented every time a file huge page is successfully allocated.

thp_file_mapped is incremented every time a file huge page is mapped into user address space.

thp_split_page is incremented every time a huge page is split into base pages. This can happen for a variety of reasons but a common
reason is that a huge page is old and is being reclaimed. This action implies splitting all PMD the page mapped with.

thp_split_page_failed is incremented if kernel fails to split huge page. This can happen if the page was pinned by somebody.

thp_deferred_split_page is incremented when a huge page is put onto split queue. This happens when a huge page is partially un-
mapped and splitting it would free up some memory. Pages on split queue are going to be split under memory pressure.

thp_split_pmd is incremented every time a PMD split into table of PTEs. This can happen, for instance, when application calls
mprotect() or munmap() on part of huge page. It doesn’t split huge page, only page table entry.

thp_zero_page_alloc is incremented every time a huge zero page is successfully allocated. It includes allocations which where dropped
due race with other allocation. Note, it doesn’t count every map of the huge zero page, only its allocation.

thp_zero_page_alloc_failed is incremented if kernel fails to allocate huge zero page and falls back to using small pages.

thp_swpout is incremented every time a huge page is swapout in one piece without splitting.

thp_swpout_fallback is incremented if a huge page has to be split before swapout. Usually because failed to allocate some continuous
swap space for the huge page.

As the system ages, allocating huge pages may be expensive as the system uses memory compaction to copy data around memory to
free a huge page for use. There are some counters in /proc/vmstat to help monitor this overhead.

compact_stall is incremented every time a process stalls to run memory compaction so that a huge page is free for use.

compact_success is incremented if the system compacted memory and freed a huge page for use.

compact_fail is incremented if the system tries to compact memory but failed.

compact_pages_moved is incremented each time a page is moved. If this value is increasing rapidly, it implies that the system is
copying a lot of data to satisfy the huge page allocation. It is possible that the cost of copying exceeds any savings from reduced
TLB misses.

compact_pagemigrate_failed is incremented when the underlying mechanism for moving a page failed.

compact_blocks_moved is incremented each time memory compaction examines a huge page aligned range of pages.

It is possible to establish how long the stalls were using the function tracer to record how long was spent in __alloc_pages_nodemask
and using the mm_page_alloc tracepoint to identify which allocations were for huge pages.

Optimizing the applications

To be guaranteed that the kernel will map a 2M page immediately in any memory region, the mmap region has to be hugepage naturally
aligned. posix_memalign() can provide that guarantee.

400 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

Hugetlbfs

You can use hugetlbfs on a kernel that has transparent hugepage support enabled just fine as always. No difference can be noted in
hugetlbfs other than there will be less overall fragmentation. All usual features belonging to hugetlbfs are preserved and unaffected.
libhugetlbfs will also work fine as usual.

Userfaultfd

Objective

Userfaults allow the implementation of on-demand paging from userland and more generally they allow userland to take control of
various memory page faults, something otherwise only the kernel code could do.

For example userfaults allows a proper and more optimal implementation of the PROT_NONE+SIGSEGV trick.

Design

Userfaults are delivered and resolved through the userfaultfd syscall.

The userfaultfd (aside from registering and unregistering virtual memory ranges) provides two primary functionalities:

1. read/POLLIN protocol to notify a userland thread of the faults happening

2. various UFFDIO_* ioctls that can manage the virtual memory regions registered in the userfaultfd that allows userland to effi-
ciently resolve the userfaults it receives via 1) or to manage the virtual memory in the background

The real advantage of userfaults if compared to regular virtual memory management of mremap/mprotect is that the userfaults in all their
operations never involve heavyweight structures like vmas (in fact the userfaultfd runtime load never takes the mmap_sem for writing).

Vmas are not suitable for page- (or hugepage) granular fault tracking when dealing with virtual address spaces that could span Terabytes.
Too many vmas would be needed for that.

The userfaultfd once opened by invoking the syscall, can also be passed using unix domain sockets to a manager process, so the same
manager process could handle the userfaults of a multitude of different processes without them being aware about what is going on (well
of course unless they later try to use the userfaultfd themselves on the same region the manager is already tracking, which is a corner
case that would currently return -EBUSY).

API

When first opened the userfaultfd must be enabled invoking the UFFDIO_API ioctl specifying a uffdio_api.api value set to UFFD_API
(or a later API version) which will specify the read/POLLIN protocol userland intends to speak on the UFFD and the uffdio_api.features
userland requires. The UFFDIO_API ioctl if successful (i.e. if the requested uffdio_api.api is spoken also by the running kernel and the
requested features are going to be enabled) will return into uffdio_api.features and uffdio_api.ioctls two 64bit bitmasks of respectively
all the available features of the read(2) protocol and the generic ioctl available.

The uffdio_api.features bitmask returned by the UFFDIO_API ioctl defines what memory types are supported by the userfaultfd and
what events, except page fault notifications, may be generated.

If the kernel supports registering userfaultfd ranges on hugetlbfs virtual memory areas, UFFD_FEATURE_MISSING_HUGETLBFS
will be set in uffdio_api.features. Similarly, UFFD_FEATURE_MISSING_SHMEM will be set if the kernel supports registering user-
faultfd ranges on shared memory (covering all shmem APIs, i.e. tmpfs, IPCSHM, /dev/zero MAP_SHARED, memfd_create, etc).

The userland application that wants to use userfaultfd with hugetlbfs or shared memory need to set the corresponding flag in uff-
dio_api.features to enable those features.

33.10. Userfaultfd 401



Linux Kernel User Documentation, v4.20.0

If the userland desires to receive notifications for events other than page faults, it has to verify that uffdio_api.features has appropriate
UFFD_FEATURE_EVENT_* bits set. These events are described in more detail below in “Non-cooperative userfaultfd” section.

Once the userfaultfd has been enabled the UFFDIO_REGISTER ioctl should be invoked (if present in the returned uffdio_api.ioctls
bitmask) to register a memory range in the userfaultfd by setting the uffdio_register structure accordingly. The uffdio_register.mode
bitmask will specify to the kernel which kind of faults to track for the range (UFFDIO_REGISTER_MODE_MISSING would track
missing pages). The UFFDIO_REGISTER ioctl will return the uffdio_register.ioctls bitmask of ioctls that are suitable to resolve user-
faults on the range registered. Not all ioctls will necessarily be supported for all memory types depending on the underlying virtual
memory backend (anonymous memory vs tmpfs vs real filebacked mappings).

Userland can use the uffdio_register.ioctls to manage the virtual address space in the background (to add or potentially also remove
memory from the userfaultfd registered range). This means a userfault could be triggering just before userland maps in the background
the user-faulted page.

The primary ioctl to resolve userfaults is UFFDIO_COPY. That atomically copies a page into the userfault registered range and wakes
up the blocked userfaults (unless uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE is set). Other ioctl works similarly to
UFFDIO_COPY. They’re atomic as in guaranteeing that nothing can see an half copied page since it’ll keep userfaulting until the copy
has finished.

QEMU/KVM

QEMU/KVM is using the userfaultfd syscall to implement postcopy live migration. Postcopy live migration is one form of memory
externalization consisting of a virtual machine running with part or all of its memory residing on a different node in the cloud. The
userfaultfd abstraction is generic enough that not a single line of KVM kernel code had to be modified in order to add postcopy live
migration to QEMU.

Guest async page faults, FOLL_NOWAIT and all other GUP features work just fine in combination with userfaults. Userfaults trigger
async page faults in the guest scheduler so those guest processes that aren’t waiting for userfaults (i.e. network bound) can keep running
in the guest vcpus.

It is generally beneficial to run one pass of precopy live migration just before starting postcopy live migration, in order to avoid generating
userfaults for readonly guest regions.

The implementation of postcopy live migration currently uses one single bidirectional socket but in the future two different sockets will
be used (to reduce the latency of the userfaults to the minimum possible without having to decrease /proc/sys/net/ipv4/tcp_wmem).

The QEMU in the source node writes all pages that it knows are missing in the destination node, into the socket, and the migration thread
of the QEMU running in the destination node runs UFFDIO_COPY|ZEROPAGE ioctls on the userfaultfd in order to map the received
pages into the guest (UFFDIO_ZEROCOPY is used if the source page was a zero page).

A different postcopy thread in the destination node listens with poll() to the userfaultfd in parallel. When a POLLIN event is generated
after a userfault triggers, the postcopy thread read() from the userfaultfd and receives the fault address (or -EAGAIN in case the userfault
was already resolved and waken by a UFFDIO_COPY|ZEROPAGE run by the parallel QEMU migration thread).

After the QEMU postcopy thread (running in the destination node) gets the userfault address it writes the information about the missing
page into the socket. The QEMU source node receives the information and roughly “seeks” to that page address and continues sending
all remaining missing pages from that new page offset. Soon after that (just the time to flush the tcp_wmem queue through the network)
the migration thread in the QEMU running in the destination node will receive the page that triggered the userfault and it’ll map it as
usual with the UFFDIO_COPY|ZEROPAGE (without actually knowing if it was spontaneously sent by the source or if it was an urgent
page requested through a userfault).

By the time the userfaults start, the QEMU in the destination node doesn’t need to keep any per-page state bitmap relative to the live
migration around and a single per-page bitmap has to be maintained in the QEMU running in the source node to know which pages are
still missing in the destination node. The bitmap in the source node is checked to find which missing pages to send in round robin and we
seek over it when receiving incoming userfaults. After sending each page of course the bitmap is updated accordingly. It’s also useful to
avoid sending the same page twice (in case the userfault is read by the postcopy thread just before UFFDIO_COPY|ZEROPAGE runs in
the migration thread).

402 Chapter 33. Memory Management



Linux Kernel User Documentation, v4.20.0

Non-cooperative userfaultfd

When the userfaultfd is monitored by an external manager, the manager must be able to track changes in the process virtual memory
layout. Userfaultfd can notify the manager about such changes using the same read(2) protocol as for the page fault notifications. The
manager has to explicitly enable these events by setting appropriate bits in uffdio_api.features passed to UFFDIO_API ioctl:

UFFD_FEATURE_EVENT_FORK enable userfaultfd hooks for fork(). When this feature is enabled, the userfaultfd context of the
parent process is duplicated into the newly created process. The manager receives UFFD_EVENT_FORK with file descriptor of
the new userfaultfd context in the uffd_msg.fork.

UFFD_FEATURE_EVENT_REMAP enable notifications about mremap() calls. When the non-cooperative process moves a virtual
memory area to a different location, the manager will receive UFFD_EVENT_REMAP. The uffd_msg.remap will contain the old
and new addresses of the area and its original length.

UFFD_FEATURE_EVENT_REMOVE enable notifications about madvise(MADV_REMOVE) and madvise(MADV_DONTNEED)
calls. The event UFFD_EVENT_REMOVE will be generated upon these calls to madvise. The uffd_msg.remove will contain
start and end addresses of the removed area.

UFFD_FEATURE_EVENT_UNMAP enable notifications about memory unmapping. The manager will get
UFFD_EVENT_UNMAP with uffd_msg.remove containing start and end addresses of the unmapped area.

Although the UFFD_FEATURE_EVENT_REMOVE and UFFD_FEATURE_EVENT_UNMAP are pretty similar, they quite differ in
the action expected from the userfaultfd manager. In the former case, the virtual memory is removed, but the area is not, the area remains
monitored by the userfaultfd, and if a page fault occurs in that area it will be delivered to the manager. The proper resolution for such
page fault is to zeromap the faulting address. However, in the latter case, when an area is unmapped, either explicitly (with munmap()
system call), or implicitly (e.g. during mremap()), the area is removed and in turn the userfaultfd context for such area disappears too
and the manager will not get further userland page faults from the removed area. Still, the notification is required in order to prevent
manager from using UFFDIO_COPY on the unmapped area.

Unlike userland page faults which have to be synchronous and require explicit or implicit wakeup, all the events are delivered asyn-
chronously and the non-cooperative process resumes execution as soon as manager executes read(). The userfaultfd manager should
carefully synchronize calls to UFFDIO_COPY with the events processing. To aid the synchronization, the UFFDIO_COPY ioctl will
return -ENOSPC when the monitored process exits at the time of UFFDIO_COPY, and -ENOENT, when the non-cooperative process
has changed its virtual memory layout simultaneously with outstanding UFFDIO_COPY operation.

The current asynchronous model of the event delivery is optimal for single threaded non-cooperative userfaultfd manager implemen-
tations. A synchronous event delivery model can be added later as a new userfaultfd feature to facilitate multithreading enhancements
of the non cooperative manager, for example to allow UFFDIO_COPY ioctls to run in parallel to the event reception. Single threaded
implementations should continue to use the current async event delivery model instead.

33.10. Userfaultfd 403


	Linux kernel release 4.x <http://kernel.org/>
	The kernel's command-line parameters
	Linux allocated devices (4.x+ version)
	L1TF - L1 Terminal Fault
	Reporting bugs
	Security bugs
	Bug hunting
	Bisecting a bug
	Tainted kernels
	Ramoops oops/panic logger
	Dynamic debug
	Explaining the dreaded ``No init found.'' boot hang message
	Rules on how to access information in sysfs
	Using the initial RAM disk (initrd)
	Control Group v2
	Linux Serial Console
	Linux Braille Console
	Parport
	RAID arrays
	Kernel module signing facility
	Linux Magic System Request Key Hacks
	Unicode support
	Software cursor for VGA
	Kernel Support for miscellaneous (your favourite) Binary Formats v1.1
	Mono(tm) Binary Kernel Support for Linux
	Java(tm) Binary Kernel Support for Linux v1.03
	Reliability, Availability and Serviceability
	A block layer cache (bcache)
	ext4 General Information
	Power Management
	Thunderbolt
	Linux Security Module Usage
	Memory Management

